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ABSTRACT
Background  Treatment with immune checkpoint 
inhibitors (ICIs) has been associated with an increased rate 
of cardiac events. There are limited data on the risk factors 
that predict cardiac events in patients treated with ICIs. 
Therefore, we created a machine learning (ML) model to 
predict cardiac events in this at-risk population.
Methods  We leveraged the CancerLinQ database 
curated by the American Society of Clinical Oncology and 
applied an XGBoosted decision tree to predict cardiac 
events in patients taking programmed death receptor-1 
(PD-1) or programmed death ligand-1 (PD-L1) therapy. 
All curated data from patients with non-small cell lung 
cancer, melanoma, and renal cell carcinoma, and who 
were prescribed PD-1/PD-L1 therapy between 2013 and 
2019, were used for training, feature interpretation, and 
model performance evaluation. A total of 356 potential risk 
factors were included in the model, including elements 
of patient medical history, social history, vital signs, 
common laboratory tests, oncological history, medication 
history and PD-1/PD-L1-specific factors like PD-L1 tumor 
expression.
Results  Our study population consisted of 4960 patients 
treated with PD-1/PD-L1 therapy, of whom 418 had 
a cardiac event. The following were key predictors of 
cardiac events: increased age, corticosteroids, laboratory 
abnormalities and medications suggestive of a history of 
heart disease, the extremes of weight, a lower baseline 
or on-treatment percentage of lymphocytes, and a higher 
percentage of neutrophils. The final model predicted 
cardiac events with an area under the curve–receiver 
operating characteristic of 0.65 (95% CI 0.58 to 0.75). 
Using our model, we divided patients into low-risk 
and high-risk subgroups. At 100 days, the cumulative 
incidence of cardiac events was 3.3% in the low-risk 
group and 6.1% in the high-risk group (p<0.001).
Conclusions  ML can be used to predict cardiac events 
in patients taking PD-1/PD-L1 therapy. Cardiac risk 
was driven by immunological factors (eg, percentage of 
lymphocytes), oncological factors (eg, low weight), and a 
cardiac history.

BACKGROUND
Immune checkpoint inhibitor (ICI) 
therapy with programmed death recep-
tor-1 (PD-1) or programmed death ligand-1 

(PD-L1) inhibitors has dramatically improved 
outcomes in patients with cancer.1–8 However, 
ICI therapy has also been associated with 
several immune-related adverse events 
(irAEs).9 Cardiac irAEs with ICI therapy are 
not common but have a mortality rate of up 
to 30%,9 and the occurrence of cardiac events 
with ICI therapy is likely under-reported.10–14 
Myocarditis is the most well-described cardiac 
irAE with ICI therapy15–19; however, cardiac 
irAEs such as pericarditis, pericardial effu-
sions, and acute vascular events are increas-
ingly described.11 12 15 20–22

The risk factors for the development of 
adverse cardiac events with ICI therapy are 
poorly understood.14 Beyond combination 
immune therapy,15 there are no established 
risk factors for cardiac events with ICI therapy. 
Identification of patients at increased risk of 
ICI-related cardiac side effects may support 
testing of rational surveillance strategies in 
such high-risk populations. However, efforts 
to identify a high-risk population have been 
limited by the sample size of most of the studies 
to date and identification of the optimal 
approach for such risk stratification. Machine 
learning (ML) has improved our ability to 
predict outcomes in oncology.23 Further-
more, ML techniques better account for the 
complex interaction between risk factors 
which have gone relatively unevaluated so far. 
Using Shapley additive explanations (SHAP), 
ML can be used to discover novel insights into 
the disease process.24–27 Therefore, we created 
an ML decision tree model for predicting 
cardiac events among patients being treated 
with a PD-1 or PD-L1 inhibitor in the Cancer-
LinQ database. We also used SHAP to identify 
novel risk factors for future cardiac events.28

METHODS
To predict cardiac events, we trained an 
XGBoosted decision tree model on all 
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patients with non-small cell lung cancer (NSCLC), mela-
noma, and renal cell carcinoma (RCC) who had PD-1/
PD-L1 therapy.

Data source
Our model was trained on ConcertAI data. ConcertAI 
derives its data from several sources, most notably the 
CancerLinQ database (American Society of Clinical 
Oncology), which in turn aggregates data from onco-
logical practices across the USA. ConcertAI receives 
copies of each oncological practice’s complete electronic 
medical record (EMR), including unstructured notes 
and scanned reports. Structured data from the EMR such 
as ICD codes, medications, and laboratory values are 
extracted programmatically, combined with important 
hand curated variables from provider notes, and entered 
into a standardised database which can be easily analysed 
and queried. Data are provided as far back as the prac-
tices have history.

