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A B S T R A C T   

Herein, we show differences in blood serum of asymptomatic and symptomatic pregnant women infected with 
COVID-19 and correlate them with laboratory indexes, ATR FTIR and multivariate machine learning methods. 
We collected the sera of COVID-19 diagnosed pregnant women, in the second trimester (n = 12), third-trimester 
(n = 7), and second-trimester with severe symptoms (n = 7) compared to the healthy pregnant (n = 11) women, 
which makes a total of 37 participants. To assign the accuracy of FTIR spectra regions where peak shifts occurred, 
the Random Forest algorithm, traditional C5.0 single decision tree algorithm and deep neural network approach 
were used. We verified the correspondence between the FTIR results and the laboratory indexes such as: the 
count of peripheral blood cells, biochemical parameters, and coagulation indicators of pregnant women. CH2 
scissoring, amide II, amide I vibrations could be used to differentiate the groups. The accuracy calculated by 
machine learning methods was higher than 90%. We also developed a method based on the dynamics of the 
absorbance spectra allowing to determine the differences between the spectra of healthy and COVID-19 patients. 
Laboratory indexes of biochemical parameters associated with COVID-19 validate changes in the total amount of 
proteins, albumin and lipase.   

1. Introduction 

The novel Covid disease 2019 (COVID-19) pandemic is still 
spreading around the world. Due to changes in physiologic status 
identified with the pregnancy and immunology related to respiratory 
basis, the population is more defenseless against coronavirus contami-
nation [1]. Ongoing investigations have shown that ACE2 expression 
related to immaturity in the placenta [2], might explain the suscepti-
bility of women to the disease, particularly in the first trimester of 
pregnancy [3]. Ellington et all reported that the prevalence of COVID-19 
in pregnant women was 9.0% in 2020 [1]. Summarizing, recent clinical 

information suggests that pregnant women are more suspectable to 
coronavirus and have a higher risk of infection. Rapid and unambiguous 
diagnostics of coronavirus has particular importance in effective 
screening of the COVID-19 infected patients. A variety of molecular 
COVID-19 testing techniques ranging from advanced tests applied in 
research centers, to simple and rapid tests used in points-of-care is being 
worked on to effectively diagnose COVID-19 patients [4]. These tech-
niques, well known to specialists and clinicians, are based on deoxy-
ribonucleic acid (DNA) amplification, antibody and antigen assays, 
might be ambiguous for general community. Up to date, there are 
several accessible diagnostic tests for COVID-19, with the perspective to 

* Corresponding author. 
** # equal senior authors 

E-mail addresses: zozan.guleken@uskudar.edu.tr (Z. Guleken), joanna.depciuch@ifj.edu.pl (J. Depciuch).   
1 Equal senior author. 

Contents lists available at ScienceDirect 

Talanta 

journal homepage: www.elsevier.com/locate/talanta 

https://doi.org/10.1016/j.talanta.2021.122916 
Received 8 June 2021; Received in revised form 19 September 2021; Accepted 29 September 2021   

mailto:zozan.guleken@uskudar.edu.tr
mailto:joanna.depciuch@ifj.edu.pl
www.sciencedirect.com/science/journal/00399140
https://www.elsevier.com/locate/talanta
https://doi.org/10.1016/j.talanta.2021.122916
https://doi.org/10.1016/j.talanta.2021.122916
https://doi.org/10.1016/j.talanta.2021.122916
http://crossmark.crossref.org/dialog/?doi=10.1016/j.talanta.2021.122916&domain=pdf


Talanta 237 (2022) 122916

2

prevent a COVID-19 crisis. These tests are mainly dependent on the four 
following techniques: (1) reverse transcription-polymerase chain reac-
tion (RT-PCR), which is the current standard test for coronavirus, (2) 
loop-mediated isothermal amplification (LAMP), which is a simple, but 
less developed testing method, (3) lateral flow – hand-held single-use 
assay and (4) enzyme-linked immunosorbent assay (ELISA) [5]. 

In the last decade, transmission or attenuated total reflection (ATR) 
Fourier transform infrared spectroscopy (FT-IR) has emerged as a new 
and rapid detection technique for viral diseases or to foresee viral con-
sequences in blood [6], serum, plasma [7,8] or contaminated cells [9], 
separate different viral infections [6], or check the type of infecting 
agents, such as bacterial or viral, based on the spectral measurements of 
blood data [10,11]. Remarkably, studies had shown that molecular and 
chemical changes in blood components in response to bacterial or viral 
infections can be recorded and reflected by IR spectra [12,13]. These 
changes can be visible as differences in the absorbance value or peak 
positions. The FTIR spectrum of blood collected from patients infected 
by HIV is characterized by quantitative and qualitative changes in the 
spectral regions corresponding to lipids (3010 cm− 1), carbohydrates 
(1299 cm− 1 and 1498 cm− 1), glucose (1035 cm− 1) and amide I (1652 
cm− 1) vibrations [6], while hepatitis B and C virus can be diagnosed by 
FTIR spectroscopy using band at 1093 cm− 1 [7]. Cells infected by herpes 
viruses show higher amount of phosphate, which is visible in FTIR 
spectra as an increase of the absorbance in the range between 950 cm− 1 

