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Abstract
Plant phenomics bridges the gap between traits of agricultural importance and genomic information. Limitations of current
field-based phenotyping solutions include mobility, affordability, throughput, accuracy, scalability, and the ability to analyze
big data collected. Here, we present a large-scale phenotyping solution that combines a commercial backpack Light Detection
and Ranging (LiDAR) device and our analytic software, CropQuant-3D, which have been applied jointly to phenotype wheat
(Triticum aestivum) and associated 3D trait analysis. The use of LiDAR can acquire millions of 3D points to represent spatial
features of crops, and CropQuant-3D can extract meaningful traits from large, complex point clouds. In a case study examin-
ing the response of wheat varieties to three different levels of nitrogen fertilization in field experiments, the combined solu-
tion differentiated significant genotype and treatment effects on crop growth and structural variation in the canopy, with
strong correlations with manual measurements. Hence, we demonstrate that this system could consistently perform 3D trait
analysis at a larger scale and more quickly than heretofore possible and addresses challenges in mobility, throughput, and scal-
ability. To ensure our work could reach non-expert users, we developed an open-source graphical user interface for
CropQuant-3D. We, therefore, believe that the combined system is easy-to-use and could be used as a reliable research tool
in multi-location phenotyping for both crop research and breeding. Furthermore, together with the fast maturity of LiDAR
technologies, the system has the potential for further development in accuracy and affordability, contributing to the resolu-
tion of the phenotyping bottleneck and exploiting available genomic resources more effectively.
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Introduction
With the rising world population, crop production needs to
double by 2050 (UN Food and Agriculture Organization,
2009). To address this growing challenge of global food
security, it is important to identify plants with desired traits
to improve yield, resource use efficiency, quality, stress resis-
tance and adaptation, and with a smaller environmental
footprint (Powlson et al., 2014; Zhang et al., 2018; Swarbreck
et al., 2019). Furthermore, the stability of the selected traits
must be verified in the field over multiple seasons and loca-
tions (Sadras and Slafer, 2012; Griffiths et al., 2015; Reynolds
and Langridge, 2016). For example, quantitative measure-
ments of yield-related traits such as plant height, growth
rate, canopy coverage, and spikes per unit area can be used
to indicate and explain variations in yield stability in differ-
ent environments (Sadras and Richards, 2014; Valluru et al.,
2017; Furbank et al., 2019). In recent years, the cost of geno-
typing has decreased dramatically, allowing genetic analysis
of large populations (Cobb et al., 2013; Crain et al., 2016).
However, field phenotyping on a large-scale under realistic
field conditions remains the bottleneck in genotype–pheno-
type association studies for crop improvement (Furbank and
Tester, 2011; Yang et al., 2020). Both large-scale data acquisi-
tion and analysis of multiple traits at different time points
and trial locations are still challenging, but often it is the
meaningful phenotypic information most needed by
breeders and crop researchers (Fiorani and Schurr, 2013;
Tardieu et al., 2017; Furbank et al., 2019).

To relieve this bottleneck and address challenges in field
phenotyping, much attention has been placed upon the
applications of remote sensing, Internet of things, robotics,
computer vision, and machine learning, resulting in a rapid
technical progress in recent years (Pieruschka and Schurr,
2019; Zhao et al., 2019; Yang et al., 2020). A range of solu-
tions have been developed, including the use of unmanned
aerial vehicles (UAVs) and manned light aircraft for studying
performance-related traits across fields (Bauer et al., 2019;
Holman et al., 2019; Harkel et al., 2020); stationary gantry
systems for deep phenotyping in fixed areas (Vadez et al.,
2015; Kirchgessner et al., 2017; Virlet et al., 2017; Burnette et
al., 2018); ground-based vehicles equipped with integrated
sensor arrays to study canopy-related traits (Deery et al.,
2014; Barker et al., 2016; Jimenez-Berni et al., 2018); hand-
held or distributed sensing devices to measure various phe-
notypes during key growth stages (Hirafuji and Yoichi, 2011;
Crain et al., 2016; Zhou et al., 2017b; Reynolds et al., 2019a).
These methods possess diverse advantages and disadvan-
tages concerning throughput, accuracy, mobility, affordabil-
ity, scalability, and, more importantly, biological relevance
(Fritsche-Neto and Borém, 2015; Furbank et al., 2019;
Pieruschka and Schurr, 2019; Reynolds et al., 2019b; Roitsch
et al., 2019). The selection of a phenotyping approach is nat-
urally depending on the nature of the research question;
but despite the rapid methodological progress, gaps in large-
scale field solutions remain.

Among recent field-based solutions, Light Detection and
Ranging (LiDAR) has attracted much attention as it provides
information on plant morphological and structural features
that are difficult or costly to quantify through traditional
approaches (Lin, 2015; Stovall et al., 2017). As an active re-
mote sensing technique, LiDAR computes the distance from
laser scanners to a given target using pulsed laser beams,
through which three-dimensional (3D) geometric features of
the targeted object can be recorded in point cloud datasets
(Arnó et al., 2013). LiDAR-based tools have been successful
in overcoming issues related to natural illumination and oc-
clusion, which have been problematic for many field-based
methods (Sun et al., 2018; Jin et al., 2019). Although point
clouds produced by LiDAR can be subject to noise and im-
balanced densities (Bucksch et al., 2009), recently developed
open-source analysis libraries such as WhiteboxTools
(Lindsay, 2016) and Open3D (Zhou et al., 2018) can be uti-
lized to conduct point clouds processing. However, these li-
braries were developed for generic 3D analysis, which
requires experienced developers with a computer vision
background to develop tailored solutions to analyze specific
LiDAR data, limiting their use by plant researchers.

LiDAR devices can be roughly classified into three types:
airborne, fixed terrestrial, and mobile (Hosoi and Omasa,
2009; Lin, 2015). Plant characters that have been estimated
include crop height, biomass, and canopy structure (Omasa
et al., 2007; Naito et al., 2017; Harkel et al., 2020); leaf num-
ber, shape, and the plant capacity to intercept solar radia-
tion (Sun et al., 2018; Jin et al., 2019); and grain yield
(Jimenez-Berni et al., 2018; Li et al., 2020b). LiDAR-generated
point clouds have also been used to improve parameteriza-
tion of crop models, enabling in silico testing to optimize
trait combinations in breeding and crop growth simulation
(Reynolds and Langridge, 2016; Wang et al., 2017; Walter et
al., 2019). In comparison with alternative approaches that
can also record 3D plant traits such as Structure from
Motion (SfM) (DuAn et al., 2016), time-of-flight (Paulus,
2019), micro-computed tomography (Wu et al., 2019), and
photogrammetry techniques (An et al., 2016; HolmAn et al.,
2016), LiDAR provides a more reliable solution in scalability
and accuracy for high-throughput field studies.

Despite these advantages, there are several problems asso-
ciated with current LiDAR techniques in field phenotyping.
Airborne LiDAR (Li et al., 2015; Harkel et al., 2020) typically
requires larger multi-rotor UAVs with sufficient payload ca-
pacity (normally >5 kg), which requires a special trained pi-
lot and local aviation authority’s clearance, adding to
hardware and operating costs. Also, big drones generate
strong downdraft that disrupts canopies when flying them
at low altitudes to acquire high-resolution imagery. Fixed
terrestrial LiDAR (Omasa et al., 2007; Stovall et al., 2017;
Guo et al., 2018), on the other hand, is placed closer to
plants and can generate high-resolution models.
Nevertheless, this type of system requires more time to set
up, limiting its applications in large-scale phenotyping.
Mobile LiDAR (Arnó et al., 2013; Araus and Cairns, 2014;
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Deery et al., 2014; Jimenez-Berni et al., 2018; Deery et al.,
2020) includes handheld, backpack, and devices mounted
on specializ ed vehicles (e.g. Phenomobile), which can cover
large trial areas. The main drawbacks of vehicle-mounted
LiDAR are the costs of purchasing hardware, operating and
maintenance, as well as the ability to access agricultural
fields with difficult conditions or rugged terrain. Handheld
LiDAR devices are lightweight and easy-to-use, but usually
are equipped with low-cost laser sensors, limiting their capa-
bility to carry out high-quality and large-scale 3D mapping
(Hyyppä et al., 2020; Jin et al., 2021).

The backpack LiDAR (Masiero et al., 2018; Hyyppä et al.,
2020; Su et al., 2020) has been applied successfully to for-
estry studies and land surveillance in recent years, showing
promise for field-based crop research. Compare with other
LiDAR systems, it has good mobility, is relatively lightweight
(normally around 10 kg), and is highly integrated with hard-
ware, which means that it is easy to operate and maintain.
Because the laser scanner can be used in close proximity to
plants (<3 m), it can generate high-quality 3D models with
up to 10 mm precision with high-end laser sensors.
Depending on the laser scanner equipped, the backpack
LiDAR system could have an effective scan range of over
200 m, useful for phenotyping in forestry or orchard planta-
tions, as well as large experimental areas for plants.
Backpack LiDAR also provides an accurate spatial position-
ing system (i.e. a global navigation satellite system), custom-
ized for field mapping at walking speed to enable an
accurate 3D reconstruction (Masiero et al., 2018). As LiDAR
technology has been maturing rapidly in recent years, it is
expected that costs will decrease and this type of equipment
could become more accessible for the research community
(Guo et al., 2018; Panjvani et al., 2019; Jin et al., 2021). Still,
the analytic software for LiDAR-based technologies is as im-
portant as the hardware. One limitation of many LiDAR-
based mapping systems is the lack of widely available, open
analytical software solutions that can extract biologically rel-
evant information from the large point cloud data (Lin,
2015; Zhao et al., 2019; Yang et al., 2020), preventing nonex-
pert users from taking advantage of this technology for rap-
idly modeling crop structural features and mining
phenotypic information to study spatial and temporal
changes (Ubbens et al., 2018; Panjvani et al., 2019; Ward et
al., 2019).