This real-world dataset provides information on patient 
demographics, tumor characteristics, comorbidities, treat-
ment information, treatment toxicities, and outcomes. A 
subset of patients with at least 10 documents in their chart 
were selected for deep curation, a process in which a team 
of oncology nurses read a patient’s notes and abstracted 
additional information, including treatment toxicities 
and tumor response/progression information. Our final 
analysis was conducted only on patients who underwent 
curation.

Cohort selection and labeling
Our cohort included all patients with NSCLC, melanoma, 
and RCC who (1) underwent nurse curation of treat-
ment toxicities, (2) did not have evidence of a second 

malignancy, (3) had PD-1/PD-L1 therapy regardless of 
stage, and (4) were at least 18 years old at index. Index was 
defined as the date of first PD-1/PD-L1 administration. 
If a patient received multiple distinct PD-1/PD-L1 drugs, 
the last PD-1/PD-L1 drug taken was used for indexing. 
This was done to maximize the number of patients with 
combination immunotherapy available for analysis.

A cardiac event was defined as the first documentation 
of arrhythmia (eg, complete heart block and ventricular 
fibrillation), heart failure, myocarditis, or pericardial 
disease as defined by the Medical Dictionary for Regula-
tory Activities (MedDRA) and International Classification 
of Diseases (ICD) codes (table 1). Codes from both the 
native EMRs and nurse curation were included to define 
endpoints. Mild or non-specific cardiac conditions, such 
as chest pain, were not included because they are diffi-
cult to attribute to a new onset cardiac event and may 
represent documentation of alternate etiologies. Some 
providers routinely document chronic conditions in a 
patient’s chart. To ensure that all our events represented 
new cardiac disease, we did not include an event if the 
patient had a history of similar events prior to the index 
date. For example, if a patient had a history of heart 
failure prior to starting immunotherapy, heart failure ICD 
codes were ignored when defining cardiac events for this 
patient. ICD and MedDRA codes were defined as similar 
if they fell into the same category (table 1). If a patient 
had any ICD or MedDRA code for one of the conditions 
listed in table 1 in the 6 months prior to the index date, 
then they became ineligible for a cardiac event in the 
same category.

To avoid missing cardiac events, patients were censored 
after their last date of continuous follow-up. Continuous 

Table 1 

Disease category Count Percent ICD codes MedDRA codes*

Atrial fibrillation 143 34 I48.x 10003658

Heart failure 95 23 I50.x
Exclude I50.2(2-4)x

10019279

Pericardial disease 84 20 I3(0–1).x
Exclude I31.3x

10034474, 10034484, 10053565

Unspecified arrhythmia 39 9 I49, I49.(89)x

Cardiac arrest 20 5 I46.x 10007515

Premature depolarization 20 5 I49.(1–4)x

Atrioventricular block 13 3 I44.x 10003673

Sick sinus syndrome 3 1 I149.5x

Myocarditis 1 0 I4(0–1).x
Exclude I40.0x

Ventricular arrhythmia 0 0 I49.0x

Total 418 100  �

Table 1. Distribution of cardiac events among patients receiving PD-1/PD-L1 therapy. PD-1, Programmed cell death protein 1; PD-L1, 
Programmed death-ligand 1.
*Only MedDRA codes present in the ConcertAI database are listed. This is not an exhaustive list.
ICD, International Classification of Diseases; MeDRA, Medical Dictionary for Regulatory Activities.
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follow-up was defined as at least two EMR entries within a 
6-month period. To better establish a causal relationship 
between PD-1/PD-L1 therapy and cardiac events, patients 
were also censored 100 days after their last PD-1/PD-L1 
administration.

Time windowing
To avoid the effects of immortal time bias29 and reverse 
causality, most patient variables were calculated using 
data from 6 months before index to index. For vitals, 
laboratory results, and Eastern Cooperative Oncology 
Group (ECOG), some patients had missing values if we 
did not include data from immediately after the index 
date. To minimize bias secondary to missing data, we 
allowed these values to be calculated using data from 
up to 30 days after index. If a patient suffered a cardiac 
event within 30 days of index, the data were truncated 
15 days before the cardiac event. To better distinguish 
between baseline and on-treatment laboratory values, we 
conducted a sensitivity analysis using only data that was 
strictly before the index date. The results are reported in 
the appendix (online supplemental figure 1) and did not 
change significantly from our primary analysis.

Model variables
A total of 356 variables were abstracted from the data 
for modeling. Demographics, such as age at diagnosis, 
sex, race, and ethnicity, were extracted directly from the 
electronic medical record. Cancer type was abstracted 
through nurse curation and documented using ICD 
codes. A patient’s pseudostage was defined as stage 4 if the 
patient had progressed to metastatic disease by index date 
and their stage at diagnosis otherwise. Because patients 
with NSCLC represented such a large percentage of our 
cohort, we also included NSCLC histology as a covariate 
by mapping ICD for Oncology, Third Edition codes in 
the data to categories defined in the Surveillance, Epide-
miology, and End Results Database guidelines.30 When 
a patient had multiple records which disagreed (eg, 
multiple different histology codes), the record closest to 
the index was used for analysis.