and 1350 cm− 1 [8]. 
The main advantage of the IR technique, potentially valuable in 

identifying the presence of COVID-19 in human blood serum, is the 
possibility to characterize all biological components and chemical 
structure in the measured biofluid, as well as a rapid differentiation of 
the sample [14]. To reliably categorize the samples, various modelling 
and numerical methods are applied. Deep learning calculations, through 
the use of complex data sets are often regarded as the basis for sepa-
rating important data and image them with timely interpretable struc-
tures [15]. 

Herein, we report a multi-level study of women at different preg-
nancy stages infected with COVID-19 using FTIR spectroscopy, labora-
tory indexes and modeling based on machine learning methods, as well 
as Lissajous curves. We attempt using FTIR spectroscopy to find a 
spectroscopy marker, which is present in sera of pregnant women 
suffering from COVID-19. Thus, we show, which absorbance maxima in 
FTIR spectra determine the course of the disease (symptomatic or 
asymptomatic). As medical data confirming the patient’s health is pro-
vided, we correlate and validate the FTIR results with the laboratory 
indexes comprising the count of peripheral blood cells, biochemical 
parameters and coagulation indicators. Finally, the novelty is combining 
the absorbance spectra dynamics with the Lissajous curves to show, 
which infrared regions are the most sensitive to the changes in blood 
serum collected from the pregnant women suffering from COVID-19. 
Consequently, this allows to define, which chemical compounds in our 
body cause a symptomatic or asymptomatic course of COVID-19 in 
pregnant women. The performed calculations could be used as a basis to 
develop useful spectrochemical research models for diagnostics in 
practical applications. 

2. Methods 

2.1. Population study 

This study consisted of a group of 37 pregnant women admitted at 
the maternity hospital of Kanuni Sultan Suleyman Training and 
Research Hospital in the clinical Department of Obstetrics and Gyne-
cology in Turkey, between November 2020 and May 2021, which were 
divided into 2 groups: (A) 11 pregnant women diagnosed COVID-19 
negative – control group and (B) 26 pregnant women diagnosed 
COVID-19 positive. Additionally, (B) was divided into 3 groups: (1) 12 
pregnant women in second trimester with asymptomatic COVID-19 

(T2); (2) 7 women in second trimester with severe COVID-19 symp-
toms (T2s) and (3) 7 pregnant women in third trimester with asymp-
tomatic COVID-19 (T3). Assessments of clinical evaluations of critical 
vital signs, chest X-ray assessments and laboratory indexes were 
confirmed in the supervision of physicians. Therefore, treatment man-
agement has been prescribed based on clinical findings and national 
guidelines. At the time of enrollment, personalized data collections were 
used to document physiologic clinical chronic health conditions of 
pregnant women or neonates. Subsequently, maternal and neonatal 
outcomes and clinical progress were recorded until the birth of pregnant 
women. The accuracy of our data was verified via independent 
researchers. 

2.2. Specimen collection 

We performed the experiments with blood serum following the 
universal safeguard as directed by the Institutional Review Board of the 
Istanbul University, Cerrahpaşa Medical Faculty Clinical research etic 
committee (26.04.2021 date, and with the number of E− 54368345-199- 
83879) in Turkey. The contributors were fully informed and signed the 
consent form for this study. COVID-19 was tested by nasopharyngeal 
swabs in the hospital according to guidelines. Blood samples were ob-
tained from all participants via venipuncture. Approximately after 5 min 
after collection, the samples were moved to the physiology laboratory 
from obstetrics and gynecology units. After collecting the participant’s 
whole blood sample in the blood tubes without adding any reagents, we 
coagulated the blood by leaving it at room temperature for about 20–30 
min, and then removing the clot by centrifugation for 15 min at 3000 
rpm to separate the fibrinogen precipitate. Serum samples were kept in 
Eppendorf. In order to prevent proteolytic degradation, we stored the 
samples at − 80 ◦C until the spectroscopic analysis. 

