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Abstract

Mild hypoxia induced by 20% hemorrhage results in increases in few cytokine concentrations 

and sclerostin levels in blood, but shows no changes in bone formation, bone marrow cellularity, 

and gastrointestinal (GI) integrity and no systemic bacterial infection as well as no subsequent 

mortality. On the other hand, severe hypoxia induced by 40% hemorrhage causes significant 

increases in most cytokine concentrations, GI injury, lung injury, systemic bacterial infection, 

cellular ATP reduction and subsequent mortality. The severe hypoxia drastically damages 

GI and lung morphology, elevates cytokine concentrations in blood and increases inducible 

nitric oxide synthase (iNOS) expression in cells that is mediated by transcription factors NF-

κB/NF-IL6, subsequently producing free radicals that disrupt mitochondria. ATP depletion, p53 

phosphorylation, and caspase-3 activation are found, suggesting cell apoptosis. As a result, 

mortality occurs. However, when mild hypoxia follows ionizing radiation, the mild hypoxia 

significantly enhances radiation-induced mortality and acute radiation syndrome, including injury 

of bone marrow, GI, kidney, and lung. The synergism also occurs at the molecular level, resulting 

in alteration of microRNAs, amplification of iNOS expression, cytokine increases, sepsis, and ATP 

depletion. This is the first demonstration of synergistic effects between mild hypoxia and ionizing 

radiation.
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Hypoxia

Tissue hypoxia results from internal hemorrhage, external hemorrhage, chemical insults, or 

ischemia due to blood vessel occlusion. Depending on the severity of tissue hypoxia, the 

damage can vary ranging from no lethality to lethality. Severe hypoxia can cause systemic 

inflammation response syndrome (SIRS), multiple organ dysfunction (MOD), and multiple 
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organ failure (MOF, ref. 4), thereby leading to fatality. This cascade reaction involves many 

steps at molecular levels, cellular levels, organ levels, and systemic levels.

Organ Damage after Hypoxia

Organ damage depends on the severity of hypoxia. Hemorrhage leads to hypoxia. Manning 

(35) classifies hemorrhage to 4 classes. Class 1 is less than 15% blood loss with no clinical 

sign and no treatment needed; Class 2 is 15–30% blood loss with mild clinical sign and 

only fluid resuscitation optionally needed; Class 3 is 30–40% blood loss with severe clinical 

sign and fluid resuscitation and blood transfusion needed; Class 4 is greater than 40% 

blood loss with fatal clinical sign and aggressive blood transfusion needed to save life. 

Examination of histopathology slides, hypoxia caused by mild hemorrhage (intermittent, 

20% blood loss) does not alter bone (51), bone marrow (25) and small intestine morphology 

(Kiang, unpublished data), but hypoxia resulted from severe ischemia or severe hemorrhage 

induces changes in morphology of small intestine. Our laboratory and others have reported 

that severe hypoxia induced by ischemia with mesenteric artery occlusion for 30 min (50) or 

intermittent 40% hemorrhage (15) resulted in a shortening and widening of villi, indicating 

occurrence of villous edema. Histopathology of lungs after hemorrhage exhibits pulmonary 

edema (29). Histopathology of other organs are not performed and studied, yet. Since we 

have also found decreases in ATP levels in heart, kidney, and brain (16) and increases 

in caspase-3 activation in these organs (24), it was highly likely that these organs were 

damaged while small intestine was injured.

We have studied the bone marrow after 20% hemorrhage. No apparent alteration was 

observed. But circulatory blood cells acutely decreased and returned to baseline 2 days after 

hemorrhage (25). It is not clear whether 40% hemorrhage would change cellularity of bone 

marrow.

Cellular Changes after Hypoxia

Hypoxia has been shown to lead to acute increases in intracellular free calcium 

concentration ([Ca2+]i), 5-lipoxygenase, lipid peroxidation, cyclooxygenase (COX), 

constitutive nitric oxide synthase (cNOS), leukotriene B4 (LTB4), prostaglandin E2 (PGE2), 

interleukins, tumor necrosis factor-α (TNF-α), caspases, kruppel-like factor 6 (KLF6), 

inducible nitric oxide synthase (iNOS), and delayed increases in heat shock protein 70 kDa 

(HSP-70) and hypoxia-inducible factor-1α (HIF-1α; 9, 13, 19, 23, 39, 40, 44, 47, 50). We 

reported that hypoxia resulted from 40% hemorrhage decreased Bcl-2 protein and increased 

TNF-α, IL-6, and IL-10 concentrations, p53 protein, caspase-3 activation, and cellular ATP 

depletion (15).