Comorbidities were calculated using ICD codes 
documented in the EMR and by nurse curators. The 
Charlson Comorbidity Index was calculated using the 
method described by Deyo.31 Common comorbidities, 
such as congestive heart failure, were calculated using 
ICD codes enumerated in the Centers for Medicare 
and Medicaid Services’ Chronic Conditions Data Ware-
house algorithm.32 Autoimmune conditions were calcu-
lated using codes listed in online supplemental table 1. 
ECOG performance status was taken directly from EMR 
records and curated data. Smoking status was binned into 
current-smoker, ex-smoker, and never-smoker categories. 
When a single patient had multiple discordant smoking 
statuses, the worst was used for analysis (ie, current 
smoker >ex-smoker>never smoker).

Vitals, including heart rate, respiratory rate, blood pres-
sure, O2 saturation, temperature, weight, and body mass 

index (BMI) were collected using Logical Observation 
Identifiers Names and Codes (LOINC) codes (online 
supplemental table 2). Change in weight per day (lb/
day) was calculated as the slope of the trend line fitting 
the patient’s weight in the 6 months prior to diagnosis. 
A negative slope indicated that the patient was losing 
weight; a positive slope indicated that they were gaining 
weight. Common laboratory and panel values, including 
complete blood count (CBC), basic metabolic panel 
(BMP), magnesium, phosphorous, liver function tests, 
lactate dehydrogenase, B-type natriuretic peptide (BNP), 
troponin, erythrocyte sedimentation rate (ESR), C-reac-
tive protein, prothrombin time, partial thromboplastin 
time, international normalised ratio, D-dimer, and fibrin-
ogen, were also collected using LOINC codes (online 
supplemental table 2). These laboratory parameters were 
either recorded prior to the start of an ICI or within 30 
days after start of an ICI. The absolute neutrophil count 
and absolute lymphocyte count (ALC) were calculated 
using the corresponding percent values from the CBC 
and the white blood count. PD-1/PD-L1 expression was 
available directly in the data.

Using RxNorm codes, all of a patient’s oncological and 
non-oncological medications were collected. To simplify 
the model, medications of the same class (eg, platinum-
based chemotherapies, angiotensin-converting enzyme 
inhibitors) were grouped together using the Food and 
Drug Administration (FDA) Established Pharmacology 
Class (EPC).33 The EPC classification system already 
includes categories for PD-1, PD-L1, and cytotoxic 
T-lymphocyte-associated protein 4 (CTLA-4) therapies. 
However, we also included the number of distinct immu-
notherapies a patient has undergone to explicitly model 
the interaction between these drugs.

Missing data
Because our data were derived from oncology clinics, many 
of the non-oncological laboratory tests (eg, troponin, 
BNP) were missing. XGBoost naturally handles missing 
data. However, because patients with cardiac events after 
index date but before 30 days have passed have their data 
truncated, missing data were erroneously associated with 
early adverse events. As a sensitivity analysis, we masked 
missing values with multivariate imputation by chained 
equations using the 10 nearest features.34 We also anal-
ysed how the model changed when we excluded features 
with missing rates above 70%, 80%, and 90%.

Modeling
We used an XGBoosted decision tree to predict time to 
cardiac events. To properly account for censoring, we 
modified the model’s loss function to the same one used 
in the Cox proportional hazard (CoxPH) model.35 36 For 
each patient, the model predicted an HR. As in a CoxPH 
model, a higher HR indicated greater risk. The tree depth 
and learning rate were tuned to 2.0 and 0.15, respectively, 
based on a stochastic search with cross validation (n=10).

https://dx.doi.org/10.1136/jitc-2021-002545
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Validation and performance
The data were randomly divided into training (80%) 
and testing (20%) sets. The model’s ability to predict 
cardiac events within 20, 40, 60, 80, 100, 120, and 140 
days of index was assessed using area under the curve–
receiver operating characteristics (AUC-ROCs).37 We 
also calculated the concordance index, which represents 
the percentage of time a model, given a random pair 
of patients, correctly predicts which patient will have a 
cardiac event first. Finally, we divided the PD-1/PD-L1 
test set into two equal-sized high-risk and low-risk subco-
horts. The high-risk group had predicted HRs above the 
median, and patients in the low-risk group had HRs below 
the median. The time elapsed prior to an adverse cardiac 
event for these two subcohorts was compared using the 
cumulative incidence function and the Aalen-Johansen 
estimator.

