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Abstract
Cyanobacteriochromes (CBCRs) are spectrally diverse photosensors from cyanobacteria distantly related to phytochromes
that exploit photoisomerization of linear tetrapyrrole (bilin) chromophores to regulate associated signaling output
domains. Unlike phytochromes, a single CBCR domain is sufficient for photoperception. CBCR domains that regulate the
production or degradation of cyclic nucleotide second messengers are becoming increasingly well characterized. Cyclic di-
guanosine monophosphate (c-di-GMP) is a widespread small-molecule regulator of bacterial motility, developmental transi-
tions, and biofilm formation whose biosynthesis is regulated by CBCRs coupled to GGDEF (diguanylate cyclase) output
domains. In this study, we compare the properties of diverse CBCR-GGDEF proteins with those of synthetic CBCR-GGDEF
chimeras. Our investigation shows that natural diversity generates promising candidates for robust, broad spectrum opto-
genetic applications in live cells. Since light quality is constantly changing during plant development as upper leaves begin
to shade lower leaves—affecting elongation growth, initiation of flowering, and responses to pathogens, these studies pres-
age application of CBCR-GGDEF sensors to regulate orthogonal, c-di-GMP-regulated circuits in agronomically important
plants for robust mitigation of such deleterious responses under natural growing conditions in the field.

Introduction
Photosensory proteins respond to color, intensity, direction,
and/or duration of light by triggering biochemical pathways
for real-time adaptation to fluctuating environmental condi-
tions. Found in abundance in photosynthetic organisms,
photosensors play diverse roles in regulating photosynthesis-
associated gene expression, cell growth, movement, repro-
duction, and other processes (Möglich et al., 2010; Gomelsky
and Hoff, 2011). Cyanobacteria possess a particularly rich va-
riety of photosensory proteins that exploit the photochemi-
cal properties of associated retinals, flavins, and linear

tetrapyrroles (bilins; Fiedler et al., 2005; Mandalari et al.,
2013; Schuergers et al., 2017). The bilin-binding phyto-
chrome superfamily is among the most spectrally diverse,
absorbing light throughout the photosynthetically active
spectral range (Ikeuchi and Ishizuka, 2008; Anders and Essen,
2015; Rockwell and Lagarias, 2017; Villafani et al., 2020;
Fushimi and Narikawa, 2021). All members of this superfam-
ily share a conserved cGMP-specific phosphodiesterase
(PDE)/Adenylyl cyclase/FhlA (GAF) domain that harbors a
photoactive linear tetrapyrrole (bilin) chromophore that is
typically covalently attached to a conserved Cys residue via
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a thioether linkage to the bilin A-ring (Rockwell et al., 2006;
Rockwell and Lagarias, 2010, 2017). Reversible conversion be-
tween two spectrally distinct photostates via photoisomeri-
zation of the 15,16-double bond of the bilin chromophore is
a hallmark of these proteins. Canonical phytochrome photo-
conversion is achieved via absorption of red or far-red light,
which triggers protein structural rearrangements to affect
downstream signal transduction (Nagano, 2016; Rensing et
al., 2016; Viczian et al., 2017; Beattie et al., 2018; Pham et al.,
2018).

Cyanobacteriochromes (CBCRs) are cyanobacterial pro-
teins with bilin-binding GAF domains distantly related to
those of canonical phytochromes. CBCRs exhibit broader
spectral range than phytochromes, absorbing from the near
ultraviolet to the near infrared, and also require only the
GAF domain for assembly with bilin and for full, reversible
photoconversion (Hirose et al., 2008; Ikeuchi and Ishizuka,
2008; Rockwell et al., 2011, 2012, 2016; Ma et al., 2012;
Hirose et al., 2013; Narikawa et al., 2014). Like phytochromes,
CBCRs regulate diverse C-terminal output domains with a
range of biochemical activities. These include two-compo-
nent transmitter modules, methyl-accepting chemotaxis
domains, and enzymes that mediate the synthesis or degra-
dation of second messengers such as cAMP, cGMP, and
c-di-GMP (Ikeuchi and Ishizuka, 2008; Rockwell and Lagarias,
2010; Blain-Hartung et al., 2018; Wiltbank and Kehoe, 2019).
Owing to their small size (<200 amino acids), the photosen-
sory “GAF-only” modules of CBCRs are ideal targets for de-
velopment of optogenetic tools (Tabor et al., 2011;
Ramakrishnan and Tabor, 2016; Blain-Hartung et al., 2017,
2018; Fernandez-Rodriguez et al., 2017; Fushimi et al., 2017a).
By contrast, canonical phytochromes require two additional
domains that flank the GAF domain for full photosensory
function (Wu and Lagarias, 2000). Phytochrome-based regu-
lators of cyclic nucleotide levels have been extensively stud-
ied as optogenetic reagents (Tarutina et al., 2006; Gasser et
al., 2014; Ryu and Gomelsky, 2014; Ryu et al., 2014;
Gourinchas et al., 2017; Lindner et al., 2017; Etzl et al., 2018;
Gourinchas et al., 2018; Stuven et al., 2019), but optogenetic
applications of CBCR-regulated nucleotidyl cyclases have
been examined only recently (Blain-Hartung et al., 2017,
2018; Fushimi et al., 2017a). The present work addresses reg-
ulatory control of GGDEF domains (exhibiting diguanylate
cyclase or DGC activity) by CBCRs to inform rational design
of light-regulated nucleotidyl cyclases that respond to a
non-overlapping range of light colors.