Here, we introduce an integrated solution that combines
a backpack LiDAR device with open-source analytic software
called CropQuant-3D for processing large-scale field
phenotyping and 3D trait analysis. The software employs
2D/3D image analysis algorithms and Discrete Fourier
Transform (DFT) to derive plot-based measurements of key
performance-related traits such as crop height and structural
variation in the canopy. We developed a range of technical
applications to integrate the backpack LiDAR and
CropQuant-3D into field-based phenotyping, including a
large-scale mapping protocol for cereal crops, the quick
quality assessment of collected datasets at different sites,

and a comprehensive analysis pipeline. In a case study of
wheat (Triticum aestivum), we describe the integrated
solution to quantify varietal responses to three levels of
nitrogen (N) fertilization of eleven Chinese winter wheat
varieties selected from the “Zhenmai” and “Ningmai” popu-
lations. By combining 3D trait analysis and manual key yield
components, we also produced a performance matrix to
rank and evaluate genotypic differences in N responses for
the examined varieties, resulting in the classification of four
N response types. To ensure that our work could reach the
broader research community, we have developed a graphical
user interface (GUI) for CropQuant-3D so that nonexpert
users could use the software easily. Furthermore, we ex-
panded the software package to analyze point clouds gener-
ated from other sources such as gantry-mounted LiDAR and
UAV-SfM photogrammetry. We uploaded the CropQuant-
3D software (in EXE format), executable analysis source code
(in Jupyter notebooks), and testing datasets to our GitHub
repository, which are openly available for plant research
community. Hence, we believe that the integrated solution
presented here is capable of addressing challenges in mobil-
ity, throughput, scalability, and enabling us to analyze big
LiDAR-collected 3D point cloud data, which is likely to help
plant researchers bridge the gap between traits of agricul-
tural importance and available genetic resources for crop
improvement.

Results

In-field mapping protocol using the backpack
LiDAR
Because limited research has been conducted on the use of
backpack LiDAR in-field phenotyping, we, therefore, devel-
oped a range of technical applications to utilize the device
in the field, including the optimal distance to map cereal
crops, the design of mapping routes and angles, the quick
assessment of the data quality, and the calibration method
at different sites. For example, a grid-style mapping ap-
proach was designed to routinely map the large field trial in
this study (red arrows in Figure 1A). We first recorded the
3D geo-coordinates of the trial area using a real-time
kinematic (RTK) base station, which logged satellite-based
positions with a 65-mm error range in 3D (Figure 1B).
Then, a LiDAR operator walked around the perimeter of
each N treatment block in the field to map the entire exper-
iment from different angles. Due to the scan range of the
LiDAR device, we did not need to walk around each individ-
ual plot, saving significant time in operation. On average, it
took the LiDAR operator 20–25 min to map an experiment
field of 0.5-ha, equivalent to a mapping speed of around 1.2
ha/h. To study canopy structural responses to different
N, we focused on the growth stages between heading
(GS51–59) and grain filling (GS71–89) when the canopy was
largely established (Zadocks et al., 1974).
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Data pre-processing to generate 3D point clouds
According to standard practice in processing 3D points
(Kachamba et al., 2016; Duan et al., 2017; Sun et al., 2018),
we used the bundled pre-processing software to generate
GPS-tagged 3D point clouds collected by the LiDAR (Figure
1C). The bundled software we used are MMProcess to build
up a 3D mapping project, AERO-office to define the map-
ping path, and GrafNav to associate RTK GPS signals with
the path. To select, visualise, and export point clouds, we
chose to use the open-source CloudCompare software
(Girardeau-Montaut, 2015). The same tasks can also be ac-
complished by using proprietary software such as TerraSolid
(Korzeniowska and Łą cka, 2011).

Because the backpack LiDAR device we used has an effec-
tive scan range of around 200 m (over 180 million points
were collected in a single field), the mapped area (over 1.5
ha; Figure 1D) was much larger than the experiment region
(i.e. the combined area of the 486 wheat plots, 0.5 ha).
Hence, we used RTK-recorded geo-coordinates to delineate
regions of interest (ROI) and facilitate our routine process-
ing. After defining the ROI (over 45 million points retained
for the experimental region, around 90,000 points per plot),
all 3D points were visualized and colored according to their

z values (Figure 1E). A preview of uncalibrated 3D mapping
data before terrain adjustment enabled us to (1) associate
pseudo-color to raw 3D points for quick growth assessment,
(2) perform initial comparisons of experiments at multiple
sites, and (3) define ROI to facilitate field- and plot-level 3D
points sampling.

A comprehensive pipeline for traits analysis
To carry out routine 3D points processing and trait analysis
using LiDAR-collected point clouds, we developed a compre-
hensive analysis pipeline. Figure 2 shows a high-level work-
flow of the pipeline, which consisted of six steps: data
selection, normalization, the generation of crop canopy
height model (CHM), plot segmentation, 3D trait analysis,
and export of the analysis results:

(1) Step 1: a pre-processed point cloud file (in LAS format)
was selected (Figure 2A). Because LiDAR-collected point
clouds are likely to be noisy and uncalibrated (with
slopes and terrain features of the field), we developed a
process to normalize the 3D points (Steps 2 and 3). To
remove noise, we followed a published method (Su et
al., 2019), which calculates the average distance

(a) (b) (c)

(d) (e)

Figure 1 The data acquisition procedure using a backpack LiDAR device together with raw point cloud data generated through pre-processing a
LiDAR-acquired 3D point cloud file. A, An overhead orthomosaic image of the field trial area showing 486 6-meter winter wheat varieties with
three levels of N fertilization treatments (i.e. 0, 180, and 270 kg N ha�1). Red arrows represent the grid-style mapping method carried out by a
LiDAR operator outside the plots. B, The backpack LiDAR device (ROBIN Precision) and a RTK base station are used for 3D field phenotyping. C,
A high-level workflow of the pre-processing software used to generate RTK-tagged point cloud data collected by the backpack LiDAR. D, The raw
point clouds generated for the trial area. E, Initial height-based analysis with uncalibrated 3D points, which were colored according to z-values,
and example plot-level images using raw 3D points, height values, and triangle mesh.
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between a given 3D point and its neighboring points
(avg.). If the distance (k) between the point and its
neighboring points (defaulted to 50) is greater than
avg.þ k� std. (where std. is one standard deviation of
the mean of all the distances), the point will be classi-
fied as an outlier. In our case, all identified outliers were
colored red and removed from the following analysis
(Figure 2B).

(2) Step 2: after denoising, a filtering method was applied
to separate ground-level and above-ground 3D points
by applying the LidarGroundPointFilter func-
tion in WhiteboxTools (Lindsay, 2016), including (1)
ground-based slope normalization, (2) a subsequent k-
nearest neighbors (Lowe, 2004) to identify neighboring
points within a defined radius (defaulted to 2) to exam-
ine height differences, and (3) a classification method
to classify ground-level and above-ground points. The
use of the function resulted in a flattened ground plane,
enabling precise measurements of above-ground 3D
points. The output of Step 2 is saved in a new LAS file
with all the ground-level points assigned with zero z-val-
ues (dark blue) and above-ground points assigned with
height values in centimeter.

(3) Step 3: a key step in the pipeline used to generate a
CHM for 3D trait analysis. First, because the density
of LiDAR-collected point clouds is likely to be

unbalanced (e.g. denser 3D points for objects close to
the laser scanner, Figure 1D), we improved a progres-
sive triangulated irregular network (TIN) algorithm
(Zhao et al., 2016) to interpolate the unbalanced
point clouds. Then, we utilized all the filtered above-
ground points to generate a digital surface model
(DSM), followed by the conversion of geo-coordinates
on the x and y axes into pixel coordinates (Ritter and
Ruth, 1997) to define four ROI markers in the DSM
(Figure 2C). When processing a series of point cloud
files collected from the same field, these four markers
could be used repeatedly. To reduce computational
complexity, we associated z-values of each 3D point
with a grayscale value (i.e. 0 cm is taken to be black
and 160 cm is taken to be white; the taller the point,
the higher the grayscale value), followed by a projec-
tion method to cast all 3D points onto the flattened
ground plane. This process produced a 2D CHM im-
age from an overhead perspective (Figure 2C). Finally,
we performed a 2D perspective transform (Mezirow,
1978) using the getPerspectiveTransform
function in OpenCV (Howse, 2013) to extract the re-
gion within the four markers and then align the CHM
for automated trait analysis. The 2D CHM image con-
tains spatial information of all the plots in the experi-
mental field.

(a) (b) (c) (d)

(f)
(e)

Figure 2 A high-level analysis pipeline established for processing LiDAR-acquired point clouds and measuring yield-related traits in 3D. A, Select a
pre-processed point cloud file (in LAS format). B, Remove outliers (colored red) in the point cloud, followed by filtering methods to differentiate
ground-based terrain (e.g. soil level below the crop) and above-ground (crops) 3D points. C, Generate a 2D CHM and define the ROI (denoted by
the four red markers) using geo-coordinates collected by the ground-based RTK station. D and E, Detect horizontal and vertical edges using the
Sobel operator, followed by the application of 2D Hough transform to produce a binary mask to segment plots in the field experiments. F,
Measure and export 3D trait analysis results for each plot, including measured traits (CSV), processed images (JPG), and processed point cloud
(LAS).
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(4) Step 4: to segment plots using the 2D CHM, we
employed the 2D Hough transform (Duda and Hart,
1972) to detect plot boundaries. Because the gap be-
tween plots could be unclear during the season (e.g.
lodging could cover the gap), missing pixels between
plots or noise could affect the result of the Hough
transform. Hence, we designed an improved method to
detect horizontal and vertical lines separately (Figure
2D), including: (Step 4.1) combining both global
(Sauvola and Pietikäinen, 2000) and local thresholding
(Firdousi and Parveen, 2014) methods to establish an
initial plot mask for the CHM, even if the background
is not uniform; (Step 4.2) using the Sobel operator
(Kroon, 2009) to detect the horizontal and vertical
edges (angles were set at 360 and 30 as all the CHMs
were aligned); (Step 4.3) drawing straight lines based on
the detected edges (with right angles, x- and y-intercept
as input parameters) using the hough_line and
line_aa functions in Scikit-Image (van der Walt et
al., 2014); (Step 4.4) merging multiple detected lines if
they were close to each other, so that only a single line
could represent the gap between plots (Figure 2E).
Finally, assembling the lines and producing a final plot-
level mask to present all of the plots in the field (e.g.
162 plots in Figure 2E). To remove edge effects, gaps
within plots due to plant sampling, and crop variation
that is not directly linked to the varieties or treatments
(e.g. N loss), we calculated the weighted centroid of
each plot using grayscale-based entropy features (Susan
and Hanmandlu, 2013) within a given plot. Through
this approach, the width and length of a plot mask
could be adjusted adaptively to rectify the plot-level
sampling areas.

