
REVIEW ARTICLE OPEN

Digital pathology and artificial intelligence in translational
medicine and clinical practice
Vipul Baxi1✉, Robin Edwards1, Michael Montalto2 and Saurabh Saha1

© The Author(s) 2021

Traditional pathology approaches have played an integral role in the delivery of diagnosis, semi-quantitative or qualitative
assessment of protein expression, and classification of disease. Technological advances and the increased focus on precision
medicine have recently paved the way for the development of digital pathology-based approaches for quantitative pathologic
assessments, namely whole slide imaging and artificial intelligence (AI)–based solutions, allowing us to explore and extract
information beyond human visual perception. Within the field of immuno-oncology, the application of such methodologies in drug
development and translational research have created invaluable opportunities for deciphering complex pathophysiology and the
discovery of novel biomarkers and drug targets. With an increasing number of treatment options available for any given disease,
practitioners face the growing challenge of selecting the most appropriate treatment for each patient. The ever-increasing
utilization of AI-based approaches substantially expands our understanding of the tumor microenvironment, with digital
approaches to patient stratification and selection for diagnostic assays supporting the identification of the optimal treatment
regimen based on patient profiles. This review provides an overview of the opportunities and limitations around implementing AI-
based methods in biomarker discovery and patient selection and discusses how advances in digital pathology and AI should be
considered in the current landscape of translational medicine, touching on challenges this technology may face if adopted in
clinical settings. The traditional role of pathologists in delivering accurate diagnoses or assessing biomarkers for companion
diagnostics may be enhanced in precision, reproducibility, and scale by AI-powered analysis tools.
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INTRODUCTION
Pathology has historically played a crucial role in the drug
development process, including preclinical research to facilitate
target identification, define drug mechanism of action and
pharmacodynamics, and enable toxicology assessments1,2. More
recently, pathology has formed a bridge between drug discovery,
translational, and clinical research programs that are striving to
decipher disease pathophysiology in the context of the mechan-
ism of action, patient selection, or patient stratification (Fig. 1)3,4.
Such insights form the basis of novel hypotheses that can further
be explored in drug discovery programs or applied to inform
clinical trial design, thereby improving the probability of technical
and regulatory success.
Pathology-based assessments have been used to classify

disease and determine efficacy in drug development across a
variety of disease areas5–7. For example, during phase 2 trials for
drug development in non-alcoholic steatohepatitis, the US Food
and Drug Administration (FDA) considers evidence of efficacy on a
histological endpoint to support initiation of phase 3 trials7.
Additionally, pathological complete response (pCR) has been
studied as a surrogate endpoint in patients with cancer for the
prediction of long-term clinical benefit and favorable prognosis
with the administration of neoadjuvant therapy8–13. More recently,
pCR was associated with improved long-term efficacy in patients
with human epidermal growth factor receptor 2 (HER2)-positive

breast cancer treated with chemotherapy plus either intravenous
or subcutaneous trastuzumab14. In the immuno-oncology (I-O)
arena, immune-related pathologic response criteria have been
applied retrospectively to surgical specimens from patients
treated with immunotherapy in the neoadjuvant or advanced
disease setting to predict survival in several tumor types15,16.
Immunohistochemistry (IHC) has been used to characterize

biomarkers, such as programmed cell death-ligand 1 (PD-L1), and
their association with clinical benefit. Traditional pathology
techniques present several advantages, such as low cost, wide-
spread availability, and application on formalin-fixed, paraffin-
embedded (FFPE) tissue samples17, but challenges pertaining to
differences in laboratory methods and subjective interpretation,
particularly with the evaluation of immune cell staining, may lead
to inter-observer variability18. This can produce inconsistency in
diagnoses, which may impact treatment decisions19–23. While the
use of IHC assays has led to better identification of patients who
respond to I-O therapy24–26, there remains a need to more
accurately quantify complex immune markers, including cell
phenotypes in a spatial context, that require advanced quantita-
tive tools to maximize the amount of information yielded from
individual samples27,28.
Artificial intelligence (AI) applications in pathology improve

quantitative accuracy and enable the geographical contextualization
of data using spatial algorithms. Adding spatial metrics to IHC can
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improve the clinical value of biomarker identification approaches.
For example, in a recent meta-analysis, the addition of spatial
context to IHC, achieved using multiplex IHC and immunofluores-
cence (IF), was significantly better at predicting objective response
to immune checkpoint inhibitors (ICIs) compared with gene
expression profiling (GEP) or IHC alone28, indicating the need for
more complex computational approaches to decipher the under-
lying biology and enhance clinical utility.
The development and integration of digital pathology and

AI–based approaches provide substantive advantages over tradi-
tional methods, such as enabling spatial analysis while generating
highly precise, unbiased, and consistent readouts that can be
accessed remotely by pathologists29.