Figure 1 depicts that severe hypoxia-induced ATP depletion is mediated by inhibition of 

pyruvate dehydrogenase (PDH) and activation of pyruvate dehydrogenase kinase (PDK; refs 

18, 51). Subsequently as shown in Fig. 2, ATP depletion results in mitochondrial disruption. 

When the cellular ATP level remains above 15% of the basal level, cells undergo apoptosis, 

whereas when the cellular ATP level is below 15% of the basal level, cells undergo necrosis 

(8, 30, 31, 33, 53).
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Investigation of the sequence of their appearance provides useful insights into the 

mechanisms that underlie hypoxia-induced tissue injury and identify therapeutic targets 

to prevent or reverse the injury. Experiments in iNOS-deficient mice (13, 23), treatment 

of animals with iNOS inhibitors such as geldanamycin, 17-DMAG (16, 19), and 5’­

androstenediol (17, 48), taken together with information obtained from the treatment 

of cultured cells with the iNOS inhibitor LNNA (27), suggest that iNOS-derived NO 

participates in the injury and the inflammatory cascade produced by hypoxia.

Hypoxia Modifies MicroRNAs

MicroRNAs (miRNAs) are small non-coding RNA molecules containing about 20–22 

nucleotides that function in silencing RNAs and regulating gene expression (1, 3). It is 

evident that miRNAs involve in several diseases such as kidney disease (43), schizophrenia, 

bipolar disorder, depression, and anxiety disorders (6, 10, 14), alcoholism (32), obesity (12, 

46), and diabetes (12). Hypoxia has been shown to alter the global microRNA expression 

in kidney, GI, and blood. Hypoxia induced by 20% hemorrhage altered 56 miRNAs (Kiang 

et al., unpublished data). Among them, miR-145 was upregulated and miR-15b and let-7g 

was downregulated (Kiang et al., unpublished data). MiR-145 and niR-15b were involved in 

kidney diseases (43). Let-7g was thought to be involved in obesity and diabetes (12).

Radiation

Today, more than 50% of cancer patients receive radio-therapy at some time during their 

disease (5), resulting in radiation injury to the normal tissues as well. The acute radiation 

syndrome (ARS) is manifested. ARS is the signs and symptoms that occur within several 

months after receiving ionizing radiation (38). The most radiation sensitive organs include 

the hematopoietic (11, 25), GI (20, 22, 34), skin (22, 37, 41), and vascular systems (42, 

45). The moderate radiation dose range (1–7 Gy in human) of ionizing radiation poses a 

risk of damage to the hematopoietic system, leading to decreases in blood cells and platelet 

counts and increases susceptibility to infection and hemorrhage (7, 52). The high-dose 

whole-body irradiation (8 Gy and more in human) causes acute GI syndrome including 

loss of intestinal crypts and breakdown of the GI mucosal barrier (20–22). The high-dose 

of ionizing radiation induces GI hemorrhage, endotoxemia, bacteremia, anorexia, nausea, 

vomiting, diarrhea, and loss of electrolytes and fluid (49); skin injury from radiation burns is 

characterized by loss of epidermis and dermis (2, 22), reduction of the skin stem cells, and 

impair of cell communication and cutaneous integrity, which may play an important role as a 

factor triggering the failure of other organ systems (36). In addition, vascular endothelium is 

damaged (42). The concomitant and interdependent injuries to various organ systems lead to 

multi-organ dysfunction (MOD) and failure (MOF). As a result, mortality occurs.

Hypoxia Exacerbates Radiation-Induced Mortality, Less Water Intake, and 

Body Weight Loss

When whole animals were exposed to 60Co γ-photon radiation at 8.75 Gy (i.e., LD50/30, 

CD2F1 male mice), animals began to die 10 days after irradiation (25). But when these 

animals were followed by hypoxia induced by intermittent 20% hemorrhage, animals started 
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to die 9 days after irradiation. On day 30 after irradiation, hypoxia aggravated radiation­

induced mortality by 20%, whereas hypoxia alone did not result in any mortality (25). It 

should be kept in mind that 20% hemorrhage may induce other physiological outcomes in 

addition to hypoxia to cells, tissues, and organs.

