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Abstract

The neural mechanisms contributing to flexible cognition and behavior and how they change with development and aging
are incompletely understood. The current study explored intrinsic brain dynamics across the lifespan using resting-state
fMRI data (n =601, 6-85 years) and examined the interactions between age and brain dynamics among three neurocognitive
networks (midcingulo-insular network, M-CIN; medial frontoparietal network, M-FPN; and lateral frontoparietal network,
L-FPN) in relation to behavioral measures of cognitive flexibility. Hierarchical multiple regression analysis revealed brain
dynamics among a brain state characterized by co-activation of the L-FPN and M-FPN, and brain state transitions,
moderated the relationship between quadratic effects of age and cognitive flexibility as measured by scores on the
Delis-Kaplan Executive Function System (D-KEFS) test. Furthermore, simple slope analyses of significant interactions
revealed children and older adults were more likely to exhibit brain dynamic patterns associated with poorer cognitive
flexibility compared with younger adults. Our findings link changes in cognitive flexibility observed with age with the
underlying brain dynamics supporting these changes. Preventative and intervention measures should prioritize targeting
these networks with cognitive flexibility training to promote optimal outcomes across the lifespan.
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Introduction

Flexible brain dynamics support cognition and behavior (Grady
and Garrett 2014; Jia et al. 2014). However, little is known regard-
ing brain dynamic changes across the lifespan associated with
cognitive flexibility, a component of executive function (Dia-
mond 2013) that supports the ability to adapt behavior to an
ever-changing environment (Dajani and Uddin 2015). Cognitive
flexibility is associated with positive academic, occupational,

and social outcomes throughout life (Davis et al. 2010; Genet
and Siemer 2011; Burt and Paysnick 2012; Yeniad et al. 2013;
Colé et al. 2014). Understanding age-related changes in brain
dynamics and their relationship with cognitive flexibility is
crucial to identifying neural markers of risk and resilience across
development and aging.

Across the lifespan, greater dynamic brain flexibility is
increasingly being associated with younger adulthood and
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enhanced cognitive performance (jia et al. 2014; Braun et al.
2015; Nomi et al. 2017a; Xia et al. 2019; Battaglia et al. 2020).
A greater number of transitions among certain brain states
has been found in younger adults compared with older adults
(Xia et al. 2019) and children (Hutchison and Morton 2015).
The dwell time, or the time spent within a brain state, has
also been shown to differ across age, with shorter dwell times
in certain states in young adulthood (Hutchison and Morton
2015) potentially underlying efficient cognitive control. Dwell
time increases with older age (Xia et al. 2019), potentially
underlying cognitive changes and reduced cognitive efficiency
(i.e., perseveration) (Ridderinkhof et al. 2002). Lastly, the
frequency of occurrence of highly variable brain states has
also been associated with better performance on behavioral
measures of executive function including cognitive flexibility
(Nomi et al. 2017b). Although greater dynamic brain flexibility is
increasingly being associated with younger age and enhanced
cognitive performance, there is little known about variability in
brain dynamics supporting cognition across age. For example,
growing evidence suggests individuals have varying “brain ages,”
resulting in differences in functional brain maturity among
age-matched individuals (Dosenbach et al. 2010). Therefore,
age-related changes associated with brain network dynamic
variability and cognitive flexibility require further investigation
(Cohen 2018) as they may provide potential markers of risk
for, and resilience to, age-related cognitive decline across the
lifespan.

Within and between network connectivity among the
midcingulo-insular network (M-CIN; also known as salience),
medial frontoparietal network (M-FPN; also known as default),
and lateral frontoparietal network (L-FPN; also known as
executive control) (Uddin et al. 2019) has also been shown to
be important for aging (Ryali et al. 2016; Chand et al. 2017), and
cognitive and neural flexibility (Uddin et al. 2011; Chen et al.
2016). The M-CIN is involved in interoceptive, affective, atten-
tion, and control processes associated with subjective salience;
the L-PFN is involved in executive control and modulating goal-
oriented behaviors and decisions; and the M-FPN is involved in
self-related processes and social cognition (Uddin et al. 2019).
Together, these networks support various functions important
for adaptation across the lifespan (Masten and Obradovic 2006;
Touroutoglou et al. 2018). A longer dwell time within certain
states of the M-CIN, M-FPN, and L-FPN has been associated with
less flexibility in children’s brain dynamic repertoires compared
with young adults (Ryali et al. 2016). Greater flexibility within
these networks may therefore account for improved behavioral
performance across development. In older age, extant literature
suggests weaker modulation occurs among the M-FPN and L-
FPN, resulting in the greater reliance on crystallized knowledge,
and weaker fluency skills (Turner and Nathan Spreng 2015;
Spreng et al. 2018). Furthermore, temporal variability specifically
of the M-CIN has been shown to uniquely predict individual
differences in cognitive flexibility in young adults (Chen et al.
2016). Conversely, higher M-FPN and L-FPN functional dynamics
during the resting-state have been associated with poorer cogni-
tive flexibility (Douw et al. 2016). Overall, dynamic relationships
among the M-CIN, M-FPN, and L-FPN appear to be important
contributors to cognitive flexibility across the lifespan.