(5) Steps 5 and 6: the last two steps of the pipeline mea-
sured and exported key performance- and yield-related
traits for each plot. A range of traits have been mea-
sured, including crop height, 3D canopy uniformity, 3D
canopy surface, canopy coverage, and biomass estima-
tion (i.e. 3D voxel index [3DVI] and 3D profile index
[3DPI]). A table (in CSV format) was generated and
populated with these scores, with each row corre-
sponding to a plot (i.e. a variety) and each column cor-
responding to a trait, arranged according to the plot
location (i.e. row and column IDs) in the field (Figure
2F).

The GUI of CropQuant-3D
To facilitate nonexpert users to process 3D point clouds (in
LAS format), we developed the GUI of CropQuant-3D,
which integrated the above analysis pipeline into a single di-
alog panel, from which all the above algorithmic steps could
be performed. The GUI was implemented using PyQt5, a
comprehensive set of Python bindings for the Qt v5 library
(Summerfield, 2015), allowing the GUI to be executable on
varied operating systems (see Availability and requirements).
Following a similar systems design described previously
(Zhou et al., 2017a), CropQuant-3D uses a stepwise

approach to process point clouds and analyze 3D traits. The
initial window (Figure 3A) shows several sections with de-
fault input parameters pre-populated. In the input section, a
user needs to select a LiDAR file (test LAS files provided on
the GitHub). Then, the user needs to pre-process the se-
lected point cloud file, including denoising and ground-
based filtering (Steps 1 and 2 in the GUI). After pre-
processing, the user can generate a 2D CHM (Step 3) by de-
fining the exchange rate between a pixel and a metric unit
(i.e. cm), followed by defining geo-coordinates of the experi-
mental field (i.e. ROI markers; Step 4). Step 5 is to segment
plots using the 2D CHM, so that traits such as plot-based
height and canopy coverage can be measured (Step 6).
Finally, if the user needs to export point clouds for specific
plots, the user can click four corners of one or multiple
plots in the CHM following the order: upper-left, upper-
right, lower-left, and lower-right (Step 7, optional). To enable
a fast selection of plot-level 3D points, we used the
EVENT_LBUTTONDOWN function in OpenCV to create a
mouse response event. The analysis results can be down-
loaded after all the mandatory steps are accomplished
(Figure 3B).

When a step is finished, a green-colored message will be
displayed in the section together with a Display button to
show intermediate results (Figure 3C). In particular, if the
plot boundaries are unclear and the plot segmentation algo-
rithm fails to segment all the plots, the user can define the
field layout (i.e. the number of rows and columns) through
an optional input box, which will generate baselines to assist
the plot segmentation. Furthermore, to enable the GUI soft-
ware to process point clouds produced from other sources
such as UAV-SfM photogrammetry and LiDAR mounted on
gantry systems, we expanded the input function to accept
these types of point cloud files (in LAS format). For example,
the CropQuant-3D GUI can process point clouds generated
by both UAVs (Figure 3D) and FieldScanTM (Phenospex,
Netherlands; Figure 3E) through unified analysis steps in the
software to perform plot-based 3D trait analysis. A detailed
step-by-step user guide (Supplemental Methods S1) and an
instructional video (Supplemental Movie S1) for the GUI-
based software can be seen in the Supplemental Data. The
software implementation can be seen in the “Materials and
Methods”.

Height measurement using CropQuant-3D
Plant height and the rate of height increase (i.e. growth
rate) are important performance- and yield-related traits
(HolmAn et al., 2016; Nguyen and Kant, 2018; Momen et al.,
2019). For field-based phenotyping, we found that, although
terrain adjustment (e.g. slope removing) is a standard pro-
cess for height estimates from elevation models in large-
scale land surveillance and forestry research, there are no
standardized approaches designed for such adjustment in
relatively small-scale crop fields. Hence, we have imple-
mented a customized solution to normalize slopes and ter-
rain features before height mapping. To measure crop
height in a given plot, our algorithm was partially based on
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a mobile laser scanning approach described previously
(Friedli et al., 2016), but performed on a flattened ground
plane (Steps 3 and 4 in the pipeline) with the highest 10%
3D points (H10) sampled in the plot to reduce height varian-
ces at the canopy level. The average height value of the H10

set was computed as the plot-level crop height. We pro-
duced three sets of height maps for all the six-meter 486
plots under three N treatments at the heading stage, with a
unified height scale bar (Figure 4). The 3D DSM and 2D
CHM images (Figure 4, A–C, left) show the 3D reconstruc-
tion and height distribution of the three N blocks, from 60-
degree and overhead perspectives; whereas the colored
height maps (Figure 4, A–C, right) demonstrate how the
height of wheat plants responded to different levels of N
treatments (Supplemental Table S1).

3D Canopy surface and canopy coverage measures
The rates of carbon gain through photosynthesis and water
loss through transpiration of the canopy can be affected by
changes in canopy structure, which can be used to explain
crop performance and plants’ responses to the environment
(Green et al., 1985; Shearman et al., 2005). However, it is
challenging to measure canopy structural characters due to

its complexity and dynamic spatial variability caused by ge-
netic, agronomic management, and environmental effects
(Omasa et al., 2007; Hosoi and Omasa, 2009; DuAn et al.,
2016). Although LiDAR devices have been used to visualize
3D canopy structure, how to quantify structural changes
using point clouds was still a challenge that needed to be
addressed.

We approached the matter by measuring a range of traits
at the canopy level, including 3D canopy surface area and
canopy coverage. To measure canopy coverage index, we de-
veloped the following steps: (1) retaining the highest 50%
3D points (H50) in a given plot (Figure 5A); (2) then, projec-
ting H50 points onto a flattened plane to generate a 2D can-
opy image from an overhead perspective; (3) after that,
applying the threshold_local function in Scikit-Image
(Singh et al., 2012) to select pixels in the canopy image using
the calculated local threshold, resulting in a binarized can-
opy mask to represent the canopy coverage in a plot. We
applied the trait to measure the canopy coverage differences
of a wheat variety (e.g. NMzi-1019) under three N treat-
ments. The canopy coverage index (0-1, where 1 is 100%
coverage) showed an increase of 10%–15% when the N fer-
tilization increased (Figure 5B).

Figure 3 The GUI for CropQuant-3D was designed for processing 3D point cloud files using 2D/3D image analysis algorithms and mathematic
transformation for analyzing canopy structural traits in 3D. A, The initial GUI window of CropQuant-3D. B, The GUI window after accomplishing
all required analysis steps, with the progress bar showing 100%. C, The intermediate results that can be displayed for each processing step inte-
grated with the analysis procedure for processing point cloud files generated by the backpack LiDAR, including optional input parameters such as
the number of rows and columns of the experimental field that users could enter to assist the algorithm for segmenting plots. D, The intermedi-
ate results that can be displayed for processing point cloud files collected by UAV aerial imaging. E, The intermediate results that can be displayed
for processing point cloud files generated by a gantry-mounted LiDAR system, FieldScan.
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While the canopy coverage is important as it relates to
the interception of direct solar radiation, it does not ac-
count for the total leaf area of the canopy, which is a more

precise measure of interception of diffuse radiation and
reflected light within the canopy (Cabrera-Bosquet et al.,
2016). As the 3D surface area of the canopy would be

Figure 4 The pseudo-colored uncalibrated height maps, 3D visualization, and pseudo-colored calibrated height maps of NUE wheat experiments
under three different levels of N treatments. A, The 2D CHM image (to the left) and 3D digital surface model (DSM) image, created using the RTK
tagged altitude height values, and the calibrated height maps (to the right), showing the average height value of the highest 10% 3D points (H10)
for the low-N treatment; (B, C) the 2D CHM, 3D DSM (left) and the calibrated height (right) images for the medium-N and high-N treatments.
The unified height scale bar for the three sub-figures is shown.

(a) (b)

(c) (d)

Figure 5 The analysis process of measuring 3D canopy surface area and canopy coverage at the plot level using voxels and triangular mesh for
wheat varieties. A, 3D points for the canopy region using the highest 50% points (H50) in a given plot. B, H50 points projected onto the ground
plane, generating pixels representing crop canopy regions, which were processed by an adaptive approach to calculate the normalized canopy
coverage trait (0-1, where 1 stands for 100%). C, A brief analysis process of computing the 3D surface area trait using triangle mesh. D, The nor-
malized 3D surface results (0-1, where 1 stands for maximum 3D surface area in a given plot) of a wheat variety under three N treatments.
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closely related to the total transpirational leaf area and
would correspond with the summed photosynthetic activity
of all leaves (Omasa et al., 2007), we, therefore, included the
measurement of 3D canopy surface area in the CropQuant-
3D (Figure 5C). The algorithmic steps were designed based
on the triangle mesh method (Edelsbrunner et al., 1983), in-
cluding: (1) applying the voxelization method (Truong-Hong
et al., 2013) to generate a 3D grid system to package all the
above-ground 3D points into voxels; (2) using the vox-
el_down_sample function from Open3D to down-
sample the number of voxels, so that gaps between plants
in a given plot could be covered; (3) using the create_-
from_point_cloud_alpha_shape function
(Edelsbrunner et al., 1983) to reconstruct 3D surfaces of the
canopy, followed by the get_surface_area function
to calculate the 3D surface area. For example, the 3D surface
area indices of wheat variety NMzi-1019 showed an increase
of over 20% with the increase in N application levels (Figure
5D). In addition to the above two traits, we also integrated
traits such as 3DVI and 3DPI into CropQuant-3D to esti-
mate biomass, which has been described previously
(Jimenez-Berni et al., 2018; Deery et al., 2020). All the above
trait analysis results are listed in Supplemental Table S2.

