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Abstract

Objective: The aim of this study was to evaluate a narrowly trained convolutional neural network 

(CNN) denoising algorithm when applied to images reconstructed differently than training data 

set.

Methods: A residual CNN was trained using 10 noise inserted examinations. Training images 

were reconstructed with 275 mm of field of view (FOV), medium smooth kernel (D30), and 3 mm 

of thickness. Six examinations were reserved for testing; these were reconstructed with 100 to 450 

mm of FOV, smooth to sharp kernels, and 1 to 5 mm of thickness.

Results: When test and training reconstruction settings were not matched, there was either 

reduced denoising efficiency or resolution degradation. Denoising efficiency was reduced when 

FOV was decreased or a smoother kernel was used. Resolution loss occurred when the network 

was applied to an increased FOV, sharper kernel, or decreased image thickness.

Conclusions: The CNN denoising performance was degraded with variations in FOV, kernel, or 

decreased thickness. Denoising performance was not affected by increased thickness.
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Clinical computed tomography (CT) uses x-ray radiation to generate image representations 

of internal anatomic structures. To reduce patient risk, it is best practice to lower radiation 

dose as much as possible without compromising image quality.1,2

Decreased radiation exposure during CT typically leads to increased image noise, potentially 

resulting in decreased reader performance and increased reader fatigue.3 Multiple noise 

reduction techniques have been developed, including iterative reconstruction4,5 and various 

projection-space and image-space denoising methods.6–9 Recently, deep learning–based 

methods using convolutional neural networks (CNNs) have attracted interest because of 
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their powerful denoising capabilities and computational efficiency. Such CNN models have 

been applied to denoising tasks on natural images10–12 and proposed for medical image 

denoising.13

Although the use of CNN-based denoising techniques shows great promise for improving 

the interpretability of medical images, unique challenges are associated with this approach. 

Many of these challenges can be attributed to the absence of a priori analytic rules with 

CNN-based denoising. Instead, CNN denoising is achieved by minimizing a loss function 

evaluated on a particular set of training data. Training data typically consist of pairs of 

high-noise (input) images and corresponding low-noise (target) images. After the model is 

optimized, or “trained,” the abstract rules used by the CNN to separate signal from noise 

are generally not human interpretable, making it difficult to anticipate how the algorithm 

will perform in different scenarios. Furthermore, the rules used by the CNN depend strongly 

on the particular sample of training images, which may limit the extent to which the 

algorithm can be used in a broad clinical context. This broad clinical context includes 

natural difference of human anatomy, various acquisition parameters (tube potential and 

current, focal spot size, beam filtering, angular sampling, and detector specifications), and 

reconstruction settings (field of view [FOV], kernel, and image thickness). It is critical to 

evaluate CNN-based denoising algorithms in response to this parameter space.

This study explored the reconstruction generalizability of a narrowly trained CNN-based 

denoising algorithm to better understand the potential boundaries on the applicability of 

such techniques to CT images in a general clinical context. Specifically, we examined 

how well the denoising model generalized when applied to images reconstructed with 

conditions different from those used during training. This work characterized the degree to 

which performance was degraded for clinically relevant differences in the reconstruction 

conditions.

MATERIALS AND METHODS

Residual CNN Architecture

A deep residual CNN architecture (Fig. 1) was used as a model that maps input CT images 

to a predicted low-noise output image. This architecture was implemented similarly to 

ResNet and ResNeXt.14,15

The CNN inputs consisted of 3 adjacent images along the scan direction. The input images 

were first subjected to initial layers that rescaled the pixel values and generated 128 feature 

maps using convolutional layers. The feature maps were then operated on by a series of 

residual blocks. Each residual block consisted of repeated layers of convolutional, batch 

normalization, rectified linear unit activation, and 20% dropout operations.

A final convolutional layer with linear activation projected the feature maps back into the 

image domain. The output of the CNN was then subtracted from the central input images. 

The output could be interpreted as a perturbative correction consisting of the estimated 

noise textures present in the centermost input image (see Fig. 1). A key feature of this 
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approach compared with others13 is the highly residual architecture, which aims to preserve 

the existing features found in the original input images.

Training and Validation Data Set

We used examinations from the Mayo Clinic/American Association of Physicists in 

Medicine Low-Dose CT Grand Challenge16 data set to train the CNN denoising algorithm. 