Cyclic di-GMP (c-di-GMP) is a widespread bacterial sec-
ond messenger known to regulate prokaryotic biofilm pro-
duction, cell cycle, virulence, and motility, among other
processes (Ryjenkov et al., 2005; Romling et al., 2013). c-di-
GMP also functions as an agonist of well-described
transcription factors, riboswitches, and human immune
receptors (Karaolis et al., 2005; Sudarsan et al., 2008; Smith
et al., 2009; Christen et al., 2010; Shu et al., 2012; Ryu and
Gomelsky, 2014; Chen et al., 2017). C-di-GMP regulated
pathways appear to be absent in most eukaryotes, so

co-expression of light-regulated DGCs with c-di-GMP-depen-
dent PDEs, such as the blue-light-activated diguanylate
PDEs, BldP (Ryu et al., 2017) or PA2133 (Pu et al., 2018),
should prove an effective means for greater control of c-di-
GMP-mediated responses therein.

Such approaches would benefit from a panel of light-regu-
lated DGCs activated under different light conditions. The op-
tical properties of different organisms are not well suited to a
single light-regulated DGC: for example, red- or far-red activa-
tion is preferable in mammalian cells but will trigger a broad
range of endogenous photobiology in plants (Fernandez-
Milmanda and Ballare, 2021). To develop a suitable body of
reagents, we here report two approaches. In one, we started
with the previously described C-terminal CBCR-GGDEF bido-
main (Blain-Hartung et al., 2017) of Tlr0924 (SesA) from the
cyanobacterium Thermosynechococcus elongatus (Tlr0924D:
Figure 1, A), whose DGC activity is stimulated by blue light
and repressed by green light (Enomoto et al., 2014; Enomoto
et al., 2015; Blain-Hartung et al., 2017). We then replaced the
blue/green CBCR domain of Tlr0924D with CBCR domains
with different spectral sensitivities. In the other approach, we
identified, cloned, and expressed spectrally diverse CBCR-
GGDEF candidates from sequenced cyanobacterial genomes.
Our studies establish that natural diversity is a powerful alter-
native to rational design of broad spectrum CBCR-based
DGCs, provide insight into the structural basis of light-regula-
tion of DGC activity, and describe additional CBCR-GGDEF
proteins with greater spectral diversity.

Results

Rational design of chimeric CBCR-GGDEF proteins
fails to yield robust light-regulated DGCs
We initially engineered GAF-GGDEF fusions of the red/green
CBCR NpR6012g4 (Rockwell et al., 2012c) and the green/red
CBCR RcaE (Hirose et al., 2013) with the GGDEF domain of
Tlr0924 (Blain-Hartung et al., 2017). These constructs were
designed to replace the linker region between the two
domains with variable lengths of linker regions C-terminal
to the light-sensing GAF domain and N-terminal to the
GGDEF output domain (Figure 1, B). While all fusion pro-
teins retained spectral properties of the parent CBCR
(Supplemental Figure S1), none displayed light-regulated
synthesis of c-di-GMP despite striking differences in basal
DGC activity (Figure 1, C). These results underscore the diffi-
culty of generating robust light-regulated chimeras by do-
main fusion of light-sensing input domains with diverse
signal output domains, even when linker length and chemi-
cal properties are taken in consideration (Möglich and
Moffat, 2010). Indeed, our previously unsuccessful attempts
to alter the amino acid composition and length of the linker
region between the CBCR and GGDEF domains of Tlr0924D
demonstrate that light-regulated signal output is exquisitely
controlled by critical structural features of the linker region
(Blain-Hartung et al., 2017). The present studies show that
the regulatory function of the linker is context dependent,
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no doubt reflecting its co-evolution with associated CBCR
and GGDEF domains (Gourinchas et al., 2018).

Bioinformatic analysis reveals that CBCR-DGC
sensors are widespread in cyanobacteria
As an alternative to rational design, we worked from previ-
ous analyses of CBCR diversity (Rockwell et al., 2008, 2015)
to generate a list of 55 proteins containing recognizable

CBCR GAF domains immediately N-terminal to GGDEF
domains containing fully conserved catalytic GG(D/E)EF
motifs (Ryjenkov et al., 2005), mimicking the domain ar-
rangement of Tlr0924. CBCR, linker, and DGC GGDEF
regions were aligned separately for these proteins
(Supplemental Figures S2–S4). The linker region was quite
small, but the CBCR and GGDEF alignments were used to
infer maximum-likelihood phylogenies. These phylogenies
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Figure 1 Fusion of CBCR “GAF” domains with DGC “GGDEF” domain of Tlr0924 (SesA). A, Domain architecture of Tlr0924D. B, Alignment of fu-
sion protein constructs, color-coded by coding sequence (Tlr0924, pale green; RcaE, pink; NpR6012g4, cyan; dark orange box, short repeated mo-
tif). The alignment starts with the last b strand of the GAF domain (LWGLLIAH in Tlr0924D), with the GAF domain ending in the vicinity of
VALQQ in the same sequence and with the GGDEF domain in the vicinity of NLQ in the same sequence. Numbering is based on full-length
Tlr0924 (GenBank accession BAC08476). C, DGC activity of fusion protein constructs (indicated as in panel B) in 15Z (blue) and 15E (orange) pho-
tostates. Error bars are drawn at one standard deviation (n¼ 3). No construct exhibited significant light-regulated DGC activity (P< 0.05).
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are presented in a tanglegram representation (Figure 2). In
Figure 2, CBCR names are colored based on the type of
CBCR domain (Rockwell et al., 2015b). The isolated CBCR
and GGDEF domains in the respective trees are connected
by arbitrarily colored lines; in this fashion, co-evolving clus-
ters can be identified. CBCR sequence clusters containing
NpR1060 and Cyan7822_5462 each correspond to a mono-
phyletic group of GGDEF domains, providing support for
co-evolution of the CBCR and GGDEF domains in these line-
ages. Other cases do not show such co-evolution of the
GAF-GGDEF pair, suggesting that gene fusion events have
also played a significant role in the evolution of these
sensors.