ADVANCING FROM TRADITIONAL PATHOLOGY TO DIGITAL
PATHOLOGY
Efforts to overcome some of the challenges seen with traditional
pathology methods have led to the development and adoption of
complex, novel imaging systems and whole slide image (WSI)
scanners that have enabled the transition of pathology into the
digital era, also known as digital pathology. Within minutes, WSI

scanners capture multiple images of entire tissue sections on the
slide, which are digitally stitched together to generate a WSI that
can be reviewed by a pathologist on a computer monitor
(Fig. 2)30,31. Two scanners, Philips IntelliSite Pathology Solution
(PIPS) (Philips, Amsterdam, Netherlands) and Leica Aperio AT2 DX
System (Leica Biosystems, Buffalo Grove, Illinois, USA), are
approved by the FDA for review and interpretation of digital
surgical pathology slides prepared from biopsied tissue32,33.
There are many practical advantages to using these digital

pathology image systems and solutions that would bring
substantial benefits to translational and clinical research. These
include the organization and storage of large amounts of data in a
centralized location, integration of digital workflow software to help
streamline processes and improve efficiency, convenient sharing of
image data to enable cross-specialty worldwide remote commu-
nication, reduced testing turnaround time, and the generation of
precise and highly reproducible tissue-derived readouts reducing
inter-pathologist variability29,34–37. The increased speed and effi-
ciency gained in image acquisition can enhance the downstream
utilization options of traditional techniques such as hematoxylin
and eosin (H&E), IHC, and in situ hybridization. These slides can be
converted into a remotely available image within minutes and
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centrally reviewed by multiple pathologists from various sites29,
with applications including education, research, consultation, and
diagnostics29.
Recently, due to ongoing disruptions in relation to the COVID-

19 pandemic, including remote working and restricted travel,
digital pathology has been crucial in the continuation of clinical
and academic research, as well as routine pathology services38.
Without the need to transport glass slides and the ensuing
logistical and safety concerns, central pathology review enables
secure remote working38. Additionally, the utilization of digital
images allows the generation of pixel-level pattern information,
leading to expanded use of computational approaches that
enable a quantitative analysis of WSIs39,40.

Improvements gained from digital pathology: quantitative
analysis of the WSI
The use of digital image analysis in pathology can identify and
quantify specific cell types quickly and accurately and can
quantitatively evaluate histological features, morphological pat-
terns, and biologically relevant regions of interest (e.g., tumoral or
peritumoral areas, relationships between different immune cell
populations, areas of expression, presence of metastasis)41,42.
Quantitative image analysis tools also enable the capturing of data
from tissue slides that may not be accessible during manual
assessment via routine microscopy. Additionally, performing
similar tasks manually can require significant time investment
and can be prone to human error, such as counting fatigue43,44.

Expanding data capabilities: multiplex and multispectral
imaging
Quantitative image analysis can also be used to generate high-
content data through application to a technique known as
multiplexing, which allows co-expression and co-localization
analysis of multiple markers in situ with respect to the complex
spatial context of tissue regions, including the stroma, tumor
parenchyma, and invasive margin45,46. Current imaging metrics
can utilize multispectral unmixing strategies to reveal co-
expression patterns that define unique cell phenotypes and
spatial relationships (Fig. 3)47.
Automated classification of epithelial and immune cells and

simultaneous marker analysis at the single-cell level has been
conducted using prostate cancer, pancreatic adenocarcinoma, and
melanoma tissue samples46,48,49. Application of this technique
allowed identification of distinct T-cell populations and their spatial
distributions and underscored the potential of immune markers to
identify patients who may benefit from immunotherapy48,49.
While a highly multiplexed imaging platform can be used to

understand intra- and inter-cellular signaling pathways by examin-
ing how phenotypically distinct cell populations are spatially
distributed relative to one another, it is a time-consuming process
applicable to a predefined region of interest50. However, as
technology quickly advances, allowing digital evaluation of entire
tissue slides, we are no longer confined to a region of interest37,51.
The wealth of new information provided by these techniques has
created a need for more consistent and reproducible interpretation
of large and complex datasets, along with defining the interaction
patterns between cell types and spatial context found
in pathological images that define biological underpinnings37,52,53.