This data set consisted of multiple abdominal CT scans (Somatom Definition AS+ or 

Somatom Definition Flash) performed with routine dose level; we will refer to these 

examinations as full dose (FD). In addition, a simulated quarter dose (QD) examination 

was generated for each case using a realistic noise insertion method developed by Yu et 

al.17 For training, 250,000 matched QD and FD patches were randomly cropped from 

reconstructed images in 10 patient examinations. The patch size was 64 × 64 × 3 pixels, with 

the 3 channels storing 3 adjacent axial images. All training data were reconstructed with a 

275-mm FOV, a medium smooth kernel (D30), and 3-mm image thickness.

During training, 3 adjacent QD CT image patches were used as inputs, and the 

corresponding central image from the FD image patches was used as the CNN target. Batch 

size was fixed at 20 patches during training. Gradient-based optimization was implemented 

using Adam optimizer18 with a descending learning rate from 0.001 to 0.00001. Pixelwise 

mean squared error between CNN output and FD image was used as the loss function during 

optimization.

Testing Data Set

Six patient examinations from the Grand Challenge data set were reserved for testing 

network performance. During testing, the CNN was applied to full reconstructed images 

with 2 adjacent images along the scan direction (512 × 512 × 3). When evaluating baseline 

performance, the test set consisted of images that were reconstructed with exactly the 

same conditions as the training data set. When evaluating the robustness to reconstruction 

variations, the test set consisted of images reconstructed differently than the training data 

set. Each variation was applied individually to evaluate the singular impact of the parameter. 

These variations included modifications to reconstruction FOV, reconstruction kernel, or 

image thickness. The D-kernel used in this study is a quantitative kernel that does not 

include edge enhancement.

i. Field of view was varied from 100 to 450 mm (100, 150, 200, 225, 250, 275, 

300, 325, 350, 400, and 450 mm);

ii. Kernel strength was varied from D10 (very smooth) to D50 (medium-sharp) in 

increments of 10; and

iii. Image thickness was varied from 1 to 5 mm in increments of 1 mm.

Evaluating Network Performance

Network performance was evaluated on the basis of qualitative visual comparisons, spatial 

resolution, noise level, and similarity calculations between the CNN-denoised QD image 

and corresponding FD image. Spatial resolution was evaluated using visual assessment, 

difference images, and line profiles. Difference images were used to identify if anatomical 
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features were subtracted during the process of CNN denoising. Line profiles of selected 

low-contrast lesions were used for gauging whether resolution was lost after the CNN was 

applied. Loss of spatial resolution relative to baseline as evidenced by visual assessment, 

difference image, or line profile was deemed a degradation of network performance. Noise 

level was measured using the standard deviation of CT numbers inside the aorta, which is 

a largely uniform region of interest. Noise level of CNN-denoised images relative to QD 

was plotted as a function of each reconstruction variable. Using the FD reference image, the 

root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural similarity 

(SSIM) were calculated for the CNN-denoised QD image. The RMSE is a measure of 

error relative to a target image, PSNR is a decibel ratio of signal power to noise power 

in the image, and SSIM measures perceptual similarity based on luminance, contrast, and 

structure.19,20 The normalized RMSE (RMSECNN/RMSEQD) was also plotted as a function 

of each reconstruction variable. Percent noise reduction was calculated as the difference in 

noise level between the QD examination and CNN output, divided by the QD noise level. 

One-sided paired t tests were conducted to test for degradation in CNN performance on 

different reconstruction conditions relative to baseline. A statistically significant increase in 

noise level or normalized RMSE was deemed a degradation of denoising efficiency.

RESULTS

Baseline Performance Evaluation

For baseline performance evaluation, test cases were reconstructed with the exact same 

reconstruction parameters used in the training data set. Figure 2 contains axial images of the 

liver for 3 patients from the testing data set. Difference images from FD to CNN-denoised 

QD are provided. Within the difference image, there was no evidence of anatomical features 

being unintentionally removed during CNN denoising. For the 6 patients in the testing data 

set, CNN-based denoising reduced noise level relative to QD in the aorta by 73% ± 6%.

Performance on Different Reconstruction Conditions

The CNN was trained with images generated from a single reconstruction condition (FOV, 

275 mm; kernel, D30; and thickness, 3.0 mm) and applied to various reconstruction 

conditions. Table 1 provides summary metrics (RMSE, PSNR, and SSIM) for the QD input 

and CNN output relative to the FD reference.

FOV Varied From 100 to 450 mm

Evaluation with respect to changes in the FOV is shown in Figure 3A. Only 3 FOVs (200, 

275, and 350 mm) are shown as examples. When the CNN was applied to the 200 mm 

FOV, visual impression indicates a decrease in CNN noise reduction efficiency relative to 

baseline. For the 350 mm FOV case, visual impression suggested a loss of resolution after 

CNN denoising, which was confirmed with line profiles of a contrast-enhanced vessel in 

Figure 3B.