Despite its importance to optimal lifespan development, no
previous studies have characterized brain network dynamics
supporting cognitive flexibility from childhood to older adult-
hood. This study provides a novel framework for understand-
ing the relationship between brain dynamics and cognitive

Table 1 Participant Demographics

N=601; mean +sd (min—max)

Age (year) 37.22+20.73 (6.18-85.62)

Gender 239 M 361 F1NR

Mean FD (mm) 0.25+0.09 (0.08-0.50)

Ethnicity 514 (not Hispanic or Latino) 86
(Hispanic or Latino) 1 NR

Race 4 (1) 46 (2) 116 (3) 1 (4) 417 (5) 16 (6)

1(NR)
CWIT inhibition/switching 62.80 + 17.89 (32-146)
total completion time
CWIT inhibition/switching
total errors
TMT number-letter switching
total completion time
VF switching total correct

1.9242.24 (0-22)
81.70 £ 38.79 (25-240)

13.49 4 3.20 (4-23)

Note: SD, standard deviation; M, male; F, female; NR: no response; 1: American
Indian or Native Alaskan; 2: Asian; 3: Black or African American; 4: Native
Hawaiian or Other Pacific Islander; 5: White; 6: Other Race; CWIT, Color-Word
Interference Test; TMT, Trail Making Test; VF, Verbal Fluency.

flexibility and may lend insight into neuropsychiatric disorders
and resilience in typical development and aging. Previous
studies have found both linear and quadratic relationships
across the lifespan related to cognitive flexibility and brain
dynamics when examining within- and between-network
associations (Grady et al. 2006; Wang et al. 2012; Betzel et al. 2014;
Cao et al. 2014; Nomi et al. 2017a). To extend previous findings,
we examined the hypotheses that between-network dynamics
among the M-CIN, M-FPN, and L-FPN exhibit a quadratic
trajectory across the lifespan. To examine if varying levels of
brain dynamics supports optimal cognitive flexibility across
the lifespan, we also tested the hypothesis that brain dynamics
among these three large-scale networks interact with age to
enable cognitive flexibility changes associated with healthy
aging. Specifically, we hypothesized that greater brain dynamic
flexibility as indexed by dwell time, frequency of occurrence,
and transitions between states would be associated with greater
cognitive flexibility across the lifespan.

Methods

Neuroimaging, phenotypic, and behavioral data collected from
601 healthy adult participants were downloaded from the
Enhanced Nathan Kline Institute.

(NKI)-dataset (http://fcon_1000.projects.nitrc.org/indi/enha
nced/). Participants were selected according to the following
inclusion criteria: 1) availability of neuroimaging and behavioral
data, 2) no current or past DSM-diagnosis for psychiatric
disorders and/or attention deficit hyperactivity disorder, and
(3) resting-state fMRI data head motion <0.5 mm. See Table 1
for participant information and Supplementary Figure S1 for
information about the age distribution included in this study.
The study was approved by the NKI institutional review board
and all participants provided informed consent. Written consent
and assent was collected from child participants and their legal
guardian (Nooner et al. 2012)

MRI and Behavior Protocol

Participants were assessed during a 1- or 2-day examination by
trained experts. Details of the MRI and behavioral assessment
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procedures can be found at http://fcon_1000.projects.nitrc.org/i
ndi/enhanced/mri_protocol.html, and http://fcon_1000.projects.
nitrc.org/indi/enhanced/assessments.html, respectively. Some
participants were missing behavioral data for certain measures
and were omitted when necessary. Additionally, children below
the age of 8 years (n=7) were not administered the executive
function tests, as the test battery is only valid in 8-89 year
olds (Delis et al. 2001). These children were excluded from the
analyses with behavioral measures of executive function.

Cognitive Flexibility Measures

Participants were administered the Delis-Kaplan Executive
Function System (D-KEFS), a series of neuropsychological tests
designed to measure executive functions in children and adults
between the ages of 8-89 (Delis et al. 2001). The commonly used
cognitive flexibility tests within the D-KEFS include the Color-
Word Interference Task (CWIT), the Trail Making Test (TMT), and
the Verbal Fluency (VF) Task.

The CWIT is a modified Stroop task (Stroop and Ridley Stroop
1992) and consists of four conditions. The first two conditions
are similar to the Stroop interference task, and the last condition
involves Inhibition/Switching and is a commonly used cognitive
flexibility task (Bohnen et al. 1992; Mattson et al. 1999). In the
Inhibition/Switching condition, participants are presented with
a page containing the words “red,” “green,” and “blue,” written
in red, green, or blue ink. Some of the words are contained in
a box and the subject must switch between saying the color
of the ink (word is not inside a box) or the color of the word
(word inside a box). Participants are told to complete the task as
quickly as possible. Raw scores include the time to complete the
Inhibition/Switching condition in seconds and the total number
of errors made during the task. Higher scores indicate poorer
cognitive flexibility.