Model interpretation and statistical analysis
We used SHAP to determine the variables most predic-
tive of cardiac risk.38 Bootstrapping (n=500) was used to 
calculate p values for each feature under the null hypoth-
esis that the mean absolute SHAP score for that feature 
was zero.

RESULTS
There were 4960 patients in our cohort. Of these patients, 
4103 were treated for NSCLC; 534 were treated for 
melanoma; and 323 were treated for RCC. The median 
follow-up time was 154 (IQR 57–342) days. A total of 418 
patients experienced a cardiac event before they were 
censored. The most common cardiac events were atrial 
fibrillation (34%), heart failure (23%), and pericardial 
disease (20%). The rates of all cardiac events are listed in 
table 1. Model training was performed in 80% of patients 
(3937 PD-1/PD-L1 patients). The remaining patients 
were used for model validation. We also conducted several 
sensitivity analyses where we included ACS related events 
or removed atrial fibrillation from the list of events. The 
results were unchanged.

Demographics are shown in table  2, stratified by 
whether the patient had a cardiac event within 100 
days or not. Patients censored before 100 days are not 
included in table 2 because one cannot determine if they 
would have had a cardiac event after they were censored. 
However, censored patients were not excluded from the 
modeling because the CoxPH loss function can adjust 
for this source of bias. Compared with those without an 
event, patients with a cardiac event were more likely to be 
white (75% vs 68%) or African–American (15% vs 14%), 
male (61% vs 53%), have lung cancer (88% vs 80%), be 
at a higher stage, be a current smoker or ex-smoker, have 
chronic obstructive pulmonary disease (41% vs 31%), 
have a higher ECOG status, or have a higher Charlson 
score. These results were all significant at a p<0.05 level.

The rates of missing data varied by feature (full results 
in online supplemental table 3). In general, missing data 

in demographic variables (such as age) were negligible. 
Common vital signs and laboratory values (like BMP and 
CBC) had missing rates between 10% and 60%. Labora-
tory tests that are less commonly ordered in the oncology 
clinic (such as ESR, BNP, and troponin) had missing rates 
of as high as 99%. Despite these high missing rates, we 
opted to include these variables in the model because 
missingness can be an informative feature. We conducted 
several sensitivity analyses where we excluded features 
with missing rates above 70%, 80%, and 90%. We also 
tried imputing missing values with multiple imputation 
with chained equations. The results of these sensitivity 
analyses are shown in the appendix (online supplemental 
table 4 and figures 2–5) and did not substantially differ 
from our primary analysis.

Using SHAP, we identified several variables that helped 
predict time to adverse cardiac event. The 40 variables 
with the highest mean absolute SHAP score are shown 
in figure  1. Some of the variables associated with an 
increased risk of cardiac events are as follows: increased 
age (p<0.002); immunological labs including a lower base-
line or peri-index percentage of lymphocytes (p=0.002), 
a higher percentage of neutrophils (p=0.02), a lower 
absolute lymphocyte count (p<0.002), a higher absolute 
neutrophil count (p=0.006), and a higher WBC (p=0.02); 
administration of immunomodulators including absence 
of corticosteroids (p=0.008) and receipt of a PD-L1 anti-
body instead of a PD-1 antibody (p=0.028); a higher 
platelet count (p<0.002); vital signs such an abnormal 
(high or low) heart rate (p<0.002), abnormal temperature 
(p<0.002), abnormal weight (p=0.008), increase in weight 
over time (p=0.002), or abnormal BMI (p=0.01); various 
laboratory abnormalities and medications associated with 
heart failure including not receiving an ACE inhibitor 
(p=0.026), not receiving a loop diuretic (p=0.01), lower 
hemoglobin (p<0.002), lower sodium (p<0.002), and 
lower chloride (p<0.002); liver abnormalities including 
a lower aspartate aminotransferate (AST) (p=0.01), a 
lower alanine aminotransferase (ALT) (p=0.002), and 
lower alkaline phosphatase (p=0.02); renal abnormalities 
including a lower creatinine (p<0.002) or higher blood 
urea nitrogen (BUN) (p=0.002); a missing prothrombin 
time (p=0.004); and a higher lactate dehydrogenase 
(LDH) (p=0.004). Note that although therapy with PD-1 
therapy significantly impacted cardiac risk, it was not a top 
40 predictor and cannot be seen in figure 1. A complete 
list of all significant risk factors is listed in online supple-
mental table 5. To determine the clinical significance of 
vitals sign changes detected by the model, we examined 
the model’s trees by hand: heart rate had three major cut-
offs: ~60, ~100, and   ~150 beats/min; temperature had 
cut-offs at around 36.1°C and 37.8°C.