Figure 3C depicts a plot of noise level relative to QD for finely sampled alterations in FOV. 

At baseline, the CNN reduced noise by 73%. There was a statistically significant decrease 

in amount of noise reduction when the CNN was applied to a decreased FOV, for example, 
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250 mm of FOV (mean noise reduction of 67%; t[5] = 7.89; P < 0.005). When the CNN was 

applied to an increased FOV, noise reduction relative to QD remained fairly stable, but visual 

inspection indicated resolution loss.

Figure 3D depicts a plot of normalized RMSE (RMSECNN/RMSEQD); RMSECNN and 

RMSEQD were calculated by comparing CNN output and QD to the corresponding FD 

image. At baseline, the normalized RMSE was 60%. There was a statistically significant 

increase in normalized RMSE when the CNN was applied to 250 mm of FOV (mean, 

63%; t[5] = 4.41; P < 0.005) or 300 mm of FOV (mean, 62%; t[5] = 6.80; P < 0.005). 

These results suggest an alteration of only ±25 mm FOV from the training set resulted in 

degradation of this CNN’s denoising performance.

Reconstruction Kernel Varied From D10 to D50

Evaluation with respect to changes in reconstruction kernel is shown in Figure 4A. Only 

D20, D30, and D40 are shown as examples. Visual impression suggested a reduction in 

CNN denoising efficacy relative to baseline (D30) when the CNN was applied to D20 kernel 

images. After CNN denoising of D20 kernel images, artifacts mimicking hepatic lesions 

were observed within uniform liver regions (Fig. 4A). For the D40 kernel case, visual 

impression suggested a loss of resolution after CNN denoising. This loss of resolution was 

confirmed with line profiles of a contrast-enhanced vessel in Figure 4B.

Figure 4C is a plot of noise level relative to QD for different kernel strengths. At baseline, 

the CNN reduced noise in the D30 kernel by 73%. There was a statistically significant 

decrease in amount of noise reduction when the CNN was applied to a smoother kernel, 

for example, D20 (mean noise reduction, 60%; t[5] = 7.89; P < 0.005). When the CNN 

was applied to D40 kernel, percent noise reduction remained constant but visual inspection 

indicated resolution loss.

At baseline D30 kernel, normalized RMSE (RMSECNN/RMSEQD) was 60%. Figure 4D 

depicts a statistically significant increase in normalized RMSE for a smoother kernel of D20 

(mean, 66%; t[5] = 6.39; P < 0.005) or a sharper kernel of D50 (mean, 70%; t[5] = 12.03; 

P < 0.005) relative to baseline D30 kernel. These results suggest this CNN’s denoising 

performance is susceptible to alterations of kernel strength.

Image Thickness Varied From 1 to 5 mm

Evaluation with respect to changes in image thickness is shown in Figure 5A. Visual 

impression suggested little to no alteration in CNN denoising efficacy relative to baseline 

when the CNN was applied to 1 mm or 5 mm image thicknesses. Similarly, visual 

impression suggested resolution after CNN denoising was largely maintained. In Figure 

5B, line profile analysis confirmed resolution was maintained at 5 mm image thickness. 

However, line profiles for the 1 mm image thickness case suggested loss of spatial 

resolution.

Figure 5C is a plot of noise level relative to QD as a function of input image thickness. 

There was no significant difference in denoising efficacy for any of the image thicknesses 

tested. Figure 5D depicts a plot of normalized RMSE (RMSECNN/RMSEQD) for each of 
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the tested slice thicknesses. There was no significant difference in normalized RMSE when 

slice thickness was altered. These results suggest the CNN’s denoising performance is not 

degraded by increases in image thickness; however, resolution loss was observed when the 

CNN was applied to a reduced image thickness of 1 mm.

DISCUSSION

In this study, we explored how the performance of a narrowly trained CNN noise 

reduction algorithm varies when applied to CT images reconstructed with parameters that 

differ from those used for the training images. Although some amount of degradation is 

expected when applying the denoising CNN to images outside of the training scope, the 

sensitivity to different reconstruction conditions is remarkable. Routine clinical variations in 

reconstruction FOVand kernel settings are sufficient to introduce measureable and visually 

obvious deficiencies in denoising performance.