The TMT was created to isolate set-shifting abilities by
including baseline conditions such as visual scanning, number
sequencing, letter sequencing and motor speed (Fine et al.
2011). TMT also includes a Number-Letter Switching condition, a
commonly used cognitive flexibility task (Kleinhans et al. 2005;
Mcdonald et al. 2005; Yochim et al. 2007). During the Number-
Letter Switching condition, participants switch back and forth
between connecting numbers and letters (i.e, 1, A, 2, B etc.))
(Yochim et al. 2007). They are instructed to connect the numbers
and letters as quickly as possible. The raw score measure for
the Number-Letter Switching task is the total time to complete
the task in seconds. Higher scores indicate poorer cognitive
flexibility.

The VF test requires participants to generate words begin-
ning with a letter (phonemic fluency) or from a category (cate-
gory fluency). The VF task also includes a Category Switching
condition where participants alternate between saying words
from two different semantic categories. The Category Switching
condition is a commonly used task to study cognitive flexibility
(de Paula et al. 2015; Ramanan et al. 2015). In the switching
condition, participants are told to produce as many words within
60 seconds. The VF category switching raw score is the total
correct number of responses and a higher score indicates better
cognitive flexibility.

MRI Data Acquisition

A Siemens Trio 3.0 T scanner was used to obtain the func-
tional images. Multiband (factor of 4) echo-planarimage
(EPI) sequenced resting-state images (rsfMRI; TR=1400 ms,
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TE=30 ms, flip angle 65°, field of view (FOV) 224 mm, voxel
size=2x2x2 mm, 64 interleaved slices, 404 volumes) were
applied for the acquisition of the functional images. Participants
were instructed to keep their eyes open and fixate on a cross in
the center of the screen during the 9-min 19-s rsfMRI scan. For
detailed MRI protocol see: http://fcon_1000.projects.nitrc.org/i
ndi/enhanced/mri_protocol.html.

Neuroimaging Data Preprocessing and Postprocessing

The resting-state fMRI data were preprocessed using the Data
Preprocessing Assistant for Resting-State fMRI Advanced edition
(DPARSF-A, Yan and Zang, 2016), which uses FSL, SPM-12 (https://
www.fil.ion.ucl.ac.uk/spm/software/spm12/), and AFNI https://a
fni.nimh.nih.gov (Cox 1996). The preprocessing steps were the
following: removal of the first 5 volumes to allow scanner signal
to reach equilibrium, despiked using AFNI 3dDespike, realign-
ment, normalization to 3 mm MNI template, and smoothing
(6 mm FWHM) (Espinoza et al. 2019).

Independent component analysis (ICA) was conducted using
FSL’s MELODIC by means of automatic dimensionality estima-
tion (Nomi et al. 2017a; Espinoza et al. 2019). The ICA-FIX clas-
sifier was trained on hand-classified independent components
separated into noise and non-noise categories using randomly
chosen participants (n=24) across the lifespan (Griffanti et al.
2014; Nomi et al. 2017b). The ICA-FIX classification algorithm
was applied to the data (FSL's ICA-FIX; (Griffanti et al. 2014)
to classify noise and non-noise components from individual
subject data before conducting nuisance regression of classi-
fied noise components from the resting-state scans in MNI
space. The ICA-FIX fMRI data then underwent nuisance covari-
ance regression (linear detrend, Friston 24 motion parameters
(6 motion parameters of each volume, the preceding volume,
and the 12 corresponding squared items) (Friston et al. 1996),
global mean signal, followed by bandpass filtering (0.01-0.10 Hz)
(Damoiseaux et al. 2006). Preprocessing and postprocessing were
additionally conducted without global mean signal regression
(GSR) to assess the effect of this step on subsequently derived
metrics, as there is yet no consensus regarding the extent to
which this step removes neural signal in addition to noise (Uddin
2020a).

Nine regions-of-interest (ROIs) representing the three large-
scale networks (Uddin et al. 2011) were selected (Table 2), includ-
ing the right and left fronto-insular cortex (rFIC) and anterior
cingulate cortex (ACC) of the M-CIN; right and left dorsolateral
prefrontal cortex (rDLPFC) and right and left posterior parietal
cortex (rPPC) of the L-FPN; and the ventromedial prefrontal cor-
tex (VMPFC) and posterior cingulate cortex (PCC) of the M-FPN.
These networks and regions were chosen because of previous
work demonstrating their functional roles in flexible cognition
(Uddin et al. 2011) and aging (Ryali et al. 2016; Chand et al.
2017). Additionally, these ROIs have long been recognized as
critical nodes in the three neural networks (Seeley et al. 2007;
Menon and Uddin 2010; Chand et al. 2017) and as evidenced
by recent ICA group analyses (Marshall et al. 2020; Kupis et al.
2021). A trained research assistant examined all ROIs in older
participants (= 70-85 years), the years where the most marked
changes in brain atrophy can occur (Scahill et al. 2003), to ensure
the masks were within the cerebral cortex for each individual
subject.