An original canopy structural measure—3D canopy
index
While the above indices are useful measures to describe
some canopy structural features, they do not convey infor-
mation about canopy-level changes in spatial characteristics
(e.g. height variation) across the plot, which are likely to be
affected by many factors in the field experiments, including
(1) plant architecture such as individual tillers (e.g. main
stem is taller than secondary tillers), which could differ be-
tween genotypes, (2) the height of spikes if a mixed popula-
tion was drilled, (3) the density of the crop (e.g. spikes
number per unit area, SN m�2) due to different manage-
ment practices such as the seeding rate, (4) agronomic or
environmental reasons unrelated to treatment or genotype
(e.g. local seedbed variations), and (5) lodging. We have
established an original algorithm incorporated in the
CropQuant-3D software to measure spatial differences at
the canopy level. Following the previous naming convention
(Jimenez-Berni et al., 2018), we called this measure 3D
canopy index (3DCI). The algorithm for 3DCI consists of five
key steps:

(1) Using the plot-level masks (Figure 2E), we extracted all
the above-ground 3D points in a given plot to generate
a pseudo-color spatial map from an overhead view. We
then transformed the map into a grayscale image with
each pixel’s grayscale value corresponding to its height
value, resulting in a 2D plot-level CHM (Figure 6A,
right).

(2) A 2D DFT method (Cooley and Tukey, 1965) was ap-
plied to represent the plot-level CHM in the frequency
domain, producing the magnitude of the image’s
Fourier transform. Because the dynamic range of the

Fourier coefficients was too large to be visualized, we
applied a logarithmic transform and generated a fre-
quency spectrogram (Figure 6B), containing all frequen-
cies of the spatial information in the plot and their
magnitude. The DFT can be defined as:

f x; yð Þ ¼
1

MN

XM�1

u¼0

XN�1

v¼0

F u; vð Þej2p ux
Mþ

vy
Nð Þ;

x ¼ 0;M� 1½ �; y ¼ 0;N� 1½ �
(1)

where f(x, y) represents the M�N spatial domain matrix,
and F(u, v) represents the DFT of f(x, y). The coordinate sys-
tem of F(u, v) is in the frequency domain.

(1) We centralized the frequency spectrogram to remove
periodic interference signals, resulting in a centralized
magnitude image to represent the spatial information.
For example, by applying DFT to CHM images under
three N treatments, we could identify different struc-
tural features at the canopy level (Figure 6C): (1) the
magnitude of the low-N magnitude image became rap-
idly smaller for higher grayscale values (e.g. canopy
objects such as wheat spikes), suggesting its canopy
was lower and the distribution of its spatial features
was spread out (i.e. less dense) compared with crops
under medium or high N treatments; (2) the main val-
ues of spectrogram images for both medium and high
N applications lay on a vertical line, suggesting their
canopy structures contained a dominating vertical ori-
entation caused by regular patterns (e.g. lines formed
by plants); and (3) in the medium-N magnitude image,
another pattern could be observed which passed
through the center at 75–80� angle (highlighted by a
light-green dashed oval), which was caused by another
spatial pattern in the plot and potentially could be a
useful tool to measure the degree of lodging (Figure
6A).

(2) To utilize the above DFT results in quantitative trait
measurements, we sampled all the pixels’ grayscale val-
ues on the diagonal of the centralized magnitude image
(red-colored lines in Figure 6C), based on which fre-
quencies of all spatial values and their amplitude were
summarized. We then used the Gaussian fitting to plot
the amplitude of the sampled spatial values, producing
curves to represent canopy structural features within a
defined frequency region, where the x-axis denotes fre-
quencies of canopy-level spatial values, and the y-axis
represents their associated amplitude (Figure 6D). Two
important features could be concluded from canopy
structural curves: (1) the curvature of these curves, sig-
nifying the density of crop canopy, as a less dense can-
opy structure contained larger spatial variation (e.g. less
dense spikes) and resulted in a higher curvature; (2) the
area beneath the structural curve (e.g. with light red di-
agonal stripes, Figure 6D), showing the canopy unifor-
mity—when curvatures are similar, structural curves
comprise greater area indicates less uniformity due to
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greater accumulated spatial variances. We used integral
calculus (i.e. integration) to compute the area beneath
the canopy structural curve, which is defined by
Equation 2:

ðb

a

f xð Þd xð Þ �
XN

k¼1

f xkþ1ð Þ þ fðxkÞ
2

Dxk; x 2 a; b½ �; k ¼ 1;N½ � (2)

where x is frequencies of spatial values, a is the minimum
frequencies of spatial values (set as �100), b is the maxi-
mum frequencies (set as 100), fðxÞ is the amplitude value af-
ter Gaussian fitting, N is the total number of x sampled, Dxk

is the difference between xk and xkþ1.
To compute the curvature of a structural curve, we used

Equation 3 as described previously (Van Der Walt et al.,
2011):

Curvature ¼ d2x

dt2
� dy

dt
� dx

dt
� d2y

dt2
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dt
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dt
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� �3=2
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where x represents the frequency array (the x-axis), y is the
amplitude array (the y-axis).

(1) To use the above equations for measuring canopy uni-
formity, we normalized values generated by Equation 2,
so that we could cross-validate the measure for differ-
ent varieties. We called this normalized value 3DCI. The
normalization is defined by Equation 4:

y ¼ x�MinValue

MaxValue�MinValue
(4)

where x is the calculated value using Equation 2, y is the
normalized 3D canopy uniformity index, MinValue is the
theoretical minimum value from the value list, i.e. 59.3% of
the calculated minimum value (Raybould and Quemada,
2010); and MaxValue is the theoretical maximum value
from the value list, i.e. 129.4% of the calculated maximum
value.

To verify the 3DCI and curvature measures, we used the
wheat variety NMzi-1019, which has been shown to respond
strongly to different levels of N fertilization (Feng et al.,
2008). Three canopy structural curves of NMzi-1019 under
three N treatments (n¼ 9 plots) were produced (Figure 6D).
The three curves’ curvatures reduced moderately when the

Figure 6 The analysis procedure of measuring 3D canopy structure at the plot level using 2D CHM images and a 2D DFT, resulting in 3D canopy
structural curves for separating variety responses to different N treatments. A, The pseudo-colored height images and their associated grayscale
height images (intensity values correspond to height values) in a plot, under three N treatments. B, Frequency spectrograms generated using 2D
DFT of the grayscale height images, containing all frequencies of height values and their magnitude in the plot. C, Centralized magnitude of DFT
produced to enable frequency and amplitude sampling through red-colored lines on the diagonal of the image; regular patterns observable in the
images with medium- and high-N treatments. D, Three canopy structural curves plotted to present structural differences together with cross-sec-
tions of 3D points at the canopy level, showing the wheat variety’s different responses to three N treatments as well as the procedure of comput-
ing 3DCI (0-1, where 1 stands for maximum accumulated spatial variation in a given plot) based on the curves and areas beneath the curves.
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N fertilization increased, indicating the canopy density were
increasing. The high-N canopy curve (colored red; 3DCI ¼
0.471) contained less accumulative spatial variation than
those with low (colored blue; 3DCI ¼ 0.554) and medium-N
(colored light green; 3DCI ¼ 0.513) treatments (see cross-
sections in Figure 6D) and hence possessed a smaller area
beneath the curve. Trends in 3DCI scores across N treat-
ments could also be used to differentiate varietal differences
in canopy responses to N treatments. For example, increas-
ing 3DCI indicated that the canopy became more variable in
height, suggesting more structural responses to N applica-
tions. Similarly, if the index decreased sharply with the N in-
crease, this indicated that the crop canopy became more
uniform rapidly and likely much denser when the N applica-
tion changed.

Validation of the CropQuant-measured traits using
ground truth data
Height estimates derived from the CropQuant-3D output
were validated by comparisons with manual height measure-
ments taken at the same stage of crop development (grain
filling) in the 2019/2020 trial. There was a strong correlation
between the CropQuant-3D’s height scores and manual
measurements for each level of N, using plot-based (the
square of the correlation coefficient, R2, ranges from 0.69
and 0.87; P-value in linear regression analysis is less than
0.001; Figure 7A; Supplemental Table S3) and variety-based
means (R2 ranges from 0.84 and 0.92, P< 0.05; Figure 7B;
Supplemental Table S4). Thus, the CropQuant-3D height

scores based on the backpack LiDAR provides a viable alter-
native to manual height measurements, particularly for
obtaining genotypic means. Interestingly, CropQuant-3D
tended to underestimate the height for wheat varieties that
are taller than 90 cm (some landraces were included). This
is likely due to the way manual measurements were taken,
which involved lifting and straightening curved or lodged
plants to measure the distance from the soil surface to the
tip of the ear along the vertical stem, whereas the LiDAR
system measured the plants as they were naturally in the
field. Furthermore, because only a limited number of plants
were measured in each plot manually, compared with a
whole plot scan conducted with the backpack LiDAR, there
is a greater chance of plot-to-plot variability with the man-
ual approach than with LiDAR, which integrates height
measurements over a larger number of plants in a plot.
Also, better variety-based correlation values might be due to
height values for each variety have been averaged (three
replicates per variety), reducing the height variance caused
by treatments and small agronomic differences.