To maximize model performance, we included labora-
tory, vitals, and ECOG values up to 30 days after index. 
However, this choice also limits our ability to interpret 
which variables contribute most to cardiac risk. In general, 
we found that ~75% of these values were baseline and  
~25% of values were in the immediate postindex period. 

https://dx.doi.org/10.1136/jitc-2021-002545
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Table 2  Demographics of patients in our cohort, stratified by cardiac event

No cardiac event 
in 100 days

Cardiac event in 
100 days Total* P value

n 2928 301 3229

Age 64.2 (10.7) 65.6 (11.3) 64.4 (10.8) 0.066

Race White 1996 (68.2) 227 (75.4) 2223 (68.8) 0.004

Black or African–
American

410 (14.0) 45 (15.0) 455 (14.1)

Other race 446 (15.2) 23 (7.6) 469 (14.5)

Missing 76 (2.6) 6 (2.0) 82 (2.5)

Ethnicity Hispanic or Latino 76 (2.6) 6 (2.0) 82 (2.5) 0.244

Not Hispanic or latino 2275 (77.7) 224 (74.4) 2499 (77.4)

Unknown 577 (19.7) 71 (23.6) 648 (20.1)

Sex Female 1379 (47.1) 118 (39.2) 1497 (46.4) 0.031

Male 1548 (52.9) 183 (60.8) 1731 (53.6)

Unknown 1 (0.0) 1 (0.0)

Cancer type Lung 2355 (80.4) 266 (88.4) 2621 (81.2) 0.004

Melanoma 365 (12.5) 23 (7.6) 388 (12.0)

RCC 208 (7.1) 12 (4.0) 220 (6.8)

Stage at index Missing 143 (4.9) 21 (7.0) 164 (5.1) 0.028

Stage 0 2 (0.1) 2 (0.1)

Stage 1 92 (3.1) 5 (1.7) 97 (3.0)

Stage 2 118 (4.0) 7 (2.3) 125 (3.9)

Stage 3 480 (16.4) 34 (11.3) 514 (15.9)

Stage 4 2093 (71.5) 234 (77.7) 2327 (72.1)

Stage at Diagnosis Missing 154 (5.3) 25 (8.3) 179 (5.5) 0.050

Stage 1 207 (7.1) 13 (4.3) 220 (6.8)

Stage 2 214 (7.3) 20 (6.6) 234 (7.2)

Stage 3 675 (23.1) 60 (19.9) 735 (22.8)

Stage 4 1678 (57.3) 183 (60.8) 1861 (57.6)

Smoking status Ex-smoker 1111 (37.9) 125 (41.5) 1236 (38.3) 0.024

Missing/unknown 447 (15.3) 31 (10.3) 478 (14.8)

Never smoker 397 (13.6) 31 (10.3) 428 (13.3)

Smoker 973 (33.2) 114 (37.9) 1087 (33.7)

ECOG score 0 574 (19.6) 49 (16.3) 623 (19.3) 0.006

1 1040 (35.5) 110 (36.5) 1150 (35.6)

2 311 (10.6) 41 (13.6) 352 (10.9)

3 51 (1.7) 13 (4.3) 64 (2.0)

4 2 (0.1) 1 (0.3) 3 (0.1)

Missing 950 (32.4) 87 (28.9) 1037 (32.1)

Charlson score 0 4 (0.1) 2 (0.7) 6 (0.2) 0.004

1–2 436 (14.9) 28 (9.3) 464 (14.4)

3+ 2488 (85.0) 271 (90.0) 2759 (85.4)

AIDS–HIV 9 (0.3) 1 (0.3) 10 (0.3) 1.000

Cerebrovascular disease 84 (2.9) 13 (4.3) 97 (3.0) 0.220

Chronic pulmonary disease 907 (31.0) 122 (40.5) 1029 (31.9) 0.001

Congestive heart failure 265 (9.1) 35 (11.6) 300 (9.3) 0.173

Continued
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As a sensitivity analysis, we repeated the model using only 
values that were before index. The resulting SHAP plots 
are shown in online supplemental figure 1. Results did 
not vary substantially from our primary analysis.

The model’s ability to predict cardiac events within 20, 
40, 60, 80, 100, 120, and 140 days of index is shown in 
figure  2. At 100 days, the AUC-ROC was 0.65 (95% CI 
0.58 to 0.75). The model had a concordance index of 
0.66 (95% CI 0.57 to 0.71). Using our model, we divided 
patients into low-risk and high-risk subgroups. The cumu-
lative incidence of cardiac events in these two groups is 
shown in figure 3. At 100 days, the cumulative incidence 
of cardiac events was 3.3% in the low-risk group and 6.1% 
in the high-risk group (p<0.001), 80% higher.

In the real clinical setting, not all the 356 variables 
in our model would always be available. Therefore, 
we tested how our model performed if only the top 
20 features from our SHAP plots were used. The 
AUC-ROC of this simpler model was 0.65 and the 

concordance index was also 0.65. Complete results 
are shown in online supplemental table 1.