Co-Activation Pattern Analysis

For each individual subject, time series extracted from the nine
ROIs were converted to z-statistics and then concatenated into
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Table 2 Coordinates of M-CIN, M-FPN, and L-FPN regions

Network Region BA Peak MNI coordinates (mm)
M-CIN rFIC 47 39,23, -4
IFIC 47 —34,20,-8
ACC 24 6,24, 32
L-FPN rDLPFC 9 46, 20, 44
IDLPFC 9 —46, 20, 44
rPPC 40 52, -52,50
1PPC 40 —40, —56, 44
M-FPN VMPFC 11 —-2,38,-12
PCC 23/30 —6, —44, 34

one matrix containing all subjects [(399 TR x 601 subjects) x 9
ROIs], following previous studies (Hutchison and Morton 2015;
Kupis et al. 2020). Both children and adults were included due to
prior evidence suggesting the brain’s repertoire of states are gen-
erally preserved across age (Hutchison and Morton 2015). The
matrix was then subjected to k-means clustering to determine
the optimal number of clusters. The elbow criterion was applied
to the cluster validity index (the ratio between within-cluster
to between-cluster distance) for values of k=2-20 to determine
the optimal value of k=5 (Supplementary Figure S2) (Liu et al.
2013).

K-means clustering using a squared Euclidean distance was
then applied to the matrix using the optimal k=5 to produce
5 co-activation pattern (CAP) “brain states.” The CAP metrics
included: a) dwell time, calculated as the average number of
continuous TRs that a participant stayed in a given brain state,
b) frequency of occurrence of brain states, calculated as an
overall percentage that the brain state occurred throughout the
duration of the scan compared with other brain states, and c)
the number of transitions, calculated as the number of switches
between any two brain states.

In the processing pipeline including the data without GSR,
k-means analysis was again conducted to obtain the optimal k,
determined to be k=5.

Statistical Analysis

To test our first hypothesis that the dynamic network integra-
tion among networks important for cognitive flexibility differs
across age, linear and quadratic regressions were conducted
with Age and Age?, predicting the dynamic brain state metric
(dwell time, frequency, and transitions) for each CAP. Covariates
included head motion and sex. Age? was included due to prior
evidence revealing age has a quadratic or curvilinear relation-
ship with certain brain regions and networks (DuPre and Nathan
Spreng 2017; Chen et al. 2018). Overall, this model was conducted
to extend prior “static” results by using dynamic brain network
states.

¥ =Bo + B1(Age) + By (Age?) + Bn(Covariates).

To test our second hypothesis that brain dynamics moderate
the relationship between age and cognitive flexibility, hierarchi-
cal multiple regressions were conducted. Hierarchical multiple
regression analysis includes adding variables into the model in
separate steps (Francis et al. 1975). In the first step, Age and
Age? were included as predictors of cognitive flexibility, with sex
and mean FD included as covariates. This tested for quadratic
relationships between age and cognitive flexibility before the
moderation analysis were conducted. In the second step, the

brain dynamic metric (dwell time, frequency, and transitions)
for each CAP was included as a predictor. In the last step,
the interaction between Age and the dynamic metric and the
interaction between Age? and the dynamic metric were included
into the regression analysis. Brain dynamics were tested as the
moderator in this study due to the idea that there may be
variability in brain functioning among subjects of the same age
(Dosenbach et al. 2010). This approach supports assessing vari-
ability in brain dynamics associated with cognitive flexibility
across the lifespan, while still revealing age-related changes.
The cognitive flexibility measures used were the CWIT Inhibi-
tion/Switching, the TMT Color/Number Switching, and the VF
Category Switching raw scores. Following significant interac-
tions, the simple slopes were examined to aid interpretation.
Simple slopes were computed to explore the effect of Age? on
the cognitive flexibility measure at three different levels of the
moderator as represented by the brain dynamic metric (ie.,
at —1 SD below the mean, at the mean, and at +1 SD above
the mean). All analyses were conducted using R (Computing
and Others 2013) (https://www.R-project.org/) and all analyses
are publicly available (https://github.com/lkupis/lifespan_Dyna
mics). Additional analyses were also conducted with more ROIs
using the Schaefer parcellation (Schaefer et al. 2018), and are
available in the Supplementary Materials.

¥ =By +B1(Age) + B2 (Age?) + By (Covariates) [Step 1]
¥ =By +B1(Age) + By(Age?) + B3 (Brain Dynamic)
+ Bp(Covariates) [Step 2]

¥ =Bo + B1(Age) + Bo(Age?) + B3(Brain Dynamic)
+B1(Age x Brain Dynamic) + By(Age? x Brain Dynamic)
+ Bp(Covariates) [Step 3]

Results
Recurrent CAP Analysis

Results from the CAP analysis among the M-CIN, L-FPN, and M-
FPN are presented in Figure 1. The first brain state (CAP 1) was
characterized by stronger co-activation among the M-FPN nodes
relative to the L-FPN and M-CIN. The second brain state (CAP
2) was characterized by co-activation among the M-CIN nodes.
The third brain state (CAP 3) was characterized by co-activation
among the M-CIN and the M-FPN. The fourth brain state (CAP 4)
was characterized by co-activation among the L-FPN and M-CIN.
The last brain state (CAP 5) was characterized by co-activation
among the L-FPN and M-FPN.
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CAP Analysis without Global Signal Regression

Results from the CAP analysis using data without GSR are pre-
sented in Supplementary Figure S3. The resulting CAPs revealed
the influence of the global signal, notably in CAPs 1 and 2.
CAP 1 shows all nodes with inactivity and CAP 2 shows all
nodes with activity representing the global signal across all
nodes. Prior work suggests that the decision to remove the
global signal or not depends on the scientific question, and
should be considered when interpreting the results (Murphy
and Fox 2017). The removal of the global signal as a prepro-
cessing step significantly mitigates artifacts from a variety of
sources (Power et al. 2017; Ciric et al. 2018). Although in some
cases the global signal can represent neuronal signal (Hyder and
Rothman 2010; Scholvinck et al. 2010); in the current dataset,
removal of the global signal was beneficial to revealing CAPs
associated with cognition. Therefore, all statistical analyses and
results presented are derived from data that was preprocessed
with GSR.