Radiation also transiently made animals drink less water. The average daily water intake 

per mouse was approximately 4 mL/day/mouse; radiation reduced it down to 1.5 mL/day/

mouse; radiation followed by hypoxia further reduced it down to 0.5 mL/day/mouse. 

However, all mice consumed water back to normal levels on day 7 after irradiation or 

radiation followed by hypoxia. However, hypoxia reduced the water intake at the first day 

but returned to normal levels the 2nd day (25). The underlying mechanism(s) is/are not clear.

Radiation transiently made animals lose body weight on day 3 and bounced back on day 7, 

but then lost the body weight again on day 15. Animals exposed to radiation and hypoxia 

lost body weight even more than animals exposed to radiation only. However, radiation 

reduced organ weights of GI, lungs and spleen, but hypoxia failed to further reduce their 

weights. Hypoxia alone did not alter their body and organ weights (25).

Hypoxia Enhances Radiation-Induced Organ Damage

Bone marrow is sensitive to ionizing radiation and acutely injured within a day after 

ionizing irradiation at 8.75 Gy. Histopathology examination of bone marrow after irradiation 

displayed erythroid (for RBC), myloid (for WBC), and megakaryocyte (for platelets) 

reduction and was full of vacuoles (i.e., fat cells). Radiation followed by hypoxia further 

reduced bone marrow cellularity, whereas hypoxia alone did not. The reduction of bone 

marrow cellularity is negatively correlated with erythropoietin (EPO) concentrations in 

blood and its production in kidneys. It is further confirmed with concurrently increased 

HIF-1α concentrations in kidneys (25). Hypoxia alone due to 20% hemorrhage did not 

affect bone volume, trabecular thickness, trabecular number, and trabecular spacing but 

increased sclerostin (a protein to decrease bone formation). However, this hypoxia further 

aggravated radiation-induced decreases in bone volume, trabecular thickness, trabecular 

number, and trabecular spacing, osteocalcin (a protein secreted by osteoblasts, as a bone 

formation marker) and PINP (as a bone formation marker), but enhanced radiation-induced 

increases in sclerostin (51).

GI is another organ sensitive to ionizing radiation and acutely injured within days after 

ionizing irradiation. Histopathology examination of GI after irradiation showed presence 

of short and wide villi, opened villous tips, decreased crypt depth and reduced numbers 

of crypt counts. Radiation followed by hypoxia further reduced these parameters, whereas 

hypoxia alone did not. The enhancement was mediated by activation of the NF-κB/iNOS 

signaling pathway (Kiang et al., unpublished).
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Hypoxia Enhances Radiation-Induced Reductions of WBC, RBC, and 

Platelets in Peripheral Circulation

When whole animals were exposed to 60Co γ-photon radiation at 8.75 Gy, animals began 

to significantly lose bone marrow cells on day 1, WBC counts on day 2, RBC counts, 

hemoglobin levels, hematocrit readings, and platelet counts on day 7 after irradiation. But 

when these irradiated animals were followed by hypoxia induced by 20% hemorrhage, their 

cell losses were even greater (25). This enhancement is thought due to lack of replenishment 

of hematopoietic progenitor cells from bone marrow, because bone marrow hematopoietic 

progenitor cells are acutely killed massively after irradiation combined with hypoxia.

Hypoxia Enhances Radiation-Induced Increases in Cytokine/Chemokine 

Concentrations in Blood and Organs

Using cytokine multiplex kits and luminex, we have shown that ionizing radiation increases 

cytokine/chemokine concentrations in blood (22). Whole body irradiation combined with 

hypoxia significantly enhanced increases in IL-1β, IL-6, IL-17A, and TNF-α in blood, IL-6 

and TNF-α in bone marrow, IL-1β, IL-6, and TNF-α in ileum, and IL-6 in kidneys. Hypoxia 

alone slightly increased IL-17A in bone marrow, IL-1β in ileum, TNF-α in spleen and 

kidneys (25). The results suggest contributions of cytokines/chemokines from various organs 

to the blood stream that would carry these proinflammatory cytokines ubiquitously so as to 

systematically induce undesirable outcomes.

Hypoxia Enhances Radiation-Induced Modification on MicroRNA 

Expression

When animals were exposed to ionizing radiation alone, hypoxia alone, or radiation 

combined with hypoxia, hypoxia caused by 20% hemorrhage alone resulted in changes 

in 56 microRNA expressions in blood. Ionizing radiation alone resulted in changes in 

34 microRNA expressions. Combination of ionizing radiation with hypoxia modified 66 

microRNA expressions in blood. Among them, 19 microRNA were commonly present in 

blood of animals exposed to hypoxia alone, radiation alone, and combination of the two. 