The majority of the CBCR-GGDEF proteins (35 of 55) con-
tain the DXCF signature sequence found in Tlr0924D
(Supplemental Figure S2). The cysteine residue within this
motif forms a second thioether linkage to the C10 position
of the bilin chromophore in one or both photostates, short-
ening the conjugated systems and blue shifting the CBCR
spectrum (Ishizuka et al., 2011; Rockwell et al., 2012a, 2012b;
Burgie et al., 2013). Thus, the presence of this DXCF motif
indicates that these proteins most likely will detect violet or
blue light in one or both photostates. An even larger frac-
tion of these proteins (43 of 55) also possess a c-di-GMP-
binding RxxD inhibition site located directly upstream of the
GG(D/E)F motif (Supplemental Figure S3) and hence would
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be expected to exhibit product inhibition, potentially pro-
viding another layer of feedback and regulation in native sys-
tems (Ryjenkov et al., 2005; Romling et al., 2013). Inhibition
sites can present another layer of feedback and regulation in
native systems. We expected that the linker region between
the CBCR and GGDEF domain would contain conserved
motifs important to light regulation of these enzymes.
Consistent with its importance for DGC activity (Blain-
Hartung, 2017, p. 31), the linker position corresponding to
Leu177 of Tlr0924D is 96% conserved (Supplemental Figure
S4). Positioned on the opposite side of a possible amphi-
pathic helix, Glu179 in Tlr0924D is not conserved; however,
the polar and hydrophilic nature of this residue is preserved
in all of the proteins (Supplemental Figure S4). Such obser-
vations lend credence to the hypothesis that this region
forms an amphipathic helix (Blain-Hartung et al., 2017). The
consensus sequence from this linker alignment is also com-
putationally predicted to adopt an a-helix secondary struc-
ture, consistent with the presence of regularly spaced
hydrophobic and hydrophilic residues and the absence of
Pro residues. Insertions in the linker occur in roughly 15% of
the proteins (Supplemental Figure S4).

CBCR-regulated DGC candidates encompass a
predicted broad spectral range
Seven proteins from this phylogenetic analysis were selected
for more detailed analysis because of their predicted spectral
diversity and phylogenetic divergence (Figure 3): Oscillatoria
acuminata PCC 6304_3021 (hereafter, Os6304_3021),
WP_033336739 from Scytonema hofmannii (hereafter,
S.hof_0333), Npun_R1060 from Nostoc punctiforme PCC
73102 (hereafter, NpR1060; Rockwell et al., 2012a),
WP_009782402 from Lyngbya sp. strain PCC 8106 (hereafter,
Lyn8106_0097), WP_023065890 from Lyngbya aestuarii
strain BL J (hereafter, Lyn.aest_0230), Cyan7822_5462 from
Gloeothece verrucosa PCC 7822 (formerly Cyanothece sp.
strain PCC 7822; Mares et al., 2019), and WP_017296945
from Nodosilinea nodulosa PCC 7104 (hereafter, Nod_0172).

CBCR-GGDEF truncations (Os6304_3021D,
Lyn8106_0097D, Lyn.aest_0230D, Cyan7822_5462D) were
co-expressed in the bacterium Escherichia coli engineered to
produce the PCB chromophore, as was full-length
S.hof_0333. Truncated versions of NpR1060 (NpR1060D)
with EAL-GAF-GGDEF domains and of Nod_0172 (GAF1-
GAF2-GGDEF) with both of the tandem CBCR sensors were
also examined. NpR1060, Os6304_3021, and S.hof_0333 pos-
sessed CBCRs with a DXCF motif similar to Tlr0924
(Supplemental Figure S2), whereas the others did not con-
tain known second Cys residues and were initially predicted
to exhibit red/green photocycles (Figure 3).

The spectral and photochemical properties of recombi-
nant versions of these proteins were determined (Figure 4
and Table 1), and denaturation assays were performed to as-
sign the D-ring configuration of both photostates. As
expected, the DXCF CBCRs Os6304_3021D, S.hof_0333, and
NpR1060D exhibited 15Z dark states absorbing violet or

blue light, similar to that of the DXCF CBCR Tlr0924 (Figure
4, A–C, blue traces; Blain-Hartung et al., 2017). Os6304_3021
and S.hof_0333 also exhibited green-absorbing 15E photo-
products (Figure 4, A and B, orange traces). By contrast, the
15E photoproduct of NpR1060D retained a blue-absorbing
15E state (Figure 4, C, orange trace), consistent with the be-
havior of the GAF-only construct reported previously
(Rockwell et al., 2012a). The 15E photoproduct of
NpR1060D possessed an absorbance “shoulder” around 550
nm, allowing green light to trigger its 15E to 15Z conversion
back to the dark state (Rockwell et al., 2012a).