Associations between Brain Dynamics and Quadratic
Effects of Age

Curvilinear regressions were conducted with Age and Age? pre-
dicting the brain dynamic metric for each brain state (CAP 1-
5), while controlling for sex and mean FD. There was a posi-
tive quadratic effect of age when predicting the frequency of
CAP 3, characterized by co-activation among the M-CIN and
M-FPN, 8 = 0.42, b=<0.001, SE=<0.001, P=0.030, uncorrected.
CAP 3 occurred less frequently as age increased, but increased
in occurrence with older age (see Fig. 2A). There was also a
negative quadratic effect of age when predicting the frequency
of CAP 5, characterized by co-activation among the L-FPN and
M-FPN, 8 = —0.40, b= <0.001, SE = < 0.001, P=0.037, uncorrected.
CAP 5 occurred more frequently as age increased; however, it
decreased with older age (see Fig. 2B). Lastly, there was a pos-
itive quadratic effect of age predicting the dwell time of CAP
4, characterized by co-activation among the M-CIN and L-FPN,
B=0.37,b=<0.001, SE = < 0.001, P=0.053, uncorrected. The dwell
time of CAP 4 decreased with age, and increased with older age
(see Fig. 2C).

Main Effects of age ? and Brain Dynamics Predicting
Cognitive Flexibility

Age, Age?, and the brain dynamic metric were included in steps
1 and 2 of the hierarchical regression analyses. There were
significant quadratic effects of age for the cognitive flexibil-
ity measures including the CWIT total errors raw score, TMT
completion time raw score, and VF total correct number of
responses raw score (P’s <0.001), but not for CWIT completion
time raw score (P’s > 0.05). The brain dynamic metrics were not
significant predictors of cognitive flexibility when included into
the regression equations (P’s > 0.05).

Interactions between Age and Brain Dynamics
Predicting Cognitive Flexibility

There were multiple significant interactions between the
dynamic brain states and Age? predicting cognitive flexibility
(Supplementary Table S1). Only the significant interactions
that survived Bonferroni correction ((.05/10)=0.005) will be
discussed. The dwell time of CAP 5, characterized by co-
activation among the L-FPN and M-FPN, moderated the
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relationship between the quadratic effect of age and cognitive
flexibility (TMT switching completion time), b=0.02, SE=0.01,
P=0.002. Simple slope analyses indicated there was a significant
slope between Age? and TMT switching completion time at low
(-1 SD), b=0.02, SE=0.01, P=0.003, average, b=0.03, SE=0.004,
P=<0.001, and high (+1 SD), b=0.04, SE=0.01, P <0.001 CAP
5 dwell times. A low CAP 5 dwell time was associated with
improved cognitive flexibility across the lifespan; Average CAP
5 dwell time consisted of slightly poorer cognitive flexibility at
young and older ages and improved cognitive flexibility mid age.
A higher CAP 5 dwell time was associated with poorer cognitive
flexibility at younger and older ages and improved cognitive
flexibility performance during mid-age. Although the simple
slopes were significant at low, average, and high levels of CAP
5 dwell time, examination of the slopes in Figure 3A further
revealed the effect was minimal at a low level (Li 2018). Overall,
the dynamics of a brain state consisting of co-activation among
the L-FPN and M-FPN moderated the relationship between
cognitive flexibility with Age? (see Fig. 3A).

The number of brain state transitions also moderated the
relationship between the quadratic effect of age and cogni-
tive flexibility for TMT switching completion time, b=-0.001,
SE=<0.001, P=0.005. Simple slope analyses indicated there was
a significant slope between Age? and TMT switching comple-
tion time at low (—1 SD), b=0.04, SE=0.01, P=<0.001, aver-
age, b=0.03, SE=0.004, P=<0.001, and high (+1 SD), b=0.02,
SE=0.01, P=0.001, transitions. Simple slopes analyses indicated
that greater numbers of transitions were associated with stable/-
good cognitive flexibility throughout the lifespan, with a reduc-
tion in cognitive flexibility around mid-age. In both average
and low transitions, cognitive flexibility was poorer in younger
and older ages, but peaked during mid-age. Overall, transitions
moderated the relationship between cognitive flexibility and
Age? (see Fig. 3B).