Reconstruction conditions that alter the spatial scales of CT noise textures at the pixel 

level (eg, reconstruction kernel, FOV) have a larger impact than conditions that primarily 

alter the overall noise levels (eg, image thickness). Specifically, an observed trend was that 

when the pixel frequency of noise texture was decreased (eg, decreased FOV), less noise 

was subtracted by the CNN. On the other hand, if the pixel frequency of the noise texture 

was higher than that of the training data (eg, sharper kernel), more anatomic features were 

interpreted as noise by the CNN and subtracted from the input images, resulting in loss of 

detail and resolution for small anatomic features.

These results have important implications when considering translation of CNN denoising 

into clinical practice. Some of the reconstruction alterations from training data (smoother 

kernel and decreased FOV) led to reduced efficiency of the denoising algorithm. Perhaps 

more concerning, multiple reconstruction alterations (sharper kernel, increased FOV, 

decreased image thickness) led to a loss of resolution. In clinical tasks, loss of resolution 

could easily lead to missing critical structure and making incorrect diagnostic conclusions. 

These results highlight the potential fragility of CNN-based denoising methods when a 

mismatch exists between the training images and a particular-use case. To anticipate these 

potential mismatches, an understanding of the images used to optimize the CNN is critical. 

This work demonstrates the need for transparency when deploying CNN-based denoising 

algorithms into clinical practice.

In current clinical practice, there are many adjustments in FOV and kernel selection due 

to patient size differences and task-specific resolution requirements; limiting the clinical 

reconstruction parameter space to match the training conditions of a CNN denoising 

algorithm is not a practical option. Instead, many possibilities exist for improving the 

robustness of the CNN to these clinical variations, such as a more diverse training data set, 

data augmentation, and different optimized weights, which are used dynamically depending 

on the input conditions. This work highlights the need for future research along this 

direction.
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There were limitations within this study that should be considered. First, we only explored 

the “worst-case” scenario where a CNN trained on only 1 specific reconstruction condition 

is applied to other conditions. The extent to which the robustness of the CNN denoising 

can be improved is warranted for future studies. Standard image quality metrics must 

be interpreted with caution when applied to nonlinear CNN denoising networks. Both 

resolution and noise level after CNN denoising can be dependent on feature contrast, 

size, and absolute signal level. Task-specific evaluation using either human observers or 

mathematical model observers for CNN-based denoising remains to be done.21–24 Finally, 

CNN denoising robustness was only evaluated for our specific residual network architecture; 

other architectures may behave differently.

In conclusion, CNN denoising performance is sensitive to minute test set aberrations in FOV 

and reconstruction kernel relative to training data, with changes to the pixel scale of the 

noise texture being the most important. When applied to incorrect reconstruction conditions, 

the CNN output image quality was commonly degraded in terms of resolution loss, image 

artifacts, or alterations to noise texture.
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FIGURE 1. 
Residual CNN architecture for low-dose CT denoising. A, Block structure of the network 

containing an initial block, 6 residual blocks, and a final block. Note the additive path 

from input to just before output in order for the network to learn perturbative noise 

correction. B, Details regarding the convolutional layers and transformations used within 

each block. Conv2D indicates 2-dimensional convolutional layer; N, arbitrary image size; 

ReLU, rectified linear units.
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FIGURE 2. 
Evaluation of baseline network performance when test data reconstructions match the 

training data set. Visual examples of CNN denoising performance relative to QD and FD 

images. The difference image between FD and CNN output was calculated. Note the lack of 

anatomical details within the difference image.
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FIGURE 3. 
Evaluation of CNN denoising performance to variations in reconstruction FOV. A, Image 

examples at FOV of 200, 275, and 350 mm, with 275 mm as the baseline (highlighted 

in green). B, Line profiles of a hypoattenuation lesion within the liver. C, Plot of noise 

level at the aorta relative to QD. D, Normalized RMSE (RMSECNN/RMSEQD) indicates the 

pixelwise similarity to the FD images.
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FIGURE 4. 
Evaluation of CNN denoising performance to variations in reconstruction kernel. 

Performance is indicated by visual examples (A), line profiles (B), noise level relative to QD 

(C), and normalized RMSE (RMSECNN/RMSEQD) (D). D30 is the baseline for comparison 

(highlighted in green).
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FIGURE 5. 
Evaluation of CNN denoising performance to variations in image thickness. Performance 

is indicated by visual examples (A), line profiles (B), noise level relative to QD (C), and 

normalized RMSE (RMSECNN/RMSEQD) (D). Image thickness of 3 mm is the baseline for 

comparison (highlighted in green).
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