Lyn.aest_0230D and Lyn8106_0097D both exhibited red-
absorbing 15Z dark states with peaks at 638 and 636 nm,
respectively (Figure 4, D and E). In both cases, red light trig-
gered a profound spectral shift into the blue region (kmax ¼
412 nm), similar to the red/blue photocycle of AM1_1186g2
(Narikawa et al., 2014). This result implicated the presence
of second Cys residues in both Lyngbya sensors responsible
for forming a covalent linkage to the C10 methine bridge in
the 15E photoproduct. Lyn.aest_0230D and Lyn8106_0097D
possess a conserved Cys residue located N-terminal to the
DXCF motif (Supplemental Figure S2, highlighted in red)
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and C-terminal to the insertion loop containing the second
Cys residue of insert-Cys CBCRs (Rockwell et al., 2011). This
Cys residue is thus potentially positioned to form a second
linkage and is apparently unique to these proteins. To assess
the role of this cysteine residue in spectral tuning of the
two Lyngbya sensors, we expressed Lyn.aest_0230D(C73A)
and Lyn8106_0097D(C53A) variants that lack this Cys resi-
due. Both variants retained red-absorbing 15Z dark states,
but failed to produce blue-absorbing photoproduct states
(Supplemental Figure S5, A and B), instead giving photo-
products absorbing in the green to orange region of the

spectrum (520–586 nm). Based on this result, we conclude
that this candidate second Cys residue is essential for forma-
tion of the blue-absorbing photoproduct, presumably via
second linkage formation. These proteins thus provide an-
other example of independent evolution of a dual-Cys CBCR
photocycle (Rockwell et al., 2011, 2017; Narikawa et al.,
2014).

We next examined Cyan7822_5462 and the GAF-GAF-
GGDEF tridomain Nod_0172, also predicted to have red/
green CBCR domains (Figure 3). Cyan7822_5462D exhibited
the expected red/green photocycle, with respective
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absorbance maxima of its 15Z- and 15E-states of 656 and
542 nm (Figure 4, F). The spectrum of the 15Z-dark state of
full-length Nod_0172 was more complex due to the pres-
ence of two photoactive CBCR domains in tandem (Figure
4, G). Since one of these exhibited a peak in the red (kmax

¼ 656 nm) and the other in the green (kmax ¼ 564 nm),
Nod_0172 contained a mixture of 15Z and 15E states for
both GAF domains due to exposure to ambient light during
purification. To confirm the photocycle of GAF1 and GAF2
of Nod_0172, we separately expressed the N-terminal CBCR
GAF domain, Nod_0172(GAF1), and the C-terminal GAF2-
DGC bidomain Nod_0172D. Nod_0172(GAF1) exhibited a
canonical red/green CBCR photocycle (Supplemental Figure
S5, A) accounting for the red-absorbing peak in the full-
length protein. Nod_0172D exhibited a green/teal photo-
cycle (Figure 4, G) resembling that of NpR5113g1 (Rockwell
et al., 2012a) and FdDpxA (Wiltbank and Kehoe, 2016).

To determine whether the two CBCR GAF domains affect
each other’s spectral properties, we more closely examined
the photocycle of full-length Nod_0172, which contains a
predicted red/green CBCR, a predicted DXCF CBCR, and a
GGDEF domain (Figure 3). To do so, we first irradiated
Nod_0172 with saturating 500 nm light to fully convert
GAF1 to its red-absorbing 15Z state and GAF2 to its green-
absorbing 15Z state (Figure 4, H, green trace). Irradiation
with violet light (Figure 4, H, violet trace) triggered conver-
sion of both domains due to overlap with the Soret region,
whereas illumination with red light (Figure 4, H, red trace)
triggered apparently specific conversion of the red/green do-
main. Subtracting the green trace from the red trace in
Figure 4, H afforded a difference spectrum that was identical
to the normalized difference spectrum of GAF1 alone
(Figure 4, I, red trace). Removal of the residual difference
spectrum of GAF1 from the (violet product—red product)
difference spectrum of Nod_0172 by subtraction of the vio-
let trace from the red trace in Figure 4, H yielded a GAF2
difference spectrum (Figure 4, I, green trace) that was also
superimposable on that of the GAF2-GGDEF construct
Nod_0172D (Figure 4, I, black trace). These results indicate
that the steady-state photochemical properties of

both CBCR GAF domains are unaltered in the context of
the full-length Nod_0172 sensor.

Light dependent regulation of c-di-GMP
To analyze the enzymatic properties of the newly identified
CBCR-associated DGCs, in vitro DGC assays were performed
in both 15E and 15Z photostates. C-di-GMP levels were
measured using a quantitative RP-HPLC assay described pre-
viously (Blain-Hartung et al., 2017). Most of the CBCR-DGC
proteins exhibited statistically significant light-regulated
DGC activity. In all such cases, the average DGC activity of
the 15E lit states was greater than those of the 15Z dark
state (Table 2). Of the three DGCs that lack the RxxD inhibi-
tion (I) site (Supplemental Figure S4 and see above),
Os6304_3021D and NpR1060D exhibited the greatest overall
activity in both photostates as expected (Figure 5, A and
Table 2). By contrast, S.hof_0333 exhibited only low, poorly
light-regulated DGC activity. We also examined whether c-
di-GMP breakdown products were produced by NpR1060D,
because this construct retains an N-terminal “EAL” c-di-
GMP PDE domain with apparently functional consensus
motifs. Neither linearized di-GMP nor GMP was detected,
indicating that NpR1060D was not an active c-di-GMP PDE
under these conditions. Rates of c-di-GMP production by
Lyn8106_0097D and Lyn.aest_0230D were significantly lower
(Figure 5, B and Table 2), consistent with the presence of
functional autoinhibition regulated by the I site; both were
more active under red light, indicating that the 15E state of
the CBCR results in higher DGC activity. Similar to the blue/
green DGC S.hof_0333, the red/green Cyan7822_5462D did
not exhibit statistically significant differences in DGC activity
for the two photostates when accounting for sample devia-
tion (Figure 5, B and Table 2).