Discussion

Cognitive flexibility is an important executive function enabling
optimal outcomes in academic achievement, transitions into
adulthood, quality of life, and resilience to negative life events
(Uddin 2021). Examining brain dynamic changes across the
lifespan aids the understanding of the neural mechanisms
underlying optimal and flexible cognition (Grady and Garrett
2014) and may inform studies of cognitive (Zhang et al.
2020a) and neuropsychiatric disorders (Rabany et al. 2019;
Uddin 2020b). The large-scale networks known as the M-
CIN (salience), L-FPN (executive), and M-FPN (default), are
thought to be important for flexible cognition (Uddin et al.
2011; Qin et al. 2015) across aging (Chand et al. 2017; Adnan
et al. 2019a). The present study examined brain dynamics
among the M-CIN, L-FPN, and M-FPN as they relate to lifespan
development, and as a moderator between age and cognitive
flexibility.

The present study revealed five recurring CAP (CAPs or
“brain states”) involving the M-CIN, L-FPN, and M-FPN across
the lifespan. Quadratic relationships were observed between
age and the brain dynamic metrics, primarily within hybrid
brain states characterized by between-network coupling.
Furthermore, brain dynamics moderated the relationship
between a quadratic effect of age and cognitive flexibility. We
demonstrate differences in intrinsic brain network dynamics
across aging associated with cognitive flexibility, specifically
within the M-FPN/L-FPN co-activation state (CAP 5), and brain
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Figure 2. Positive and negative quadratic effects of age (years) predicting dynamic brain metrics for specific CAPs. For all graphs, regression coefficients from the
regression lines of quadratic effects of age predicting each dynamic brain state were plotted. Y-axes were z-scored to facilitate interpretation across graphs. For
A and B, a negative value represents lower frequency of occurrence compared with the average, whereas positive values represent greater frequency of occurrence
compared with the average. (A) A positive quadratic relationship among age and CAP 3 frequency of occurrence. CAP 3 occurred frequently during childhood, decreased
in frequency during young adulthood, and increased in frequency again throughout middle- to older adulthood. CAP 3 consisted of co-activation among the M-CIN
(salience) and the M-FPN (default). (B) A negative quadratic relationship among age and CAP 5 frequency of occurrence. CAP 5 occurred less frequently during childhood,
increased in frequency during young- and middle-adulthood, and decreased again in frequency in older adulthood. CAP 5 consisted of co-activation among the L-FPN
(executive) and M-CIN. Lastly, (C) A positive quadratic relationship among age and CAP 4 dwell time. CAP 4 exhibited longer dwell times during childhood, shorter dwell
times during young- and middle-adulthood, and longer dwell times again in older adulthood. CAP 4 consisted of co-activation among the L-FPN and M-FPN. In A, B,
and C, children and older adults had similar brain dynamic patterns for each CAP, whereas young adults had different brain dynamic patterns. For example, in B, CAP

5 occurred less frequently in early childhood and older adulthood, but occurred more frequently in early adulthood.

network transitions. We found that a greater M-FPN/L-FPN
dwell time in children and older adults was associated with
poorer cognitive flexibility. Furthermore, greater brain state
transitions in children and older adults was associated with
better cognitive flexibility, consistent with prior observations
(Grady and Garrett 2014; Battaglia et al. 2020). Mid-adulthood,
however, was associated with different dynamic patterns
associated with optimal cognitive flexibility. This age represents
a change in cognition from greater fluid to semantic abilities
(Park et al. 2001). Our findings suggest children and older
adults are most vulnerable to cognitive flexibility deficits,
however, a “deficit” in children is defined by having worse
cognitive flexibility compared with age-matched peers, with the
potential of improvement in adulthood. Cognitive inflexibility
in children and adults was associated with brain dynamic
alterations among the M-CIN, M-FPN, and L-FPN based on time
spent in the hybrid M-FPN/L-FPN state and variability in state
transitions.

U-Shaped Trajectories of between-Network Dynamics

Previous studies have demonstrated quadratic effects of age
associated with between-network connections (Betzel et al.

2014; Cao et al. 2014). Prior studies are consistent with our
findings of quadratic or U-shaped trajectories in between-
network dynamics among three large-scale brain networks of
the M-CIN, L-FPN, and M-FPN (Chen et al. 2018). We found the
brain state consisting of co-activation of the M-CIN and M-FPN
(CAP 3) decreased in frequency of occurrence during middle
adulthood but increased during both childhood and older
adulthood. Functional connectivity between the M-CIN and M-
FPN has been previously shown to be associated with greater
cognitive control (Jjilka et al. 2014), behavioral performance
on cognitive tasks (Putcha et al. 2016), and memory in older
adults (Zhang et al. 2020b). Additionally, there is evidence that
coupling between the M-FPN and M-CIN may be an intermediary
“switching mechanism” prior to later M-FPN and L-FPN coupling
(Beaty et al. 2016), potentially underlying greater use of semantic
or crystallized knowledge (Spreng and Turner 2019).