Six out of 19 microRNAs were upregulated and other 13 microRNAs were downregulated. 

Hypoxia enhanced radiation-induced changes in these 16 microRNAs (Kiang et al., 
unpublished data). Using Ingenuine Program Analysis (IPA), mir-27a, miR-29b, miR-30e, 

and let-7e regulated NF-κB gene expression that was responsible for transcribing iNOS and 

cytokines (25).

As shown in Fig. 3, mild hypoxia following ionizing radiation results in changes in 3 

aspects: 1) to modify miR-27a, miR-29b, miR-30e, and let-7e expressions that lead to 

increases in HIF-1α and NF-κB. The latter elevates iNOS expression and inflammatory 

cytokine products; 2) to reduce PDH and elevate PDK that decrease ATP production; and 

3) to cause sepsis that activates NF-IL6 and subsequently increases iNOS expression. Then 

NO production is increased and produces free radical ONOO− that can nitrate proteins. 

Increases in inflammatory cytokines, ATP depletion, and free radical ONOO− disrupt 
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mitochondrial membrane potential. Then, cytochrome c leak out from mitochondria to 

cytoplasm, conjugate with caspase-9 and apoptotic protease activating factor-1 (APF-1) 

to form apoptosomes that activate various caspases. Caspase-3 activation results in cell 

apoptosis (26, 28).

Conclusions

There are 50% of population experiencing cancers and some of them receive radiation 

therapy (5). The scenario with radiation therapy followed by hypoxia ranging from mild 

degrees to severe degrees due to anemia, ischemia, hemorrhage, or exposure to hypoxic 

chemicals can happen. Although mild hypoxia is not lethal and causes transient increases in 

only some cytokines, mild hypoxia following ionizing radiation enhances hematopoietic and 

GI acute radiation syndromes that lead to increased mortality. This is the first demonstration 

of synergistic effects between mild hypoxia and ionizing radiation.
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Fig. 1. 
Severe hypoxia inhibits PDH phosphatase to reduce active PDH E1 and activates PDH 

kinase (PDK) to phosphorylate PDH E1 which becomes inactive. Therefore, ATP production 

is attenuated. PDH: pyruvate dehydrogenase; ATP: adenosine triphosphate; ↑: increase; ↓: 

decrease; ⊥: inhibition.
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Fig. 2. 
Severe hypoxia reduces PDH and increases PDK, which leads to ATP reduction. The 

reduction impedes maintenance of mitochondrial membrane potential that makes cells 

falling into apoptosis if the cellular ATP level remains above 15% of the basal level. 

Otherwise, cells undergo necrosis if the cellular ATP level remains below 15% of the basal 

level. PDH: pyruvate dehydrogenase; PDK: pyruvate dehydrogenase kinase.
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Fig. 3. 
Mild hypoxia following ionizing radiation exacerbates survival by amplifying molecular 

signals, cytokines, and sepsis after ionizing radiation. Mild hypoxia following ionizing 

radiation results in changes in 3 aspects: 1) to modify miR-27a, miR-29b, miR-30e, 

and let-7e expressions that lead to increases in HIF-1α and NF-κB. The latter elevates 

iNOS expression and inflammatory cytokine products; 2) to reduce PDH that decreases 

ATP production; and 3) to cause sepsis that activates NF-IL6 and subsequently increases 

iNOS expression. Then NO production is increased and produces free radical ONOO− that 

can nitrate proteins. Increases in inflammatory cytokines, ATP depletion, and free radical 

ONOO− disrupt mitochondrial membrane potential. Then, cytochrome c leaks out from 

mitochondria to cytoplasm, conjugates with caspase-9 and APF-1 to form apoptosomes 

that activate caspases. Caspase-3 activation results in cell apoptosis (26, 28). miR: 

microRNA; HIF-1α: hypoxia-inducible factor 1α; NF-κB: nuclear factor-keppaB; iNOS: 

inducible nitric oxide synthase; PDH: pyruvate dehydrogenase; APF-1: apoptotis protease 

activating factor-1; NF-IL6: nuclear factor-interleukin 6; NO: nitric oxide; ATP: adenosine 

triphosphate; ↑: increase; ↓: decrease.
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