Our model evaluated several immunotherapy-related 
factors, including the number of distinct immuno-
therapies undergone, the type of immunotherapy, and 
PD-1/PD-L1 tumor expression values. Only receipt of 
PD-1 versus PD-L1 therapy was significant.

DISCUSSION
We leveraged a large cross-sectional database of 
patients with cancer and created an ML model that 
predicts cardiac events in patients taking PD-1/PD-L1 
therapy. The model had solid performance (AUC-
ROC=65% at 100 days from index). We also showed 
that a simpler model using only the top 20 features 
had comparable performance. In practice, a provider 
could use this simpler model to enter values by hand 
or integrate the more complex model into their 

No cardiac event 
in 100 days

Cardiac event in 
100 days Total* P value

Dementia 9 (0.3) 2 (0.7) 11 (0.3) 0.274

Diabetes mellitus with chronic 
complication

44 (1.5) 2 (0.7) 46 (1.4) 0.314

Diabetes mellitus without chronic 
complication

434 (14.8) 51 (16.9) 485 (15.0) 0.370

Hemiplegia or paraplegia 8 (0.3) 8 (0.2) 1.000

Malignancy 2924 (99.9) 299 (99.3) 3223 (99.8) 0.101

Metastatic solid tumor 2128 (72.7) 228 (75.7) 2356 (73.0) 0.283

Mild liver disease 133 (4.5) 17 (5.6) 150 (4.6) 0.469

Moderate or severe liver disease 7 (0.2) 7 (0.2) 1.000

Myocardial infarction 132 (4.5) 17 (5.6) 149 (4.6) 0.451

Peptic ulcer disease 27 (0.9) 3 (1.0) 30 (0.9) 0.755

Peripheral vascular disease 118 (4.0) 17 (5.6) 135 (4.2) 0.236

Renal disease 179 (6.1) 24 (8.0) 203 (6.3) 0.254

Rheumatic disease 38 (1.3) 6 (2.0) 44 (1.4) 0.296

PD-1/PD-L1 therapy Atezolizumab 171 (5.8) 12 (4.0) 183 (5.7) 0.233

Avelumab 3 (0.1) 3 (0.1)

Durvalumab 65 (2.2) 2 (0.7) 67 (2.1)

Nivolumab 1921 (65.6) 207 (68.8) 2128 (65.9)

Pembrolizumab 768 (26.2) 80 (26.6) 848 (26.3)

PD-1 testing Missing 2331 (79.6) 235 (78.1) 2566 (79.5) 0.497

Negative 143 (4.9) 11 (3.7) 154 (4.8)

Not interpretable 133 (4.5) 15 (5.0) 148 (4.6)

Positive 321 (11.0) 40 (13.3) 361 (11.2)

*Excludes patients censored in first 100 days.
†Mean (SD).
‡
ECOG, Eastern Cooperative Oncology Group; PD-1, programmed death receptor-1.

Table 2  Continued

https://dx.doi.org/10.1136/jitc-2021-002545
https://dx.doi.org/10.1136/jitc-2021-002545
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Figure 1  SHAP summary plot for interpreting the impact of features on our model. Each row shows the impact of a single 
feature on the model’s predictions. Within each row, each dot represents a patient. Red means patients had a high feature 
value; blue means patients had a low value; gray means patients had a missing value. The position of the dot along the x-
axis indicates whether that feature increased or decreased a patient’s predicted risk. When all the red dots are on the right, a 
high feature value was associated with increased risk. When all the blue dots are on the right, a low feature value increased 
risk. Statistical significance is indicated as follows: *p<0.05, **p<0.01, ***p<0.002. BMI, body mass index; Cr, Creatinine; DBP, 
Diastolic Blood Pressure; SBP, Systolic Blood Pressure; Hb, hemoglobin; SHAP, Shaply additive explanations.
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EMR, thus avoiding manual data entry. Because our 
model can handle missing values and was trained on 
a real world dataset that replicates the distribution 
of missing values seen in clinical practice, a provider 

need not order any additional laboratory or imaging 
tests to use our model. These values may simply be 
entered as missing.

Figure 2  Plot of the cumulative dynamic AUC-ROC of our model on PD-1/PD-L1 patients.61 Model’s ability to predict cardiac 
adverse events within 20, 40, 60, 80, 100, 120, and 140 days of index is shown. The model’s performance varied between 63% 
and 72% as the time window for predictions changed. AUC-ROC, area under the curve–receiver operating characteristic; PD-1, 
programmed death receptor-1; PD-L1, programmed death ligand-1.