Advances in computational approaches: AI and machine
learning
The need for data reproducibility and the increasing complexity of
the analyses described above has led to the application of AI in
pathology37,52,53. AI refers to a broad scientific discipline that
involves using algorithms to train machines to extract information
or features beyond human visual perception37,41,54. AI approaches
are built to initially extract appropriate image representations and
then to train a machine classifier for a particular segmentation,

diagnostic, or prognostic task using a supervised or unsupervised
approach37,41,54. The power of AI to analyze large amounts of data
quickly can significantly speed up the discovery of novel
histopathology features that may aid our understanding of or
ability to predict how a patient’s disease will progress and how the
patient will likely respond to a specific treatment37,39,55. In breast
cancer, for example, unsupervised learning models have been
used to generate histologic scores that can differentiate between
low- and high-grade tumors and evaluate prognostically relevant
morphological features from the epithelium and stroma of tissue
samples to provide a score associated with the probability of
overall survival56,57. The success of these AI-based approaches
relies on the quality and quantity of the data used to train the
algorithm, limiting the generalizability of these image analysis
algorithms to larger or more complex datasets58.

Taking it further: deep learning networks. Deep learning takes
machine learning a step further, using sophisticated, multilevel deep
or convolutional neural networks (DNN or CNN) to create systems
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that perform feature classification from large datasets37,40,41,54.
Figure 4 highlights key differences between machine learning and
deep learning. The impact of applications of deep learning
algorithms to IHC- and H&E-stained specimens have been well
documented across many tumor types. These include grading
prostate cancer59, identifying biomarkers for disease-specific survival
in early-stage melanoma60, detection of invasive breast cancer
regions on WSIs61,62, predicting response to chemoradiotherapy in
locally advanced rectal cancer63, and identifying morphological
features (nuclear shape, nuclear orientation, texture, tumor archi-
tecture, etc.) to predict recurrence in early-stage non-small cell lung
cancer (NSCLC) from H&E slides64. Deep learning has also been used
to construct entity-graph-based tissue representations, where cell
morphology and topology are embedded within each node to
effectively describe the phenotypical and structural properties of
tissues and can be processed by graph neural networks (GNNs).
GNNs therefore enhance the interpretability of pathological assess-
ments gleaned from neural networks65,66.
It is important to compare AI-based interpretations with those of

the pathologist to define the associated algorithm’s performance
characteristics and utility. For example, when a CNN trained to
classify melanoma samples was compared against manual scoring
by histopathologists, the CNN was significantly superior in classifying
images as malignant melanoma or benign nevi compared with
manual assessment by histopathologists67. In the CAMELYON16
challenge, deep learning algorithms to detect breast cancer
metastases in H&E-stained WSIs of lymph node sections performed
similarly to the best performing pathologists under time constraints
in detecting macrometastases and were better in detecting
micrometastases68. However, it should be noted that the perfor-
mance of any algorithm will depend on the task, due to the degree
of accuracy required and the quality of the samples to be assessed37.
Another application of machine learning in the preclinical space is

the assessment of tumor purity (TP). TP estimation, currently
evaluated visually by pathologists, is used to ensure a signal is
derived from cancer cells rather than other noncancerous cells that
may be present in the TME based on tissue morphology when tissue

is used to generate orthogonal data such as transcriptome or
exome69,70. In a comparison of TP determined using AI (using deep
learning algorithms generated on the PathAI platform) and manual
estimates by pathologists, AI-assessed TP was found to be more
accurate than visual assessment by pathologists71. Previous
evidence has shown that immunosuppressive pathways are
upregulated in patients with low TP, suggesting that low TP is
associated with poor prognosis in some tumor types, including
gastric cancer. Therefore, improved methods of evaluating TP may
also aid in the identification of patients who may be suitable for
immunotherapy72.
Given the amount of additional detail and insights that can be

gained from combining WSI with machine learning algorithms, this
technology can be readily applied to translational research.
However, one major limitation of machine learning is the large
amount of high-quality data required to develop these algorithms58.
Data used for training need to be accurate and as complete as
possible in order to maximize predictability and utility39. This can be
challenging when histological data are obtained from various
laboratories, leading to some variability due to factors such as
differences in slide preparation (sectioning, fixation, staining, and
mounting)73, scoring algorithms18, and inherent inter-observer
variability74. These challenges become more apparent when more
complex computational analytics methods are used for multiplexed
imaging. Although AI could be used to overcome inter-reader
variability across multiple institutions with the development of
robust algorithms that take specific histological features of various
tumors and subtypes into account75, further research is needed to
fully understand the impact of these factors on the quality of AI data.