Unexpectedly, the tandem CBCR-DGC construct
Nod_0172 was most active under red light, whereas green
or blue irradiation reduced its activity (Figure 5, C and Table
3). Since red light maintains the N-terminal GAF1 domain in
its 15E “lit” state but should not activate GAF2, this result
suggests that light regulation of the C-terminal DGC activity
is mainly dependent on the photostate of the N-terminal

Table 1 Spectral properties of purified CBCR-GGDEF proteins

Construct 15Z dark-adapted state 15E photoproduct state
Abs max (nm) Abs max (nm)

Os6304_3021D 423 540
S.hof_0333 413 538
NpR1060D 422 424;562 (sh)
Lyn.aest_0230D 638 412
Lyn8106_0097D 636 412
Cyan7822_5462D 646 542
Nod_0172D 566 486
Nod_0172 (GAF1) 656 538
Nod_0172 (native spec.) 656 and 566 538 and 486
Construct Difference spectra Abs max (nm) Difference spectra Abs min (nm)
Nod_0172 – 580 nm 654 540
Nod_0172 – 650 nm 568 470
Nod_0172 (GAF1) 656 538
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GAF1 domain. However, the red source used in these experi-
ments partially overlaps with the green-absorbing dark state
of GAF2. Thus, this broader red light would also generate
the lit state of GAF2, instead raising the possibility that max-
imal activity of the tandem construct requires activation of
both domains. The DGC activity of the truncated
Nod_0172D protein is increased by green light to a level
comparable to that seen in Nod_0172 under red light
(Figure 5, C). Taken together, this result suggests that both
the GAF1 photostate and the GAF2 photostate influence
the DGC activity of the full-length protein, as is seen in the
complex phytochrome/CBCR chimera All2699 (Ma et al.,
2012).

Light-dependent regulation of cell motility in E. coli
Harnessing light to regulate cellular events is a key tenet of
optogenetic and synthetic biology applications. For this pur-
pose, we analyzed the ability of selected CBCR-DGC con-
structs to control motility of E. coli cells by specific
wavelengths of light. C-di-GMP is a well-known negative reg-
ulator of bacterial cell motility that triggers the transition to
stress-resistant states known as biofilms (Romling et al.,
2013). In T. elongatus BP-1, three blue/green CBCR-DGC sen-
sors regulate c-di-GMP levels to trigger cell aggregation and
settling (Enomoto et al., 2015; Enomoto and Ikeuchi, 2020):
SesA/Tlr0924, SesB/Tlr1999, and SesC/Tlr0911. We previously
developed an E. coli cell settling assay to test the ability of
Tlr0924D and variants to regulate heterologous cell aggrega-
tion in response to the ambient light conditions (Blain-
Hartung et al., 2017), presumably relying on endogenous E.
coli c-di-GMP signaling pathways to trigger cell–cell aggrega-
tion. Small cultures are grown under defined light conditions
and then allowed to rest in darkness; settling is then assayed
by measuring optical density (OD) at the top of the culture.
We used the same settling assay to examine the light-regu-
lated activities of the newly identified CBCR-GGDEF proteins
in vivo.

The activity of each construct was estimated by the per-
centage loss of OD of the culture. Os6304_3021D and
NpR1060D expression yielded the most dramatic cell settling

phenotypes (Figure 6), consistent with their more robust
in vitro activities (Figure 5, A). The relative activity of both
constructs was always greater under blue light relative to
green light, again consistent with the activity of these con-
structs in vitro. Expression of S.hof_0333 failed to stimulate
cell settling, consistent with its feeble DGC activity in vitro
(Figure 6). For cultures expressing Lyn8106_0097D and
Lyn.aest_0230D, greater cell settling was seen under red light
relative to blue light (Figure 6). The fold difference between
red- versus blue-light activities was greater for
Lyn.aest_0230D than for Lyn8106_0097D, whereas in vitro
DGC measurements showed the opposite trend (Figure 5,
B). Finally, cells containing the red/green sensor
Cyan7822_5462D settled at slightly greater rates under red
light than under green light. This difference was not statisti-
cally significant, consistent with in vitro assay data (Figure
6).

Expression of Nod_0172D produced settling phenotypes
that largely corresponded with its in vitro DGC activity:
green light enhanced cell settling significantly more than
blue light (Figure 6). In addition, the tandem CBCR-DGC
Nod_0172 construct resulted in the greatest degree of cell
settling after exposure to red light, while significantly less
settling was seen upon exposure to green or blue light
(Figure 6). Overall, we have demonstrated that the majority
of these chosen proteins not only exhibit light-regulated
DGC activity in vitro, but also function in vivo for regulation
of c-di-GMP signaling by red, blue, or green light.