To verify the biological relevance of the 3D canopy surface
area index, we have analyzed correlations with plot-level
grain number (GN m�2) and grain yield (GW m�2) using
data collected from the 11 selected varieties (n¼ 81 plots).
Strong positive correlations between this LiDAR-derived trait
and the yield components, with R2 ranging from 0.71 to
0.76 (P< 0.001, Figure 7C; Supplemental Table S5), suggest a
mechanistic link between the canopy trait and grain for-
mation underlying the correlation, indicating that the 3D

(a) (b) (c) (d)

Figure 7 The square of the correlation coefficient (R2) calculated to evaluate correlations between height estimates, canopy surface area and
3DCI computed by CropQuant-3D and manual measurements in the 2019–2020 field trial, at three different levels of N fertilization; P-values com-
puted through the linear regression analysis also reported. A, Plot-based correlation analysis of the peak height measured by CropQuant-3D and
manual height measurements. B, Variety-based correlation analysis of the peak height measured by CropQuant-3D and manual height measure-
ments. C, Correlation analysis of the 3D surface area index and the grain number per unit area (GN m�2) data. D, Correlation analysis between
3DCI and spike numbers per square meter (SN m�2). Plot means (A) and genotype means (B) are shown.
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surface area index can serve as a good predictor of dy-
namic varietal performance. Additionally, there was a
strong negative correlation between 3DCI (designed to
quantify canopy uniformity and density) and manually
measured spike density (SN m�2) trait, with R2 ranging
from 0.77 to 0.81 (P< 0.001, Figure 7D; Supplemental
Table S6). Hence, it is likely that the 3DCI could also be
used as a measure to quantify how SN m�2, a key yield
component, responds to different N applications, but
without the slow and laborious process of manually
counting spikes in the field.

A case study of classifying N responses for wheat
To effectively select crop varieties with an improved N re-
sponse (e.g. high N use efficiency, NUE), it would be valuable
to make use of proxy traits that are related to NUE under
field conditions (Sylvester-Bradley and Kindred, 2009; Pask et
al., 2012; Nguyen and Kant, 2018). The range of variables
(e.g. 3D canopy surface area, canopy coverage, plot height
and 3DCI) measured by CropQuant-3D were used jointly to
describe canopy structural responses to three N treatments,
which have enabled us to classify the N response of 11 se-
lected wheat varieties (81 plots) into four classes (Figure 8).
The example varieties were as follows:

(1) Class 1—canopy structural curves differed across all
three N levels. The patterns for ZM-4 could be clearly
separated under the three N treatments (Figure 8A), in-
dicating that this type of wheat variety had a strong
structural response to varied N applications at the can-
opy. Both 3DCI (colored according to their associated
N treatments) and the curvatures of the three canopy
curves reduced steadily together with the increase of N,
indicating that spike density and canopy uniformity
were both rising in response to the escalation of N
treatment. Also, the decrease of 3DCI corresponded
with a continual increase of the SN m�2 reading. Other
lines from the 11 varieties that can be categorized into
Class 1 are NMzi-1019, ZM-5, and ZM-11
(Supplemental Figures S1).

(2) Class 2—canopy structural curves were similar at low
and medium N levels, but differed at high N. The pat-
terns for NMzi-1 showed that the line had a good re-
sponse to increased N, but only above the medium
rate of N fertilization. Both 3DCI and SN m�2 suggested
that low and medium N had similar effects on the vari-
ety (Figure 8B). The SN m�2 scores increased distinctly
only under high N. Other lines that can be categorized
into Class 2 are ZM-10 and ZM-12 (Supplemental
Figures S2).

Figure 8 A case study of classifying wheat varieties’ N responses using the 3DCI and spike number per unit area for 11 varieties from the Zhenmai
and Ningmai collections under three N application levels. Error bars used in the spike number per meter square (SN m�2) scores represent one
standard error. A, The first N response class, showing canopy structural curves of ZM-4 and the associated spike number per meter square (SN
m�2) scores under the three N treatments. Also in this class were varieties NMzi-1019, ZM-5, and ZM-1 (see Figure 6 for the explanation of the
measure). B, The second N response class, showing canopy structural curves of NMzi-1 and the associated SN m�2 scores under the three N treat-
ments. Also in this class were NMzi-1, ZM-10, and ZM-12. C, The third N response class, showing canopy structural curves of NM-26 and the asso-
ciated SN m�2 scores under the three N treatments. Also in this class was ZM-8. D, The fourth N response class, showing canopy structural curves
of ZM-168 and the associated SN m�2 scores under the three N treatments. Also in this class was line ZM-09196. Values shown in the correspond-
ing color next to each curve in the plots are computed 3DCI values.
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(3) Class 3—canopy structural curves were similar at me-
dium and high N levels. The patterns for NM-8 sug-
gested that the variety had similar responses under
medium and high N treatments, indicating the increas-
ing N fertilization was not able to increase the line’s
spike density beyond the medium rate of N fertilization
(Figure 8C). The other line that can also be categorized
into Class 3 is ZM-26 (Supplemental Figures S3).

(4) Class 4—canopy structural curves decreased at high lev-
els of N and showed the best response at medium N.
Curvature patterns of ZM-168 indicated that the line
had a similar canopy density at medium and high N
treatments. The canopy uniformity was greater at the
medium N level (3DCI ¼ 0.506; Figure 8D) and the
line’s spike density was the highest among the three N
treatments. The other line that can be categorized into
Class 4 is ZM-09196 (Supplemental Figures S4).

After classifying N response patterns, we then combined
3DCI, crop height, canopy surface index area with the yield
components, GN m�2 and SN m�2, to produce a perfor-
mance matrix to understand crop responses to different N
treatments in a compound manner. In the matrix, each vari-
ety was ranked based on the performance of these measures
and traits. For example, by calculating the deviation of them
based on the trimmed mean values (i.e. 15% over the
trimmed mean colored dark orange and placed in rank or-
der 5, the highest rank; 7.5%–15% colored light orange and
placed in rank 4; �7.5% to 7.5% colored yellow and placed
in rank 3; �15% to �7.5% colored light blue and placed in
rank 2; and �15% below the trimmed mean colored dark
blue and placed in rank 1, the lowest rank), we could select
lines with a desired performance under the three N treat-
ments using a ranking system. In particular, for crop height,
both very short and very tall were ranked undesirable (i.e.
placed in rank 1), whereas both GN m�2 and SN m�2 were
given more weight (Langer and Liew, 1973) than other
measures (weights ¼ 0:25; 0:25; 0:2; 0:1; 0:2½ �). Through the
ranking system, we concluded that: (1) for the low N treat-
ment, ZM-168 achieved a more balanced score in terms of
grain production and structural variation (Figure 9A); for
the medium N application, NM-26 ranked the highest
(Figure 9B); and, for the high N, NM-26 was scored the high-
est (Figure 9C). Although this is only an initial attempt for
selecting wheat varieties with desirable N responses using
LiDAR-derived traits and key yield components, it is evident
that the performance matrix could provide an objective ap-
proach to rank multiple wheat varieties. Further validation
and field studies using the above approach are ongoing and
will be reported separately.

Discussion
Plant phenomics is an important area that helps provide
valuable phenotypic information that is needed to fully ex-
ploit available genomic resources. For crop improvement
programs, the focus is on multi-location and large-scale field
phenotyping, yet there are a number of weaknesses with

current solutions (Tardieu et al., 2017; Furbank et al., 2019;
Pieruschka and Schurr, 2019), concerning: (1) mobility (a
method can be straightforwardly used in multiple locations);
(2) affordability (whether a purchase, operation, and mainte-
nance of a system can be afforded by research groups with
acceptable resources); (3) throughput (the number of plots,
traits and fields that can be measured within a reasonable
time frame, as well as the number of times to phenotype in
a growing season); (4) accuracy (the information truly relates
to the target attributes or biological functions of the plant);
(5) resolution (if the method provides information at the
level of detail required to test the biological hypothesis); and
(6) scalability (the size of trials that can be phenotyped and
the number of locations that can be covered).

In addition to data collection, another issue that limits
the use of field phenotyping tools involve the ability to ana-
lyze big data acquired from the field (Kelly et al., 2016;
Scharr et al., 2016; Cendrero-Mateo et al., 2017; Lobet, 2017).
Although many open-source and proprietary software solu-
tions have been developed (Butler et al., 2020; Roussel et al.,
2020), their applications are normally limited to certain devi-
ces and for specific research questions, leading to matters
such as software usability, data interoperability, and the gen-
eralisability (Carpenter et al., 2012; Roitsch et al., 2019). To
address some of the above issues, we pioneered the integra-
tion of backpack LiDAR and an open-source software imple-
mentation to measure genotypic and N treatment
differences in spatial features in wheat. Results from field
experiments showed that structural measures (e.g. height,
3DCI, and canopy surface area) are highly correlated with
key yield components such as SN m�2 and GN m�2, indi-
cating the system could be used as a reliable research tool
to classify the plant responses to different N treatments.

The backpack LiDAR hardware
We have shown that the backpack LiDAR device introduced
here is integrated and portable, enabling the collection of
high-density 3D point clouds at the field and plot levels.
Typically, these kinds of data would require LiDAR systems
to be mounted on a gantry or vehicle platform, which are
often not available, too costly, fixed in one location, or can-
not reach fields with limited accessibility. To our knowledge,
the backpack LiDAR system has not been used in field-
based plant phenotyping previously. Hence, we developed a
range of techniques to apply the device in wheat field
experiments. Our field testing and development experience
show that the backpack LiDAR possesses three notable fea-
tures: (1) large-scale capability (up to 210 m effective scan
range through our equipment), with an acceptable mapping
speed (up to 1.2 ha/h); (2) portability (the ability to conduct
multi-location phenotyping) with limited adjustments of
hardware and software; (3) relatively small operation and
maintenance costs due to its integration, ease-of-use and
mobile features. Hence, backpack LiDAR appears to provide
a more balanced solution to some current phenotyping
challenges. Although backpack LiDAR, like most high-
resolution LiDAR systems with high-end scanners, is still
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relatively expensive. However, costs should decrease and be-
come more affordable as the technology matures (Su et al.,
2020). Comparisons between backpack LiDAR devices and
other approaches can be seen in the section below.