Previous work examined M-CIN and M-FPN connections
using static functional connectivity approaches, whereas we
explored the relationship using dynamic or time-varying
methods. Therefore, dynamic interactions between the M-CIN
and M-FPN may be critical to further assess in relation to
previous static functional connectivity findings. Furthermore,
we expand upon previous findings by demonstrating increased
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Figure 3. Brain dynamics moderate the relationship between age and cognitive flexibility: simple slopes. The interactions presented in A and B were between Age? and
the brain dynamic metrics for CAP 5 and brain state transitions; however, they are presented across age (years) for visual purposes. Additionally, the simple slopes for
both interactions are presented to visually determine the effect of age on the cognitive flexibility measure across three different levels of the moderator as represented
by the brain dynamic metric (i.e., —1 SD below the mean, at the mean, and + 1 SD above the mean). Additionally, the y-axes were reversed and standardized so better
cognitive flexibility is at higher ends (the top) and poorer cognitive flexibility is at lower ends (the bottom) of the y-axes. (A) The CAP 5 dwell time (DT) moderated
the relationship between Age? and the TMT Switching condition (total time to complete the task) as represented by the simple slopes. CAP 5 is characterized by co-
activation among the L-FPN (executive control) and M-FPN (default). Children and older adults who spent a longer time in CAP 5 had poorer cognitive flexibility, whereas
younger adults had optimal cognitive flexibility regardless of their CAP 5 brain dynamics. Similar findings were seen at average levels of CAP 5 dwell time. Children
and older adults who spent less time in CAP 5 had optimal cognitive flexibility relative to those with average and greater time spent in CAP 5, whereas younger
adults had poorer, yet still optimal, cognitive flexibility. (B) The number of transitions moderated the relationship between Age? and the TMT switching condition
(total time to complete the task) as represented by the simple slopes. Children and older adults who had fewer brain state transitions had poorer cognitive flexibility,
whereas younger adults had optimal cognitive flexibility at average and fewer transitions. Similar findings were seen across individuals with average numbers of brain
state transitions. Children and older adults with greater brain state transitions had optimal cognitive flexibility relative to those with average and fewer brain state

transitions, whereas young adults had poorer cognitive flexibility.

dynamic interactions or frequency of occurrence of the M-CIN
and M-FPN state is associated with older age and development.
This may be due to its role as an intermediary switching
mechanism prior to M-FPN and L-FPN connections, which
is greater in older adults (Spreng and Turner 2019). Thus,
M-CIN/M-FPN coupling may occur more frequently prior to
M-FPN/L-FPN coupling. Within- and between-brain network
integration increases with age, therefore, brain network
variability between certain brain networks may be greater in
children due to less integration (Gu et al. 2015; Kundu et al.
2018). Furthermore, connectivity with the M-FPN is important
for brain network development (Dosenbach et al. 2010). Together,
the M-CIN/M-FPN hybrid state exhibits a quadratic trend across
the lifespan, and children and older adults may be more
likely to enter this state prior to engaging other functional
configurations.

Similarly, we found the co-activation between the L-FPN and
M-CIN (CAP 4) decreased in dwell time during middle adult-
hood and increased during childhood and older adulthood. The
effect size for this finding was moderate (8 = 0.37) (Schafer
and Schwarz 2019). Previous work demonstrates the M-CIN may
independently act as a switching mechanism between the M-
FPN and L-FPN (Goulden et al. 2014). In children and older adults,
a longer time was spent in the L-FPN/M-CIN state during a
task-free environment, suggesting the M-CIN related switching
mechanism may not be fully developed in children (Uddin et al.
2011), and may be “stickier” or less efficient in older adults. Con-
versely, middle-aged-adults dwelled less in this state, potentially

due to having greater brain state transitions and variability than
children and older adults (Grady and Garrett 2014; Ryali et al.
2016; Xia et al. 2019).

Lastly, we found the connection between the L-FPN and M-
FPN decreased in frequency of occurrence during childhood
and older adulthood and increased during middle adulthood.
Although reliance on semantic knowledge and subsequently
greater M-FPN/L-FPN connections is not as prevalent in mid-
adulthood, evidence suggests mid-adulthood is characterized
by the intersection of greater reliance on semantic knowledge
while fluency abilities are still retained (Park et al. 2001; Spreng
and Turner 2019). Therefore, the M-FPN/L-FPN state may still
occur in middle adulthood and may occur more frequently due
to there being more flexible brain dynamics compared with
older adults and children.

Together, our results demonstrate that hybrid between-
network dynamics in certain brain states exhibit quadratic
relationships across age, and may underlie the cognitive
changes observed through development and aging. Our results
are in line with behavioral studies of cognitive flexibility, which
reveal cognitive flexibility takes an inverted U-shaped trend
across the lifespan (Cepeda et al. 2001; Zelazo et al. 2014).
Cognitive flexibility increases throughout childhood and into
adulthood, and declines in older age (Cepeda et al. 2001; Zelazo
et al. 2014). Although the frontoparietal regions are overall
thought to support these changes (Gogtay et al. 2004; Luna
et al. 2010), we extend this prior work by revealing between-
network dynamic coupling among the M-CIN, M-FPN, and L-FPN
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may also facilitate changes associated with cognitive flexibility
across aging.