Discussion
The second messenger c-di-GMP regulates well-characterized
genetic pathways via transcription factors, riboswitches, and
other factors (Jenal et al., 2017). Hence, some of the CBCR-
GGDEF bidomain sensors described here may hold consider-
able promise for broad spectrum optogenetic control of
engineered genetic pathways responsive to c-di-GMP in live
cells (Figure 6). However, the lack of detailed structural in-
formation for CBCR-GGDEF bidomains retards progress to-
ward successful rational design of robust light-regulated

Table 2 DGC activity of CBCR-GGDEF proteins

Protein Length (a.a.) Z-state c-di-GMP (mmol
min21)/illumination wave-

length (nm)a

E-state c-di-GMP (mmol
min21)/illumination wave-

length (nm)a

Fold difference

Os6304_3021D 346 0.6 (60.1)/520 1.42 (60.15)/445 2.4
S.hof_0333 396 0.07 (60.03)/520 0.09 (60.08)/445 1.3
NpR1060D 647 1.10 (60.17)/520 3.05 (60.37)/445 2.8
Lyn8106_0097D 342 0.06 (60.03)/445 0.30 (60.07)/630 5
Lyn_aest_0230D 362 0.25 (60.07)/445 0.38 (60.05)/630 1.5
Cyan7822_5462D 346 0.09 (60.04)/520 0.14 (60.04)/630 1.5
Nod_0172D 370 0.04 (60.03)/420 0.31 (60.08)/520 7.8
Tlr0924Db 347 0.06 (0.02)/420 0.54 (60.02)/520 9
BphG1c 931 0.5d 6.25d 11

aValues (6SD, n¼ 3) are shown.
bBlain-Hartung et al. (2017).
cTarutina et al. (2006)
dEstimated values.
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DGCs. Our failure to generate viable fusions with the
GGDEF domain of Tlr0924/SesA using well-characterized
model CBCRs RcaE and NpR6012g4 highlights these limita-
tions. By mining the natural diversity of native cyanobacte-
rial CBCR-GGDEF proteins, we have instead demonstrated
that extant diversity may also provide a wide spectral pal-
ette of light-regulated DGCs.

CBCR-GGDEF diversity
Based on bioinformatic data mining, we created multiple se-
quence alignments of 55 candidate CBCR-GGDEF bidomains,
a list that is by no means complete and that is still continu-
ously expanding. These alignments help to identify residues
that may be essential for light regulated signal transduction.
The helical linker was of especial interest because previous
studies on Tlr0924D (Blain-Hartung et al., 2017), on the
engineered phytochrome-regulated DGC BphS (Ryu and
Gomelsky, 2014; Ryu et al., 2014; Ryu et al., 2017), and on
the natural phytochrome-regulated DGC IsPadC from
Idiomarina species strain A28L (Gourinchas et al., 2017,
2018) established the importance of the interdomain linker
for transmission of the light signal. Similar considerations
also apply to phytochrome-regulated PDEs such as LAPD
(Gasser et al., 2014) and DdPAC (Stuven et al., 2019). In this
regard, conserved blocks of residues in the linker region are
located immediately downstream and upstream of the
CBCR and GGDEF domains, respectively (Supplemental
Figure S4). A nearly fully conserved leucine residue in the
interdomain linker of Tlr0924D, Leu177, is known to be es-
sential for DGC activity (Blain-Hartung et al., 2017). LOV
and BLUF domain-containing proteins also leverage helical
linkers for light signal transmission to C-terminal output
domains (Moglich and Moffat, 2007; Moglich et al., 2009;
Masuda, 2012; Ziegler and Moglich, 2015). Our unsuccessful
attempts to exchange CBCR domains to create functional
CBCR-GGDEF chimeras suggest that linkers function in the
context of specific CBCRs which have co-evolved to function
together with their cognate GGDEF domains.

DXCF CBCR-GGDEFs are the most widespread
To an extent, photosensory properties can be predicted via
conserved motifs in multiple sequence alignments of CBCRs.
The majority of the CBCR-GGDEFs possess the DXCF motif
found in the canonical blue/green family of CBCRs
(Rockwell et al., 2011). Interestingly, the tanglegram analysis
suggests that a minority of CBCR-GGDEF proteins possess
co-evolved GAF and GGDEF domains (Figure 2), while the
majority arose from some combination of gene-transfer and
gene-fusion events. The preponderance of DXCF CBCR rep-
resentatives suggests a strong adaptive value of DGCs that
sense higher energy blue light, which is more damaging than
longer wavelength light due to an abundance of blue-ab-
sorbing photosensitizers in cells (Schuergers et al., 2017).
However, blue/green CBCRs could also indirectly sense de-
pletion of blue light by neighboring cells, consistent with a
proposed role for such blue/green CBCRs as shade sensors
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Figure 5 DGC activities of selected CBCR-GGDEF proteins. A,
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Nod_0172 bar columns are divided by a line and are colored blue or or-
ange to represent the photostate of GAF1 (upper left) and GAF2 (lower
right). Error bars were calculated as standard deviation of all replicates
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in microbial mats (Enomoto and Ikeuchi, 2020). C-di-GMP
levels mediated by the blue/green CBCR-DGCs Tlr0924,
Os6304_3021, or S.hof_0333 would be expected to increase
under low cell densities, triggering a settling response in un-
filtered light environments.