CropQuant-3D software and trait analysis
Processing of 3D point cloud data collected by LiDAR sys-
tems for 3D trait analysis is still complicated and computa-
tionally demanding, indicating the necessity of reliable
analytic solutions. Furthermore, for solutions that can be
used by nonexperts and are widely accessible by the plant
research community, the software should be user-friendly
and openly available. Therefore, we developed the
CropQuant-3D analysis software to routinely process large
point cloud datasets. To help other researchers exploit our
analysis algorithms integrated in the software, besides the
GUI software, we also modularized the analysis tasks into in-
dividual procedures and then saved them with executable
Python source code in Jupyter notebooks that can be exe-
cuted on multiple operating systems. The algorithmic steps
include pre-processing of 3D point clouds (Supplemental
Methods S2), automated plot segmentation with optional
experimental layout input, and plot-level crop height (see
Supplemental Methods S3), 3D trait analysis of canopy
structural features (3DCI, 2D canopy coverage, 3D canopy
surface area), and biomass estimation such as 3DVI and
3DPI (see Supplemental Methods S4). Compared with the
previous work (Ward et al., 2019; Hyyppä et al., 2020; Su et
al., 2020), we have made progress in several areas for large-
scale 3D trait analysis in plants:

(1) Due to the huge volume of raw point cloud data col-
lected, efficient data processing needs to be considered
for both throughput and accuracy. Many existing meth-
ods require much computational time to pre-process
point clouds. In our case, we have chosen to use a
ground-level filter with parameters tailored for small-
scale crop field, retaining only 3D points required by
trait analysis. This approach noticeably reduced

processing time. For example, for a 400 MB LiDAR file
(over 15 million 3D points), only 100–120 s were re-
quired to normalize 3D points on an ordinary com-
puter (intel i7 CPU and 16 MB memory; see profiling in
the Material and Methods).

(2) We analyzed plot-level 3D traits using 2D CHM, which
retains sufficient spatial information in 2D pixels. This
approach enabled us to employ computationally more
efficient 2D-based algorithms such as edge detection,
Hough transform, and adaptive thresholding to perform
plot segmentation and trait analysis, reducing the com-
putational complexity. Another key benefit for this 3D-
to-2D transformation is that analysis regions could be
controlled dynamically in any plot region. By calculating
the texture entropy (Haralick et al., 1973), we could
compute the weighted centroid of a plot and then de-
fine the sampling area according to experimental needs.

(3) Since the density of the LiDAR-collected 3D points is
likely to be imbalanced (e.g. the further away from the
mapping route, the sparser the 3D points), it is neces-
sary to interpolate the point clouds if the number of
3D points in a given plot is limited. From a range of in-
terpolation algorithms, we have chosen the progressive
TIN to build a TIN-based model and then iteratively
densify 3D points in an, which helped us improve the
quality of 3D trait analysis while retaining key 3D geo-
metric features at the plot level.

(4) It is technically difficult to describe 3D canopy structure
quantitatively. The 2D Fourier transform method
employed by CropQuant-3D opens a door to quantify
spatial variances, spike density and uniformity at the
canopy level by dividing frequency and amplitude of all
height values across the plot. A similar idea but with a
different approach can be found in measuring the can-
opy roughness of leafy trees in forest ecology
(Antonarakis et al., 2010). Our approach was able to
show that, through the canopy structural curve and
3DCI (Figure 6D), we could quantify the uniformity and
density of wheat spikes in plots, which could be used

(a) (b) (c)

Figure 9 A performance matrix to evaluate NUE of wheat varieties using traits and measures for 11 wheat varieties from the Zhenmai and
Ningmai collections under three N applications. A–C, A range of canopy measures (i.e. 3DCI and canopy surface area index), plot-level height, and
key yield components, i.e. spike number per meter square (SN m�2) and grain number per meter square (GN m�2), combined to assess winter
wheat varieties under three N treatments, with 15% over the trimmed mean colored dark orange, 7.5%–15% colored light orange, �7.5% to 7.5%
colored yellow, �15% to �7.5% colored light blue, and �15% below the trimmed mean colored dark blue. Selected varieties were colored red, in-
dicating they were ranked higher than the other varieties by the performance matrix.
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to classify varieties according to different responses to
N treatments and potentially other treatments.
Meanwhile, the curvature of the canopy curves can also
be employed to help distinguish the canopy density in
relation to different N treatments and varieties.

There are many vision-based approaches developed to
mine spatial and temporal features from point clouds for a
range of biological questions, for example, identifying pheno-
typic differences at the organ level (Li et al., 2020a) and the
extraction of single plants within a plot (Jin et al., 2021).
Because our research aim was to enable large-scale field phe-
notyping for plot-level 3D trait analysis, we therefore did
not consider plant-level 3D reconstruction and methods to
analyze detailed features (e.g. plant-level marching cubes,
leaf curvature estimation, and 3D skeletonization) in this
work.

Wheat varietal responses to different N fertilization
levels
NUE in crops is generally low. Approximately 40% of the ap-
plied N can be utilized by cereal crops, with the bulk of the
remainder leaching to groundwater or volatilizing to the at-
mosphere, causing increased agricultural costs and negative
impacts on the environment (Raun and Johnson, 1999;
Good et al., 2004). Breeding crop varieties with improved
NUE should contribute to more sustainable cropping sys-
tems. To effectively select lines with heritable NUE-related
proxy traits under different field conditions, it is technically
difficult to screen many complex traits due to their dynam-
ics and complexity (Good et al., 2004; Sylvester-Bradley and
Kindred, 2009).

In the case study, we have explored a comprehensive pro-
cedure to quantify N responses of different wheat varieties
based on phenotypic traits and key yield components.
When the level of N changed, different varieties varied with
their responses in terms of canopy structural features and
key yield components. By combining key yield components
and LiDAR-derived trait values, we identified four NUE types
using the subset of 11 varieties: (1) grain yield responded
well to increased N applications (Class 1); (2) only higher N
was able to increase yield (Class 2); (3) medium and high N
treatments led to similar grain production (Class 3); and (4)
higher N led to a yield decrease (Class 4). We believe that
the combined performance matrix demonstrated in the case
study is likely to help establish an objective approach to
identify wheat lines with superior N responses, which may
lead to an effective selection improvement of NUE in wheat
breeding programs in the future. Further work to link this
selection approach with yield production and NUE at a large
scale is ongoing.

Applications of CropQuant-3D
The traits and measures here (e.g. height, coverage, canopy
area, and 3DCI) do not just relate to N treatments, but they
also closely connect with many aspects of genetic variation
in crop performance. For example, crop height is an

important factor in assessing risk to crop lodging, 3D canopy
area and 2D ground coverage are good indicators for man-
aging agricultural inputs to optimize canopy structure for ra-
diation capture, photosynthetic output and transpirational
water loss. It is also important to note that such traits are
only apparent in the context of a population in plots, and
most of these traits are difficult or impossible to convey by
phenotyping individual plants in controlled environments.
Canopy-level traits are affected by variety, soil characteristics
and agronomic factors such as seed spacing and the applica-
tion of plant growth regulators. The accuracy of plant mod-
els that attempt to simulate the effects of these factors and
their interactions on crop performance could be improved
by supplying them with traits presented here that were col-
lected across a wide range of scenarios.

The 3D traits derived from LiDAR data such as 3DCI have
many underlying component traits and spatial features. A
better understanding of the bases of 3DCI would broaden
its application for other crop improvement programs. For
instance, height variances within a plot could be due to a
variety of reasons: (1) a mixed population of plants with dif-
ferent genes controlling height, or that major height genes
are not fixed, but still segregating in the population; (2) ag-
ronomic or environmental variability within the plot that is
not related to genotypes; and (3) as 3DCI is affected by
height as well as spike density, the analysis of 3D point
clouds could likely pick up the differences in height of the
mainstem, different tillers on each plant, and tillering re-
sponse both to N treatment and genotype (Power and
Alessi, 1978).

Another biological application of the CropQuant-3D sys-
tem is for the discovery of robust quantitative trait loci for
agronomic traits, which requires phenotypic data on large
mapping populations across multiple field environments
(Griffiths et al., 2012). The high-throughput capabilities of
this combined system are well suited to this scale of re-
search. A similar research approach has been reported in
our recent work, SeedGerm (Colmer et al., 2020), which was
applied to detect genetic differences in Brassica napus based
on a range of seed germination traits. Although more work
is needed, greater automation of phenotypic analysis and
improvements in accuracy are likely to accelerate the ge-
netic analysis of crop performance under varied treatments
or environments.

Beyond existing 3D trait analysis, continuous phenotypic
analysis in 3D of different crop species is likely to extend
our understandings of the physiological bases of crop
growth and development, for which the open-source nature
of CropQuant-3D is likely to be valuable for the research
community. There is an additional analytic power in exam-
ining longitudinal traits (time-series measures of traits that
change as the crop develops and matures), which can de-
scribe the dynamic interactions between crop genotypes
and N responses. By streamlining both the data acquisition
and data analysis of field phenotyping with the backpack
LiDAR and CropQuant-3D, it becomes possible to obtain
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measures at each key growth stage and at different test
locations and environments, which was difficult to achieve
with systems that are less portable and flexible in operation,
with limited opportunity to expand or alter the use of the
analysis software. With the approach introduced here, multi-
environment 3D traits collected along a time series on large
genotype collections could enable a deeper understanding
of the genetic and physiological bases of efficient use of N
for crop growth and development, as well as how these
responses are modulated by the environment. Technically,
other than some supervised machine learning algorithms,
we have not embedded popular deep learning techniques
into the analysis pipeline for 3D traits analysis. Continuous
development will improve our work, opening 3D phenotypic
analysis to nonexpert users and computational biologists
who are willing to extend and jointly develop the platform.
Overall, we believe that the combined backpack LiDAR and
CropQuant-3D system could have a great potential to ad-
vance large-scale and multi-location field phenotyping, 3D
phenotypic analysis, and genetic studies for both crop re-
search and breeding applications.