Brain Dynamics as a Moderator of Age and Cognitive
Flexibility: L-FPN and M-FPN

We examined brain dynamics as a moderator between quadratic
effects of age and cognitive flexibility to directly examine
how brain dynamics among networks impact the relationship
between aging and cognitive flexibility (Dajani and Uddin 2015).
First, the brain state characterized by co-activation among the
L-FPN and M-FPN moderated the relationship between the
quadratic effect of age and cognitive flexibility as measured
by the TMT. This finding was also replicated using more
regions of interest within the M-FPN, L-FPN, and M-CIN (see
Supplementary Materials). Emerging evidence suggests that
greater connectivity between the M-FPN and L-FPN is a central
feature of neurocognitive aging (Spreng and Schacter 2012;
Turner and Nathan Spreng 2015; Spreng et al. 2018; Adnan
et al. 2019a; Adnan et al. 2019b), termed the “default-executive
coupling hypothesis of aging” (DECHA) (Turner and Nathan
Spreng 2015; Spreng et al. 2018). Relatedly, at each end of the
lifespan, behavioral evidence suggests that cognitive flexibility
performance is poorer in both childhood and older adulthood
(Cepeda et al. 2001; Ridderinkhof et al. 2002; Wasylyshyn et al.
2011; Dajani and Uddin 2015).

Consistent with DECHA and behavioral evidence associated
with cognitive flexibility across aging, we show individuals with
greater M-FPN/L-FPN dwell time, or individuals with less mod-
ulation of the M-FPN and L-FPN, perform worse on cognitive
flexibility tasks than older individuals with average or shorter
CAP 5 (M-FPN/L-FPN) dwell time. Although the DECHA model
has primarily been applied to older individuals, we additionally
found evidence that a greater CAP 5 dwell time is associated with
cognitive inflexibility during childhood. This may contribute to
the poorer performance on cognitive flexibility tasks observed
during childhood (Dick 2014; Buttelmann and Karbach 2017).
Additionally, previous evidence suggests there is less flexibility
among the M-CIN, M-FPN, and L-FPN during childhood (Ryali
et al. 2016). Our results extend this finding by relating reduced
network flexibility (M-FPN and L-FPN) with reduced cognitive
flexibility. Furthermore, our findings suggest that older adults
are more severely impacted by reduced M-FPN/L-FPN modu-
lation than children. Overall, our findings support the DECHA
model of aging, and extend previous work by revealing M-FPN/L-
FPN coupling is associated with cognitive flexibility during both
childhood and aging.

Furthermore, our results demonstrate different neural pat-
terns associated with cognitive flexibility during mid-adulthood
compared with older adults and children. This finding suggests
that a greater M-FPN/L-FPN dwell time may be beneficial to
cognitive flexibility during mid-adulthood. Additionally, average
and reduced M-FPN/L-FPN dwell time during mid-adulthood
were also associated with higher levels of cognitive flexibility.
Mid-adulthood has previously been shown as a turning point of
declining cognitive control and increased reliance on semantic
(crystallized) knowledge (Park et al. 2001). However, there is
evidence that fluid skills are declining yet intact, while semantic
knowledge is increasing, and may actually bolster cognition (Li
et al. 2015; Samanez-Larkin and Knutson 2015). Therefore, mid-
adulthood has been seen as an optimal period for decision-
making (Samanez-Larkin and Knutson 2015; Spreng and Turner
2019) due to the ability to integrate both fluid and semantic
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knowledge. Overall, our results reflect this idea and demonstrate
mid-adulthood is associated with optimal cognitive flexibility
that may additionally be aided by semantic knowledge.

Brain Dynamics as a Moderator of Age and Cognitive
Flexibility: Transitions

We found that the number of brain state transitions moder-
ated the relationship between a quadratic effect of age and
cognitive flexibility. This finding was also replicated using addi-
tional regions of interest within the M-FPN, L-FPN, and M-CIN
(see Supplementary Materials). Specifically, a greater number of
brain state transitions was associated with stable or high cog-
nitive flexibility across the lifespan. As expected, average and
lower number of brain state transitions were associated with
poorer cognitive flexibility during childhood and older adult-
hood, consistent with the literature (Hutchison and Morton 2015;
Xia et al. 2019; Battaglia et al. 2020). Our findings suggest that
the childhood and the older adulthood stages of life are most
vulnerable to reduced brain state transitions associated with
poorer cognitive flexibility compared with mid-adulthood. This
finding has implications for development during both child-
hood and older adulthood. Overall, our findings demonstrate
direct relationships between brain dynamics associated with
age and cognitive flexibility changes across the lifespan (Uddin
2021).

Conclusion

Using CAP analysis, we identified brain states characterized by
between- and within-network connectivity of neural networks
important for cognitive flexibility. We discovered that between-
network dynamics of a state characterized by co-activation
among the M-FPN and L-FPN, and brain state transitions,
moderated the relationship between aging and cognitive
flexibility. Our results reveal dynamic brain mechanisms
contributing to poorer cognitive flexibility in youth and older
individuals. Preventative measures and interventions should
prioritize strategies targeting brain dynamics among the M-CIN,
M-FPN, and L-FPN, and focus on cognitive flexibility training to
promote optimal outcomes across the lifespan.

Supplementary Material

Supplementary material can be found at Cerebral Cortex online.
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