APPLICATIONS OF DIGITAL PATHOLOGY IN TRANSLATIONAL
MEDICINE
Enhancing our understanding of the TME
Tumor evolution and progression involve many complex cellulars
and molecular interactions that are spatially and temporally
regulated within the TME52. IHC can be used to gain insights into
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the composition of the TME by facilitating the identification of
different cell types expressing a protein of interest and assessing
the density and spatial distribution of specific biomarkers50. Digital
pathology approaches, such as quantitative analysis of TILs,
present an opportunity to gain greater insight into intra-tumor
heterogeneity, spatial patterns of cell phenotypes, and the
complex interactions between cancer and the immune system
within the TME52,53. Image-based techniques can be used to
determine immune cell responses to immunotherapy such as
macrophage activation76 or lymphocyte infiltration by regulatory
T cells (Tregs) into core tumor regions in solid tumors77, which
may in turn have value as a predictive indicator for the
effectiveness of ICIs. Favorable cancer prognosis has also been
associated with factors in the TME, including high CD8+ TIL
rates78,79. Recently, image analysis and AI methods have
contributed to the development of novel approaches to
concurrently assess multiple biomarkers in preclinical and
exploratory studies, revealing complex interactions within the
TME and providing the potential to improve cancer diagnosis and
the selection of treatment regimens. Combining multiple techni-
ques, such as multiplex IF, with image analysis has yielded
important insights into specific immune cell populations, such as
those in the TME of classical Hodgkin lymphoma, and their
associations with PD-1/CTLA-4+/− T cells80. These studies require
multiple large cohorts to add the scale and robustness necessary
to gain these important insights, to elucidate relationships that
may not be apparent to the human eye, and to help overcome
observer bias that may mask potential biomarker signals.

Assessing treatment response: immune cell interactions in the
TME
Digital pathology can also be used to gain insights into a receptor-
ligand binding, as proximity may be indicative of receptor
engagement and activation. For example, lymphocyte-activation
gene 3 (LAG-3), expressed on exhausted T cells, principally
interacts with major histocompatibility-II (MHC-II) molecules,
expressed on the surface of antigen-presenting and tumor
cells81,82. Spatial analysis in bladder and gastric cancer tumor
cells has demonstrated that the density and proximity of LAG-3+

were significantly greater when associated with MHC II+ vs.
MHC II− tumor cells, suggesting that LAG-3–expressing TILs may
be preferentially located in proximity to MHC II+ tumor cells,
allowing for LAG-3 activation and the inhibition of antitumor
immunity83. The insights provided by digital pathology into the
number and location of immune cells relative to tumor cells may
provide information on immune response37,84, which could guide
future treatment strategies. AI has also been used to quantify
immune cells within the TME to define T-cell abundance
and associated geographic localization in the tumor stroma,
parenchyma, parenchyma-stromal interface, and invasive margin,
which are then associated with transcriptomic factors to define
underlying biological associations85.

Identifying genomic features
Additionally, AI-based approaches may find applications in
translational medicine and clinical practice by predicting gene
mutations from routine histopathology slides. With genomic tests
being associated with high costs and high rates of failure due to
stringent sample requirements86,87, AI may be particularly useful
for evaluating genomic instability and the mutational landscape,
with the possibility to assess pathologic and genomic features in
conjunction with one another. A CNN trained with WSIs of H&E-
stained hepatocellular carcinoma (HCC) tissue was used to predict
the ten most common prognostic and mutated genes in HCC, with
four of these (CTNNB1, FMN2, TP53, and ZFX4) correctly identified
by the model88. Similar results were obtained when a DNN was
trained to predict the most commonly mutated genes in lung
adenocarcinoma, with 6 (STK11, EGFR, FAT1, SETBP1, KRAS, and

TP53) being predicted from WSIs89. Deep learning has also been
used to predict microsatellite instability (MSI) status from tumor
tissue90. A CNN trained to classify MSI versus microsatellite
stability was able to robustly distinguish features predictive of MSI
in gastric and colorectal cancer samples90.
However, there are limitations to using AI for molecular

classification. For example, current imaging techniques can only
identify genetic variants when they directly impact tissue
morphology, as described previously91. At the same time, AI
algorithms cannot be applied in cases where actual variant allele
frequencies of selected mutations can impact the classification
and prognosis of individual diseases, such as hematologic myeloid
neoplasms92.