Our tanglegram phylogenetic analysis shows that
NpR1060 is a representative member of a clade of GGDEF
domains that clearly co-evolved with a specific clade of
DXCF CBCRs (Figure 2). NpR1060D exhibits an unusual pho-
tocycle with very weak green light absorption in the 15E lit
state (Figure 4). This observation indicates that the photo-
chemical quantum yield for the reverse conversion of blue-
absorbing 15E photoproduct of NpR1060D by blue light is
considerably smaller than that of the forward photoconver-
sion. The weak absorption of green light can be rationalized

by increased stability of the 15E lit state’s second thioether
linkage, yielding a photoproduct equilibrium that disfavors
the cleaved green-absorbing photoproduct. This unusual
spectral behavior potentially implicates a distinct photobio-
logical role for this clade of DGCs, because they are less sen-
sitive to inhibition by green light than prototypical blue/
green CBCRs.

A new class of dual cysteine red/blue CBCRs
evolved within the CBCR-regulated DGC family
Lyn8106_0097D and Lyn.aest_0230D were found to be atypical
red/blue DGCs. The previously described red/blue CBCR
AM1_1186g2 is descended from canonical red/green CBCRs
(Narikawa et al., 2014; Rockwell et al., 2017) as part of the XRG
lineage (Fushimi et al., 2017b). By contrast, Lyn8106_0097D

Table 3 DGC activity of Nod_0172 (GAF-GAF-GGDEF)

Protein Length (a.a.) c-di-GMP (mmol
min21)/illumination

wavelength (nm)a

c-di-GMP (mmol
min21)/illumination

wavelength (nm)a

c-di-GMP (mmol
min21)/illumination

wavelength (nm)a

Fold difference

Nod_0172 559 0.13 (60.07)/520 0.11 (60.03)/420 0.34 (60.10)/630 1.0:0.85:2.6

aValues (6SD, n¼ 3) are shown.
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and Lyn.aest_0230D possess a different second cysteine residue
and are not descended from canonical red/green CBCRs; in-
stead, they may derive from the alternative NpR3784 lineage
(Rockwell et al., 2015a). Hence, these CBCR-GGDEF proteins
represent a distinct two-cysteine CBCR subfamily which can
sense blue light. We propose designating such proteins as the
RB2 subfamily, reflecting prior discovery of red/blue CBCRs
that utilize a different second Cys residue (Narikawa et al.,
2014). Replacement of the second Cys with Ala via site-di-
rected mutagenesis did not prevent photoisomerization but
did prevent formation of the blue-absorbing 15E state. The
large spectral difference between the maximum 15Z and 15E
absorbance in members of the RB2 subfamily provides little
overlap between the “activating” and “repressing” light condi-
tions, making these proteins interesting candidates for orthogo-
nal multi-channel applications in optogenetics and synthetic
biology.

Signal transduction via multiple CBCR domains
The tandem CBCR-GGDEF Nod_0172 provides an opportu-
nity to examine the regulatory roles of tandem CBCR
domains using readily assayed DGC output activity. Red light
elicits the most active state of the enzyme by simultaneously
triggering efficient conversion of the N-terminal GAF1 to its
15E state and incomplete photoconversion of the C-terminal
GAF2 due to partial spectral overlap with the green-absorb-
ing 15Z dark state. Shorter wavelengths of light are less ef-
fective in activating Nod_0172 because of the complex
interplay between forward and reverse photoconversion. By
contrast, green light elicits the highest activity of
Nod_0172D, which lacks the GAF1 domain that functions
as an inhibitor of DGC activity under green light. Many cya-
nobacterial photoreceptors contain several CBCR domains
in tandem followed by a C-terminal output, so Nod_0172
may prove a suitable model system for understanding how
these proteins integrate varied light conditions into a unified
output response. Detailed structural analysis of the multi-
domain phytochrome-GGDEF (IsPadC) suggested a “violin”
model in which light regulated DGC activity is propagated
through multiple structural domains by creating a dynamic
set of conformations which favor activation/deactivation
(Gourinchas et al., 2017). If this model holds in multi-do-
main CBCR proteins, each separate domain may play a key
role in creating the correct structural orientation for dimer-
ization and activation in response to varying light stimuli
(Lim et al., 2014).

CBCR-regulated DGC encompass a broad spectral
range and provide good lead candidates for second
messenger-based optogenetic reagent development
We have demonstrated the benefit of examining the natural
diversity of light-regulated enzymes that generate a second
messenger not used by eukaryotes. While many of the pro-
teins are not ready-made optogenetic tools, these proteins
that both regulate c-di-GMP levels in a light-regulated man-
ner and trigger cell settling when heterologously expressed

in E. coli have not been examined before now. As such, this
work lays the groundwork for further investigations into un-
derstanding the structural underpinnings of CBCR-GGDEF
systems, which in turn will inform future efforts for optimiz-
ing light-regulated activities and/or for informed design of
robust light-regulated fusion proteins. Optogenetic applica-
tions favor small constructs such as CBCR-GGDEFs, and the
spectrally and enzymatically diversity of these reversible
modules may prove well suited to controlling genetic cir-
cuits by utilizing a wide color palette of light from the near
UV to the near IR and beyond.