Figure 3  Cumulative incidence of cardiac events in low-risk and high-risk PD-1/PD-L1 patients from the test set. Groups were 
stratified by our model’s median predicted HR. The cumulative incidence function was calculated using the method described 
by Aalen and Johansen, taking into account the competing risk of death.62 High-risk patients had a significantly higher 
incidence of cardiac events. PD-1, programmed death receptor-1; PD-L1, programmed death ligand-1.
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The results are complementary and additive to what has 
previously been reported in the literature. For example, 
Kartolo et al were able to predict any irAE with an AUC-
ROC of 82.4% using clinically driven factors, similar to our 
model.39 Our performance was probably lower than that 
found by Kartolo et al because our model was predicting 
very specific and rare cardiac events. Using SHAP, we also 
elucidated several novel risk factors for cardiac adverse 
events. In general, a combination of immunological 
factors, oncological factors, and cardiac history was asso-
ciated with subsequent cardiac events.

We found that patients with a higher percent lympho-
cyte count, lower percent neutrophil count, or lower 
platelet count were at lower risk of cardiac disease. The 
neutrophil to lymphocyte ratio (NLR) is thought to be 
a marker of the inflammatory tumor microenvironment 
and therefore could represent a patient’s potential risk 
of ICI-mediated cardiac toxicity. Traditionally, a low NLR 
has been associated with both a higher risk of toxicity and 
a higher response rate.40 We found that patients with a 
low NLR were at decreased risk of cardiac events. This 
suggests that in patients with a low NLR, ICI therapies’ 
ability to treat the tumor and reduce cardiopulmonary 
burden is protective against cardiac events. Platelets are 
known to express PD-1 receptors and interact with immu-
notherapy41 and have traditionally been associated with 
a better response and higher rates of toxicity.40 This is 
consistent with our findings.

In our model, corticosteroids were associated with a 
lower rate of cardiac events. The use of corticosteroids 
in patients on immunotherapy is well studied.42 PD-1 
therapy (vs PD-L1) was also associated with a lower risk 
of cardiac disease. Traditionally, treatment with PD-1/
CTLA-4 combined therapy has been associated with 
the highest risk of myocarditis.15 However, treatment 
with PD-1 therapy has also been associated with lower 
rates of myocarditis.15 Given the borderline significance 
(p=0.028) of this result, low number of PD-L1 patients, 
and potential for a type I error in the setting of multiple 
comparisons, it is important to be cautious when inter-
preting this result.

We identified abnormal heart rate, both high and 
low, and abnormal temperature as predictors of cardiac 
events. Baseline vital signs help identify baseline disease 
in the patient, even if the patient does not carry a formal 
diagnosis with an ICD code for that condition. For 
example, our final model identified patients with a heart 
rate  of <60 or  >100 beats/min as being at high risk of a 
future cardiac event. Having a heart rate outside of the 
normal range could suggest subclinical arrhythmias with 
an abnormal rate (<60 and   >100 beats/min) or more 
severe heart failure (>100 beats/min). It is interesting 
that blood pressure was not a significant risk factor, while 
heart rate was. Although blood pressure can be abnormal 
in heart failure, we believe that heart rate is a more indic-
ative finding. This is supported by the Boston criteria, 
which use tachycardia to diagnose heart failure but do 
not use blood pressure.43 Our results also identified 

low temperature as a risk for cardiac events. A low body 
temperature has previously been associated with a low 
cardiac output and poor prognosis in patients with heart 
failure.44

We identified several parallel and aligned factors 
related to heart failure and severity of heart failure that 
were associated with cardiac events after PD-1/PD-L1 
therapy. Specifically, an elevated heart rate, lower hemo-
globin, lower sodium, and lower chloride are all variables 
associated with the severity of heart failure and were also 
associated with cardiac events in our study. We found that 
a high BUN and low creatinine also increased cardiac risk. 
The BUN to creatinine ratio has long been associated with 
heart failure severity. ACE inhibitors and loop diuretics 
were associated with a decreased rate of cardiac events. 
The novel finding of an association between features of 
heart failure and future events after PD-1 and PD-L1 inhib-
itory therapies is logical as a high incidence of the events 
post-PD-1 and PD-L1 therapies is related to heart failure. 
PD-1 and PD-L1 therapies may associate with heart failure 
through a variety of mechanisms. The most common 
mechanism is through the development of an acute and 
fulminant myocarditis.14 The second, and less common 
and less well-understood mechanism, is via a progressive 
decline in the left ventricular ejection fraction without a 
clear acute fulminant process. Independent of the mech-
anism, the likelihood is that an impaired baseline cardiac 
reserve increases the probability that cardiac injury with 
an ICI will become clinically manifest as a heart failure 
event. What is unclear, and needs to be the focus of future 
studies, is whether the baseline elevated risk with heart 
failure is related to heart failure with a reduced ejection 
fraction, heart failure with a preserved ejection fraction, 
or both, and how baseline cardiac medications such as 
inhibitors of the angiotensin system or beta-blockers for 
heart failure may attenuate this risk.