TRANSLATING DIGITAL PATHOLOGY INTO CLINICAL PRACTICE
Potential for patient stratification
As a further application in translational medicine, digital pathology
approaches have been used to predict response and identify
patients most likely to respond to treatment. For example, studies
have used spatial analysis to determine the response of patients
with NSCLC to nivolumab therapy. These included training
machine learning models to extract morphological details, such
as the spatial arrangement of tumor nuclei and variance in shape
and chromatin structure93, as well as the area and density of TILs
and the proximity of TILs to each other and to tumor cells94. The
features extracted from these models were able to distinguish
patients who responded to nivolumab therapy93,94. In another
example, digital image analysis was used to quantify CD8 and
PD-L1 positive cell densities from patients treated with durvalu-
mab across multiple tumor types95. Patients defined as positive
for the CD8xPD-L1 composite signature had longer median
survival compared with signature-negative patients, demonstrat-
ing the potential predictive value of digitally defined composite
biomarkers.
AI and machine learning can also assist in classification and

staging across various tumor types. A new approach to tumor
subtyping has been developed based on a DNN (MesoNet) to
predict OS of patients with mesothelioma from hematoxylin,
eosin, and saffron stained WSIs, without any pathologist-provided
annotations96. Results demonstrated that the model was more
accurate in predicting patient survival than using current
pathology practices and was able to identify regions contributing
to patient outcomes96, suggesting that deep learning models can
identify new features predictive of patient survival and potentially
lead to new biomarker discoveries.

Application of digital pathology and AI algorithms in
diagnostics
Biomarker research has been an area of particular interest in the I-O
space due to its potential predictive value in some solid
tumors25,26,97–100. ICIs, such as anti–PD-(L)1 and anti–cytotoxic T
lymphocyte antigen-4, have been studied in multiple clinical trials,
leading to improved prognosis for patients across various solid
tumors101. Evidence has shown that PD-L1 expression may be
indicative of response to ICI therapy in some tumor types25,26,97–100,
while other studies have shown that patients demonstrated durable
responses to ICIs regardless of PD-L1 expression3,102–108. Given the
widespread clinical use of ICIs, predictive assays are needed to help
stratify patients to determine who may benefit from such
treatments.
While the use of these assays can help determine whether a

patient will benefit from ICI therapy, biomarker identification, such
as PD-L1 status, using tumor biopsies is challenging. Even when
used by experienced pathologists, visual interpretation of PD-L1
using IHC is subjective and prone to error, which may contribute
to inaccurate patient stratification. Digital scoring of PD-L1
expression can assist pathologists in overcoming these barriers
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by providing standardized metrics for biomarker assessment at
single-cell resolution across whole tissue sections36.
Multiple studies have evaluated PD-L1 assessment using digital

scoring and AI algorithms and have shown that digital-based
techniques can perform better than or equal to manual patholo-
gical evaluation across various tumor types. A high correlation
between AI and manual assessment of PD-L1 expression on tumor
and immune cells has been observed in multiple CheckMate trials
with samples from NSCLC, urothelial carcinoma, melanoma, and
gastric cancer109–111. Furthermore, similar associations between PD-
L1 expression and response to nivolumab have been reported
between manual and digital scoring109,110. Using the combined
positive score to assess PD-L1 expression on tumor and immune
cells, digital image analyses and pathologists’ interpretations on
stained slides (using the 22C3 pharmDx assay [Dako, Denmark])
demonstrated 33 (84.6%) of 39 cases had concordant results, and
statistical analyses indicated that PD-L1 expression interpreted by
pathologists or digital image analysis did not differ significantly for
predicting responses to pembrolizumab112. Prospective clinical
trials in colorectal cancer113 and NSCLC114 are also using digital
image analyses to identify potential immune cell biomarkers within
the TME.
The role of AI and machine learning in biomarker identification