Materials and methods

Bioinformatics
CBCR-GGDEF protein sequences were identified by BLASTP
searches of the GenBANK (https://www.ncbi.nlm.nih.gov/)
and DOE-IMG (https://genome.jgi.doe.gov/portal/) databases
using the GAF-GGDEF bidomain sequence of Tlr0924 as
query. CBCR and GGDEF alignments (Supplemental Figures
S2–S4) were constructed using MAFFT (Katoh and Standley,
2013) as previously described (Rockwell and Lagarias, 2017).
For structurally informed maximum-likelihood phylogenetic
analysis, PDB accessions 4FOF and 4GLQ (CBCR-GAF
domains) and 3I5A, 3IGN, 4ZMM, and 4ZVF (DGC-GGDEF
domains) were used as references to generate input files for
PhyML-structure (Guindon et al., 2005), and phylogenetic
analyses were carried out as described (Rockwell and
Lagarias, 2017); notably, this procedure removes the refer-
ence sequences prior to calculating the phylogeny so that
both calculations use identical sets of full-length sequences.
Phylogenetic trees were visualized using FigTree v1.4.2
(http://tree.bio.ed.ac.uk/software/figtree/) and then used for
construction of a single “tanglegram” representation using
Adobe Illustrator. Additional sequence alignments of linker
regions were constructed independently using MUSCLE
(Edgar, 2004). Secondary structure predictions were per-
formed using Phyre2 (http://www.sbg.bio.ic.ac.uk/).

Protein expression and spectral analysis
Fusion proteins were created using a protocol adapted from
the sequence and ligation independent cloning (SLIC)
method (Li and Elledge, 2012). Os6304_3021D and
NpR1060D were cloned from genomic DNA as described
previously (Rockwell et al., 2012a). Synthetic DNA constructs
of S.hof_0333, Nod_0172, Cyan7822_5462D,
Lyn8106_0097D, and Lyn.Aest_0230D were codon optimized
by and purchased from GenScript. Proteins were expressed
as intein-CBD fusion proteins in E. coli engineered to pro-
duce PCB using a dual-plasmid system as described previ-
ously (Gambetta and Lagarias, 2001; Rockwell et al., 2012a).
After cell lysis, CBCR-GGDEF fusion proteins were affinity
purified on a chitin column (NEB) in accordance with the
manufacturer’s directions and dialyzed into TKKG buffer (25
mM TES-KOH, pH 7.5; 25 mM KCl; 10% v/v glycerol).
Absorption spectra were recorded in TKKG buffer at 25�C
on a Cary 50 spectrophotometer equipped with a
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thermostatted cell holder (Quantum Northwest) that was il-
luminated to photosaturation from above with a 3-mW
green (532 nm) laser pointer or with a water-filtered 75-W
xenon source passed through bandpass filters. Bandpass fil-
ters used for saturating photoconversion were 650 nm cen-
ter/40 nm width, 600 nm/40 nm, 550 nm/70 nm, 500 nm/
25 nm, 450 nm/25 nm, 400 nm/70 nm, 334 nm/10 nm, and
280 nm/10 nm. The BCA protein assay (Pierce) was used to
determine protein concentration with bovine serum albu-
min as a protein standard (Smith et al., 1985). Denaturation
assays to determine the configuration of each photostate
were performed as described previously (Rockwell et al.,
2012a).

In vitro DGC assays
DGC assays were performed in triplicate as described previ-
ously (Blain-Hartung et al., 2017). Purified protein in DGC
assay buffer (0.5 M Tris–HCl buffer pH 7.6 containing 0.05
M NaCl, 0.01 M MgCl2, and 0.5 mM EDTA) was incubated
at a final concentration of 5 mM for 30 min at 37�C under
continuous exposure to saturating blue, green, or red light.
Light conditions were achieved using cool white fluorescent
tubes filtered through LEE plastic (#071 Tokyo Blue, #090
Dark Yellow Green, and #164 Flame Red) with a light flu-
ence rate of 4–5 mmol m�2 s�1. Photoconversion was
assessed by absorption spectroscopy prior to assay initiation.
To initiate catalysis, GTP (Thermo Fisher Scientific) was
added to a final concentration of 1 mM. Assays were termi-
nated by placing in a 100�C thermal block for 5 min fol-
lowed by centrifugation at 15,000 � g for 5 min. Control
measurements were performed to ensure that c-di-GMP re-
covery was not affected by boiling. A 15 mL aliquot of reac-
tion mixture was analyzed using reverse phase high-
performance liquid chromatography (RP-HPLC) as described
previously (Blain-Hartung et al., 2017). A standard curve of
c-di-GMP (Biolog) was used and integrated peak area calcu-
lations were performed using Agilent ChemStation software.

Cell aggregation assays
Escherichia coli cultures co-expressing CBCR-GGDEF and
PCB biosynthesis constructs were exposed to continuous
red, blue, or green light using LEE filters after induction with
arabinose and isopropyl b-D-1-thiogalactopyranoside, as de-
scribed previously (Blain-Hartung et al., 2017). The light flu-
ence rate in the culture shaker was 4–5 mmol m�2 s�1.
After incubation for 16 h, cell cultures were immediately
placed in darkness without shaking. To analyze the degree
of cell aggregation, initial OD600 and initial OD600/final
OD600 measurements were performed as described previ-
ously (Blain-Hartung et al., 2017).

Accession numbers
Accession numbers from which the constructs used for
these studies can be found in Supplemental Table S1.

Supplemental data
Supplemental Figure S1. Spectral analysis of selected fusion
CBCR-DGC proteins.

Supplemental Figure S2. CBCR GAF domain alignment.
Supplemental Figure S3. DGC GGDEF domain alignment.
Supplemental Figure S4. CBCR-DGC linker alignment.
Supplemental Figure S5. Spectroscopic characterization

of second cysteine mutant constructs of novel R/B CBCR
proteins and the GAF1-only construct, Nod_0172(GAF1).

Supplemental Table S1. Accession numbers and amino
acids of GAF-GGDEF constructs.
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