Issues associated with the backpack LiDAR and
CropQuant-3D
Despite clear advantages, it is important to point out the
limitations of the combined solution. LiDAR technology has
been maturing very rapidly in recent years. The Robin back-
pack LiDAR used in this study is already being replaced by
newer models with better accuracy, effective scan range, and
a lower purchase price (the price of LiDAR devices has de-
creased over 30% since 2018; www.yole.fr/LiDAR_Market_
Update_Livox_LiDAR.aspx). Although this type of LiDAR is
more affordable than other large-scale systems, it is worth
noting that, depending on the laser scanner integrated in a
backpack LiDAR device, the equipment is still relatively ex-
pensive. We compared the costs of Robin with some repre-
sentative backpack LiDAR systems, as well as other LiDAR-
based mapping approaches (Supplemental Table S7; infor-
mation regarding GPS and RTK accuracy can be found via
the links in the References column). However, it is also nota-
ble that the integration and mobility features of backpack
LiDAR possess a unique opportunity for the community to
explore shared services or community-driven facilitates en-
couraged by EMPHASIS and AnaEE (Roy et al., 2017).

Additionally, our software was not designed to address
many color- or spectral-related traits that are also important
for crop performance. For example, senescence of the lower
canopy due to differential N or water limitation.
Adjustments to how the LiDAR is used and the associated
analysis algorithms would be required to capture such traits
in future work. However, similar issues can be applied to
most of the LiDAR systems. Moreover, it was difficult to
scan the lower part of the crop after the canopy closure,
which could cause errors to estimate above-ground biomass
with stems included. Also, due to field conditions such as
wind movement of the plants, it is extremely challenging to

generate a very high-resolution and high-precision 3D model
to analyze an individual plant within the plot, even with
high-end laser scanners or close-up 3D mapping modes.
Alternative 3D point registration algorithms are therefore
needed to deal with plant movement and reliable plant-
level 3D modeling.

The CropQuant-3D system is capable of automating the
segmentation of hundreds of plots for trait analysis, but the
algorithm is likely to fail at the seedling development and
tillering stages (GS10–29). This is because the early crop
height map and the gaps between drilled plants are too big
to ensure meaningful plot segmentation. However, as stems
elongate and crop height increases (e.g. from the jointing
stage onward, GS31), our system can perform reliable plot-
level masking. Another technical issue that needs to be
taken into consideration is the request for a user to select
plot(s) to extract plot-level point clouds. Although plot-level
point clouds are not required for the trait analysis reported
here, a user is required to select one or multiple plots on
the 2D CHM to extract associated point clouds, which can
be laborious if point clouds from hundreds of plots need to
be extracted. For this technical constraint, automated plot-
level 3D points extraction is required and recent reports
suggest they are within reach (Walter et al., 2019; Roussel et
al., 2020; Jin et al., 2021).

Finally, because we have applied the 3D-to-2D analysis ap-
proach, some spatial information might be lost during the
3D-to-2D transformation, which could reduce the accuracy
when the research interest is beneath the canopy region.
For this loss of accuracy during the transformation, we have
performed some testing using 3D point cloud files collected
by other equipment such as drone and vehicle-mounted
LiDAR (Figure 3, D and E) to carry out multi-scale point
cloud processing. Although the preliminary is promising, fur-
ther development and testing are still required to make the
platform more compatible with these types of point cloud
data. The next steps of the research also need to expand
the application of CropQuant-3D to the analysis of different
crop species so that the algorithms developed for wheat can
be used for addressing similar biological problems in other
crop species.

Conclusion
The requirement of obtaining accurate and meaningful
measures of the field phenotype at sufficient scale, through-
put, cost, and multiple locations create a bottleneck in
today’s crop research and breeding, which is preventing us
from making full use of genomic resources for crop im-
provement programs. Backpack LiDAR has obvious advan-
tages for large-scale field experiments and breeding trials.
The device is easy to transport and use, overcoming the
main limitations of fixed phenotyping platforms and can be
used for multi-site data collection and at multiple time
points. However, the ability to process and analyze large
datasets with minimal time and standard computing power
has limited the wide application of LiDAR-based
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phenotyping. To address this, we have developed
CropQuant-3D, which processes large LiDAR-derived 3D
point cloud data and consists of original algorithms pack-
aged into user-friendly GUI software to output multiple 3D
canopy traits (e.g. 3DCI) at the plot level. In a case study of
11 wheat varieties grown under three levels of N inputs,
analysis results obtained by combining a backpack LiDAR
and the CropQuant-3D software showed that wheat varie-
ties could be classified into different N response groups
according to a range of 3D traits that relate to spike density
(SN m�2) and grain yield. This indicates that the combined
solution could be a useful tool to make selections for NUE,
and to dissect the physiological mechanisms and genetic
regulation of NUE. Hence, we trust that the system pre-
sented here has a great potential to relieve some of the cur-
rent bottlenecks in large-scale field phenotyping for crop
research and breeding.

Materials and methods

Plant material and field experiments
In the first season (2018–2019), 105 Chinese winter wheat
(Triticum aestivum) varieties were planted at the Zhenjiang
Agricultural Technology Innovation Center (ZATIC, 31�570N,
119�180E, Jiangsu province, China), measured using
CropQuant-3D and assessed for yield and N responses. A
subset of 54 varieties (Supplemental Materials S9) was cho-
sen out of the 105 lines for the 2019–2020 season. The se-
lected 54 Chinese winter wheat varieties used in the field
experiments were cultivated from the wheat plantation
regions of the middle and lower reaches of the Yangtze
river, which were shown previously to vary in performance
and yield under different N treatments (Feng et al., 2008). A
split-plot design was used, with three levels of N fertilization
as main plots, containing three replicates of the 54 varieties
as sub-plots (162 plots per N experiment). The overall size
of the 2019–2020 field trial was 486 plots, covering �0.5 ha
(Figure 1A). To explain the methods, data from 11 of the 54
varieties are shown.

Crop management
Before sowing, soil samples (for 0–25 cm soil layer) were
measured to ensure that available N content was suitable
for N response studies (Supplemental Table S9). Following
standard crop management guidelines (Godwin et al., 2003)
and local practice, base fertilizer (P2O5 and K2O) was applied
before drilling. Three levels of N fertilizer treatments were
applied by hand (0, 180, and 270 kg N ha�1) in two splits:
50% at sowing and 50% at jointing (GS31). Crops were
planted in 6 m2 plots (2� 3 m), with 6 rows per plot at 15
cm spacing, with 30 cm gaps between plots (Figure 1A; trial
plans in Supplemental Table S8). The planting density was
2.4 million plants per hectare. Plant growth regulator was
not applied in the season so that stem elongation could re-
spond unimpeded to different levels of N treatments.

Manual measurement
To collect reliable ground truth data for validating and im-
proving CropQuant-3D’s analysis algorithm, a team of five
field workers performed the manual scoring. They con-
ducted a range of manual measures at key growth stages
(from heading, GS51–59, to grain filling, GS71–89), including
plant height, growth stage scoring, and key yield compo-
nents such as spike number density (SN m�2), spikes per
plant, grain number per unit area (GN m�2), and thousand
grain weight. For example, manual plant height measures of
five typical plants per plot were conducted on May 11, 18,
and 26, 2020, from which the scores on May 18 (2 d after
the LiDAR mapping, May 16, 2020) were used for correlation
studies in this work. As there were variances in height across
the plot, three one meter-square regions were selected to
represent height variances within a plot. Then, all plants in
the region were measured and the average height value was
recorded as the plot height value. When measuring the
plant height, the distance from the ground to the top of
the ear was measured with a steel ruler. We took steps to
standardize manual measurements: (1) cross-scoring the
same traits with different field workers; (2) cross-validating
scores across experiments using historic data; and (3) using
trimmed mean to remove outlier values before calculating
the average of ground truth. At maturity, the yield was mea-
sured in a 1-m2 quadrat centered in the plot, from which
ears were removed with a sickle. Threshing was carried out
with a plot thresher; any grain that passed through the
thresher was manually recovered from the sieved straw.

The backpack LiDAR system
The backpack LiDAR (Robin Precision, 3DLasermapping; pur-
chased by GeoSLAM, Nottingham, UK) integrates a laser
scanner (RIEGL VUX-1) and three mapping settings, employ-
ing accurate GPS-tagged navigation, and was used in con-
junction with a RTK base station for precise positioning.
The system is lightweight (around 10 kg) and comprises a
high-performance laser mapping system (360� scanning an-
gle with an effective scan range of 3200 m; further detail in
Supplemental Methods S5). Measurements focused on the
key growth stages (Zadocks et al., 1974), from heading
(GS51–59) to grain filling (GS71–89) when canopy structural
features were largely established. Standard pre-processing
software packages were bundled with the device. To capture
the peak height for the selected wheat varieties, the trial
was mapped from April to May 2020. In our preliminary
work, similar 3D field mapping was conducted in paddy rice
trials at the Tuqiao crop breeding and cultivation centre
(Jiangsu China) and at the Chinese Academy of Sciences’
Songjiang crop research center (Shanghai China,
Supplemental Figures S5 and S6). CropQuant-3D is not bun-
dled with Robin and can be used to analyze point cloud files
generated by other sources.