The most common cardiac event on an ICI was the 
occurrence of atrial fibrillation. Atrial fibrillation and 
heart failure frequently coexist. We also found that the 
presence of a prothrombin time lab measurement was 
predictive and this may relate to the use of anticoagula-
tion in the setting of atrial fibrillation.

Additionally, advanced age was associated with a 
higher rate of cardiac events in our model. Age-related 
immunosenescence is generally thought to increase irAE 
risk through a paradoxically higher concentration of 
inflammatory cytokines and autoantibodies.45 Abnormal 
weight/BMI (high or low) and higher LDH levels also 
predicted cardiac disease (p<0.002). Weight loss can be 
driven by a variety of factors in patients with cancer, but 
immunological derangements mediated by cytokines are 
thought to be a primary driver.46–54 Weight loss is also 
a general indicator of cancer severity55 as are higher 
LDH levels.56 Conversely, the association between an 
elevated weight/BMI and cardiac disease is well known. 
By checking the trees of our XGBoost model by hand, we 
identified a BMI of >40 as a cut-off for increased risk of 
cardiac disease.
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Our study does have several limitations. To define 
cardiac events, we used both curated adverse events that 
were documented by a team of nurse abstractors and ICD 
codes documented in the patient chart. The frequency 
of different cardiac events is described in table 1. In our 
study, 8% of patients had a cardiac event. In general, we 
found a high incidence of atrial fibrillation, heart failure, 
and pericardial disease in our cohort. While the rate 
of myocarditis in ICI patients is thought to be less than 
1%,57 the rate of other cardiac events secondary to ICI-
therapy is still unknown. A recent meta-analysis found 
that 0.5% of patients with cancer treated with ICIs devel-
oped myocarditis, 0.3% developed heart failure, and 
4.6% developed atrial fibrillation. In addition, pericar-
dial effusion occurred in 0.5% of patients, cardiomyop-
athy in 0.3% of patients, myocardial infarction in 0.4% 
of patients, and cardiac arrest in 0.4% of patients.58 Our 
findings are in line with other studies using EHR data. 
For example, Waheed et al reported 15% of ICI patient 
developed new cardiac disease: 0.4% developed cardio-
myopathy; 5% developed heart failure; 6% developed an 
arrhythmia; 2% developed pericardiac disease; 2% devel-
oped heart block; and 0.2% developed myocarditis.59

It is possible that pre-existing atrial fibrillation/heart 
failure is being routinely documented by a patient’s oncol-
ogist, even if the patient is not experiencing new disease. 
To address this concern, we did not count ICD/MedDRA 
codes as cardiac events if similar codes were already part 
of the patient’s medical history. However, whether these 
cardiac events truly represent new heart failure, an exac-
erbation of existing heart failure, or routine documenta-
tion of existing disease is impossible to tell with real-world 
data and is a major limitation of our study.

Another limitation is that the ConcertAI database does 
not have robust documentation of Common Terminology 
Criteria for Adverse Events, and it is impossible for us to 
distinguish between severe and non-severe events using 
the traditional definition.

Finally, while demographics and oncological fields like 
stage had a very low rate of missingness, laboratory values 
and vital signs suffered high missingness rates of between 
20% and 99%. Traditionally, high missingness rates can 
introduce bias because (1) patients with missing values 
have to be excluded from the analysis or (2) missing values 
are replaced with imputed values. In our case, neither 
of these mechanisms are possible. Because XGBoost 
treats missing values as a separate entity, no patients are 
excluded in the modeling process and no values need 
be imputed. Missing values are simply treated as another 
value in SHAP plots and can be interpreted separately 
from the non-missing values. Indeed, XGBoost has been 
previously sited for its ability to robustly manage missing 
data in large EMR datasets.60 In light of these findings, we 
did not remove features with high missingness rates from 
our final model. However, in several sensitivity analyses, 
we did show that removing variables with high missing-
ness or imputing missing values has a minimal impact on 
our results.

To minimize missing data, we included data from up 
to 30 days after start of ICI. With this analysis alone, it 
is unclear whether the laboratory, vital, or other patient 
measurements were baseline or on-treatment. Therefore, 
we conducted a sensitivity analysis using only baseline 
values. The performance of our model decreased mini-
mally, but interpretations with SHAP remained largely 
the same, suggesting that interpreting these values as 
baseline and not on-treatment is most appropriate. This 
is also supported by our general observation that ~75% of 
these values were collected before index date.

To summarize, ML was able to predict cardiac adverse 
events with a high performance. Using SHAP, we iden-
tified multiple risk factors for cardiac events including 
immunological labs and medications, oncological factors, 
and elements of the patient cardiac history. Further 
research is needed to triage PD-1/PD-L1 patients’ risk of 
cardiac disease.
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