has been evaluated in studies outside of immunotherapy. For
example, a DNN model (ConvNets) trained to automatically
recognize cancer cell types were compared with conventional
machine learning techniques. ConvNets achieved significantly
higher accuracy than conventional algorithms, suggesting a role
for computer-aided diagnosis to facilitate clinical decision-
making115. Beyond oncology, AI and machine learning have been
studied in the context of a morphological assessment of
nonalcoholic steatohepatitis/nonalcoholic fatty liver disease and
liver allograft fibrosis116,117. In these cases, AI-based methods were
able to correctly reflect markers of steatotic severity116 and assess
liver allograft fibrosis progression over time117.
Various platforms have been developed for the purpose of

quantitative image analysis. Several have received FDA approval,
including those used to detect HER2118. The goal of a HER2-
directed image analysis platform is to detect and quantify HER2
membranous IHC staining of invasive breast cancer cells and to
provide an accurate, precise, and reproducible quantitative HER2
result that can then be used to guide treatment decisions119.
Digital image analysis has also been used to classify biological
subtypes beyond HER2, including ER- and progesterone receptor
(PR)–positive subtypes. Ahern et al demonstrated considerable
overlap between unsupervised and supervised computational
pathology platforms using image analysis to measure ER and PR
expression in breast tumors between positive and negative
groups, as classified by a pathologist120. While the supervised
platform had a marginally higher performance than the unsu-
pervised platform, both platforms provided meaningful results
and may have important roles in future molecular epidemiology
studies120.

Addressing consistency issues for application in clinical
practice
There are several published resources for pathologists as well as for
physicians, including guidelines, position papers, and directives
relating to digital pathology30,31,37,121–128. These include detailed
information on the handling of digital images in nonclinical121 and
clinical122 settings, technical aspects and performance standards for
WSI devices122–124, validation and quality assurance of digital
pathology systems for nonclinical125 and clinical use30,122,126,
AI concepts and best practices37,127, tutorials on using deep
learning frameworks for image analysis128, and reimbursement
considerations129. For example, the College of American Pathologists
provides comprehensive guidelines to laboratories on validating
their own WSI systems for clinical use, including emulation of the

real-world environment, sample set size, establishing concordance
using intra-observer variability, and documentation, among others30.
The performance of AI applications in digital pathology is

largely dependent on the size and quality of the dataset used to
train an algorithm41. Digital images used for training purposes
should be obtained from multiple staining batches, scanners, and
institutions to ensure generalizability. Such datasets should be
curated by pathologists, ensuring that representative images have
been obtained at an appropriate magnification and that all
regions of interest are comprehensively annotated depending on
the diagnostic application41. Crucially, the validation of AI
algorithms developed for clinical purposes increases the con-
cordance between manual and digital pathology interpretations.
The role of pathologists in the validation step is equally important
in order to ensure that datasets represent the sample type of
interest (e.g., H&E-stained FFPE section), encompass the entirety of
a glass slide, and are big enough to reveal potential interpreta-
tional discrepancies, as well as to evaluate the accuracy and
performance of the algorithm30,119.

ADOPTION OF DIGITAL PATHOLOGY AND AI: CHALLENGES
AND FUTURE CONSIDERATIONS
Despite the advantages of incorporating digital pathology into the
clinical setting, challenges remain (Table 1). Value determination
and reimbursement structures for digital pathology are lacking.
This leaves value interpretation, investment, and cost savings
considerations up to individual laboratories, which is difficult and
a substantial hinderance to widespread adoption. Image analysis
platforms have been shown to provide prognostic value, such as
risk classification in patients with colon cancer130. However, these
are offered as single-site, standalone tests, thereby limiting their
applicability to the wider pathology community. Studies that have
evaluated the adoption of complete digital pathology workflows
have shown increases in efficiency and operational utility131.
Technical concerns related to reproducibility, interpretability,