GUI-based software development
To develop the GUI-based analysis software for CropQuant-
3D, we utilized PyQt5, a comprehensive set of Python
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bindings for the Qt v5 library (pypi.org/project/PyQt5/),
which was developed using Cþþ and is cross-platform for
modern desktop (e.g. Windows and Mac OS) and mobile
(e.g. Android and iOS) systems. The GUI software we devel-
oped follows a traditional desktop-based user interface de-
velopment, which can be easily modified to operate in a
web browser such as Google Chrome. Anaconda Python re-
lease (docs.continuum.io/anaconda/install/windows) was
employed as our integrated development environment,
through which third-party libraries required for the software
implementation, testing and packaging were managed by
multiple virtual environments installed into the conda di-
rectory (Virtanen et al., 2020). Algorithms (in Jupyter note-
books), GUI software (in EXE format), Python-based source
code and testing files (in LAS format) are freely available.

Software implementation
To implement Step 1 (denoising) in the analysis pipeline
introduced in the Results section, we first used the
file.File function in the laspy library to read the input
file, followed by the spatial.cKDTree function in the
Scipy library to index the 3D coordinates of all the points in
the LAS file. Then, we applied the filtering criteria (i.e.
avg.þ k� std.) to index outliers in the point clouds and
saved the denoised point cloud data using the function
file.File (in LAS format).

For Step 2 (filtering) in the pipeline, we developed three
approaches to process point cloud files generated through
different approaches: (1) for the backpack LiDAR mapping,
we used the function lidar_ground_point_filter
in the WhiteboxTools library to filter the point cloud; (2) for
UAV-SfM generated pint cloud files, we employed the func-
tion do_filtering in the CSF library to separate
ground-level 3D points from above-ground points; (3) for
the gantry-mounted LiDAR files, because the 3D points have
already been filtered, we could use the files directly.

For Step 3 (the generation of CHM) in the pipeline, we
also developed three approaches to process different types
of point cloud files: (1) for the backpack LiDAR generated
files, we applied the function lidar_tin_gridding in
the WhiteboxTools library to output CHMs with the resolu-
tion parameter set as 1 cm/pixel; (2) for UAV-SfM files, we
used the lidar_tin_gridding function to output dig-
ital earth model (DEM) and DSM, followed by the cli-
p_raster_to_polygon function to rectify the DSM
and DEM’s resolution using the shapefile (the .shp file col-
lected by RTK), resulting in an CHM imaging produced
through subtracting the DEM from the DSM; (3) for the
gantry LiDAR files, the lidar_nearest_neigh-
bour_gridding function was used to produce the CHM
image.

For Step 4 (the definition of ROI) in the pipeline, we used
the function read_csv in the pandas library to read the
geo-coordinates of the point cloud files, followed by the
open function in the rasterio library to open the CHM and
convert the geo-coordinates to pixel coordinates so that 3D
point clouds could be analyzed in 2D. The function

getPerspectiveTransform in the OpenCV library
was employed to obtain the perspective transformation ma-
trix together with the warpPerspective function in
OpenCV to define the ROI in the 2D CHM. Finally, the
io.imsave in the scikit-image library was used to save
the aligned 2D CHM within ROI.

For Step 5 (plot segmentation) in the pipeline, the op-
tional input parameters such as the number of rows and
columns could be used to generate horizontal and vertical
baselines to assist the plot segmentation. Using the
threshold_sauvola and threshold_local func-
tions in scikit-image, we could obtain the threshold mask of
the CHM image. Then, we applied the sobel function in
scikit-image to detect edges in the CHM, followed by the
hough_line function to fit vertical and horizontal lines,
separately. By merging the detected lines and baselines, we
could generate the final mask representing the plot bound-
aries in the field.

For plot-based 2D/3D trait analysis, we mainly used the
regionprops function in scikit-image to calculate phe-
notypic traits in each plot. The plot-level 3D canopy traits
were based on the clip_lidar_to_polygon function
in WhiteboxTools to crop plot-level point clouds. The
source code produced from the above software implementa-
tion can be seen in Supplemental Methods S2–S4, as well as
from our GitHub repository.

Software profiling
We profiled the GUI software using a range of testing point
cloud files (in LAS format, available on our GitHub reposi-
tory), which were acquired by the backpack LiDAR (403 MB;
15,090,552 points), UAV SfM generated point clouds (596
MB; 18,372,420 points), and gantry LiDAR (FieldScanTM, 1.42
GB; 58,446,207 points). Three Windows laptop computers
with different hardware configurations were used for the
software profiling: (1) Intel Core i5 with 8GB memory (bud-
get laptop); (2) Intel Core i7 processor and 24GB memory
(middle-end laptop); and (3) Intel Core i9 with 32 GB mem-
ory (high-end laptop). As the CropQuant-3D software did
not support GPU acceleration, both CPU and memory influ-
enced the processing performance of CropQuant-3D. By av-
eraging the computational time (using the time module in
Python) used by the three computers, we provided details
on the processing time using the three types of testing files
at each step (Supplemental Table S10).

Availability and requirements
Project name: 3D field phenotyping for wheat using back-
pack LiDAR and CropQuant-3D

Project home page: https://github.com/The-Zhou-Lab/
LiDAR

Source code: https://github.com/The-Zhou-Lab/LiDAR/
releases/tag/V2.0

GUI software: https://github.com/The-Zhou-Lab/LiDAR/
releases/tag/V2.0

Programming language: Python 3.7
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Requirements: Laspy (1.7.0), Whitebox (1.3.0), GDAL
(3.1.4), Rasterio (1.1.8), Open3D (0.11.2), Mayavi (4.7.2),
Scikit-Image (0.17.2), OpenCV-Python (4.4.0.46), Pandas
(1.1.5), Numpy(1.19.4), Matplotlib(3.3.3), and Scipy (1.5.3).

License: The MIT License for open-source initiative
(https://opensource.org/licenses/MIT).

Availability of supporting data
The datasets supporting the results presented here are avail-
able at https://github.com/The-Zhou-Lab/LiDAR/releases/
tag/V2.0. Source code and other supporting data are openly
available on request.

Supplemental Data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Canopy structural curves of four
wheat varieties (n¼ 31 plots), ZM-4, NMzi-1019, ZM-5, and
ZM-11, which were classified into Class One due to their
similar N-response patterns.

Supplemental Figure S2. Canopy structural curves of
three wheat varieties (n¼ 23 plots), NMzi-1, ZM-10, and
ZM-12, which were classified into Class Two due to similar
N-response patterns.

Supplemental Figure S3. Canopy structural curves of two
wheat varieties (n¼ 15 plots), NM-26 and ZM-8, which
were classified into Class Three due to similar N-response
patterns.

Supplemental Figure S4. Canopy structural curves of two
wheat varieties (n¼ 12 plots), ZM-168 and ZM-09196, which
were classified into Class Four due to similar N-response
patterns.

Supplemental Figure S5. The backpack LiDAR used in
three experimental fields at Tuqiao field center (Jiangsu
China), examining 1,458 1 m2 rice plots under two levels of
N treatments (i.e. 180 and 270 kg N ha�1).

Supplemental Figure S6. The backpack LiDAR used in an
experimental field at Songjiang crop research center
(Shanghai China), examining 261 1 m2 rice landraces.

Supplemental Table S1. CropQuant-3D-measured crop
height values for 486 6-meter plots (54 wheat varieties with
three replicates) under three N treatments (0, 180 and 270
kg N ha�1).

Supplemental Table S2. CropQuant-3D’s traits analyses
of 81 six-metre plots of ZM & NM varieties under three N
treatments (0, 180, and 270 kg N ha�1), generated by the
GUI-based software.

Supplemental Table S3. Plot-based correlation perfor-
mance metrics evaluate CropQuant-3D-measured height val-
ues using manual height measurement under three N
treatments (0, 180 and 270 kg N ha�1).

Supplemental Table S4. Variety-based correlation perfor-
mance metrics evaluate CropQuant-3D-measured height val-
ues using manual height measurement under three N
treatments.

Supplemental Table S5. Correlation performance metrics
evaluate CropQuant-3D-measured canopy surface area trait
using manual grain number per unit area (GN m�2) scores
under three N treatments.

Supplemental Table S6. Correlation performance metrics
evaluate CropQuant-3D-measured 3DCI trait using manual
spike number per unit area (SN m�2) scores under three N
treatments.

Supplemental Table S7. Cost comparison between back-
pack LiDAR devices, UAV airborne LiDAR, and the handheld
laser scanning system, with brief technical specifications.

Supplemental Table S8. Three split fields used to study
three replicates of 54 wheat varieties under three levels of N
fertilizer treatments (i.e. 0, 180, and 270 kg N ha�1). Crops
were planted in 6-squaremeter plots (2� 3 m), 486 plots in
total.

Supplemental Table S9. Soil nutrient (0–25 cm soil layer)
content measured before drilling in the 2019–2020 season.

Supplemental Table S10. Processing time for three types
of point cloud files, collected by backpack LiDAR, UAV SfM
photogrammetry, and gantry-based LiDAR, at each analysis
step.

Supplemental Methods S1. A step-by-step user guide of
how to use the GUI-based CropQuant-3D software to per-
form 3D trait analysis of point cloud datasets collected by
backpack LiDAR, UAV SfM photogrammetry and gantry-
based LiDAR.

Supplemental Methods S2. Python-based code fragments
for pre-processing LiDAR-collected point cloud datasets.

Supplemental Methods S3. Python-based code fragments
for automatically segmenting plots using the pre-processed
LiDAR point cloud datasets.

Supplemental Methods S4. Python-based code fragments
for performing plot-based 3D trait analysis, including the
measurement of canopy structural variation such as 3DCI.

Supplemental Methods S5. The introduction of the back-
pack LiDAR device, Robin PrecisionTM, used in this study.

Supplemental Movie S1. An instructional video showing
how to use CropQuant-3D in action.
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