the accuracy of competing devices, financial costs of processing
hardware, and regulatory approvals that must accompany studies
of clinical utility all represent barriers to adoption132. Some level of
error with digital pathology is anticipated to be present at this
point, and approaches that combine algorithm performance with
manual validation, with margins of error similar to or stricter than
those used for manual pathology, are likely to be the standard
moving forward. This approach has already been tested in routine
diagnostics, whereby pathologists interacted directly with an AI
platform to conduct IHC-based intrinsic subtyping of breast
cancers. The AI platform, both alone and working in consort with
pathologists, was significantly more accurate in determining
subtypes133. Additionally, translation and adoption into clinical
practice will depend on algorithms being validated across many
patient cohorts utilizing data not included in the training set. This
will require large amounts of data to be acquired from multiple
laboratories in order to assure the broad applicability required in a
clinical setting39,134.
While there have been instances of AI being used in the clinical

trial setting, most have been observational studies135. Techniques
that take into account variations in real-world practice and can
influence decision-making need to be evaluated in interventional
studies to ascertain true clinical value134. Although a protocol for
the development of a reporting guideline and risk of bias tool has
been published136, no official guidelines are available yet on the
numbers of annotations, images, and laboratories needed to
capture the variation seen in the real-world. Additional statistical
studies will be required for application to properly determine the
optimal processes and workflows to ensure full implementation of
this technology in clinical practice39. Algorithms would also be
subject to periodic quality assurance (eg, when a new staining
protocol is introduced), similar to how assays are revalidated when
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there is a change in workflow or procedure137. Various quality
control (QC) techniques can be used to overcome preanalytical
issues such as variations in slide preparation, origin, and scanner
type. One approach is to train individual models of the same
architecture to recognize specific variables73. Other approaches,
such as combining image metrics in a QC application138, or
transformation of image patches with synthetically generated
artifacts139, can be used to train an algorithm to recognize
different types of histological artifacts. Other unforeseen hurdles
may exist once these systems are in place, including unfamiliarity
with a new system and associated need for training, technical
support, security, monitoring, and software integration140,141. In
the US, software solutions should be developed under the FDA’s
Quality System Regulation and Good Machine Learning Practices.
However, artificial neural networks have been described as “black
boxes”, whereby data can be difficult to interpret, which may lead
to regulatory concerns, as image features are extracted in ways
that are difficult for a human to understand127,142. Despite the
challenges, the efficiency gains, such as faster results and higher
throughput, are key motivators for pathologists to adopt digital
pathology.
The benefits of AI can be seen across all stages of the drug

development process and in the clinical setting143. One of the first
applications of AI in the clinical setting is likely to be assessing
multiple IHC I-O markers within a single tissue section. Application
of image analysis to multiplexed IHC–stained samples offers
accelerated scan times while increasing accuracy and productivity
by automatically measuring parameters that may be hard to
reliably achieve by eye47.
In the evolving field of digital pathology, a strategy towards the

implementation of digital pathology may involve several phases
culminating in the adoption of digitized images and AI technology
in the clinic. A first step involves demonstrating the reliability of
digital pathology with a biomarker that has shown clinical utility
with manual pathology, such as approved complementary
diagnostics. For example, using PD-L1 expression, which has
demonstrated clinical utility across a range of tumor types26,100,144,
would allow digital pathology readouts to be compared directly
with manual pathology data and clinical outcomes. In this phase,
pathologists would maintain a role in QC, but with improved
efficiency. Data from the evaluation of such biomarkers with
digital pathology could then be used in applications to the FDA
for companion diagnostic status. Subsequent steps would
introduce digital pathology as a diagnostic with novel biomarkers,
with the aim of demonstrating the clinical utility of the biomarker
with digital quantification. This phase would require the

development of AI-based software for use in prospective clinical
trials to evaluate the selected biomarker for patient stratification
or selection. The next phase, and the long-term goal of digital
pathology, would be to establish deep learning AI models trained
using large quantities of data39 that can predict patient response
and stratify patients using only WSIs.

CONCLUSIONS
The current advances in digital pathology offer practical
advantages over manual pathology, including enhanced accuracy
and precision, the ability for digital images to be uploaded and
reviewed remotely by multiple pathologists, and the acquisition
and processing of large and complex datasets. Within immuno-
oncology, a deeper understanding of the complexity and under-
lying mechanisms of the TME can be achieved with the help of AI
and machine learning, where datasets can be consistently
analyzed and validated for application across many large cohorts,
which may have implications for drug development and clinical
trial design. AI and machine learning can then be utilized within
the clinic to describe clinical and pathologic features across
multiple patient samples. These advances will not only facilitate
the entry of more precise I-O therapies, but also ultimately
improve diagnostic, prognostic, and predictive clinical decision-
making in cancer treatment.
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