2.3. FTIR spectra collection 

Mid-IR spectrometer (FT/IR-4700, JASCO, Tokyo/Japan) equipped 
with ATR TM diamond crystal plate, with liquid-nitrogen cooled MCT 
detector was used for spectra acquisition. The spectra were collected 
with 128 scans for each sample, at a resolution of 4 cm− 1 with zero- 
filling of the interferogram resulting in 4 cm− 1 data spacing corre-
sponding to 3684 data points. To avoid extensive water absorbance, the 
spectrum of the empty diamond/MCT of the ATR unit was recorded as 
background and subtracted repeatedly from each measured sample. 1 μL 
of each serum sample was dropped onto the IR-reflective glass [16] and 
subsequently dried [15]. The acquisitions were made three times per 
sample. The crystal of the device was washed prior each sample mea-
surement. Flowing the preprocess, all spectral recordings were analyzed 
via JASCO Spectra Manager version 2 and OPUS software. The features 
were baseline and ATR corrected, vector normalized, 25 points 
smoothed with Savitzky–Golay from 4000 to 600 cm− 1 bands and the 
data were averaged [17]. We used 128 scanned serum data spectral band 
areas between 4000 cm− 1 to 400 cm− 1 to see the structural differenti-
ation related to COVID-19 infection. After baseline correction, the best 
fit for decomposing the amide I band in the spectral region of interest 
was obtained. 

2.4. Multivariate analysis 

To assess the information about the spectra variation among the 
samples, Partial Least Squares analysis (PLS) on the FTIR data was 
performed using the Origin 2019 software. With this analysis, we aimed 
to show, which IR regions and wavenumbers play the most significant 
role in distinguishing between the control and COVID-19 samples. 

2.5. Machine learning methods applied to COVID data 

To acquire the knowledge about the accuracy of FTIR spectroscopy in 
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separating evaluated samples, three machine learning methods were 
used: the Random Forest (RF) algorithm [18], as well as the standard 
C5.0 single decision tree algorithm [19] and Deep Neural Networks 
(DNN) algorithms approved by literature [20]. To conduct the analysis, 
appropriate datasets were created to classify the cases and to distinguish 
between them. The datasets consisted of rows (i.e., patients), columns 
describing patients, (wavenumber or single peaks) and a decision col-
umn containing the category of the condition: (1) – Asymptomatic sec-
ond trimester; (2) –Asymptomatic third trimester; (3) – Third trimester 
with severe symptoms; (4) – Control group. 

The experiments were performed using the R environment, as well as 
the Random Forest, C5.0 and Keras software packages. The Boruta 
package [20] was used to perform the selection process for the most 
important attributes, which have the greatest impact on the assignment 
of the condition category to evaluate and calculate the importance of 
each descriptive attribute of peaks. Our approach reduced the original 
set of 453 attributes to approximately 3–223, depending on the number 
of categories created without degrading or improving the quality of case 
classification. In this way, the analysis was performed using the eight 
datasets created:  

• 4 categories with 453 attributes - all peaks, data dimension: 37 rows, 
453 columns and the category column containing one of the four 
disease categories;  

• 4 categories with 13 attributes selected (confirmed and tentative) – 
characteristic peaks selected and identified in the data, data 
dimension: 37 rows, 13 description columns, the category column 
containing one of the four disease categories;  

• 4 categories with 7 attributes selected (confirmed) – characteristic 
peaks selected and identified in the data, data dimension: 37 rows, 7 
description columns, the category column containing one of the four 
disease categories  

• 3 categories with 453 attributes – all peaks, data dimension: 37 rows, 
453 columns, and the category column containing one of the three 
disease categories (categories 1 and 2 have been combined into one 
category);  

• 3 categories with 3 attributes selected (confirmed) – characteristic 
peaks selected and identified in the data, data dimension: 37 rows, 3 
description columns, the category column containing one the three- 
disease category (categories 1 and 2 have been combined into one 
category);  

• 2 categories with 453 attributes – all peaks, data dimension: 37 rows, 
453 columns and the category column containing one of the two 
disease categories (categories 1, 2, and 3 have been combined into 
one category);  

• 2 categories with 223 attributes selected (confirmed and tentative) – 
selected peaks characteristic and identified in the data, data 
dimension: 37 rows, 223 description columns, the category column 
containing one the two-disease category (categories 1, 2 and 3 have 
been combined into one category);  

• 2 categories with 115 attributes selected (confirmed) – selected 
peaks characteristic and identified in the data, data dimension: 37 
rows, 115 description columns, the category column containing one 
the two-disease category (categories 1, 2 and 3 have been combined 
into one category); 

All experiments were performed using leave-one-out cross-validation 
method. This procedure is used to estimate the performance of machine 
learning algorithms when they are used to make predictions on data not 
used to train the model. It is a computationally expensive procedure to 
perform, although it results in a reliable and unbiased estimate of the 
model performance. The model is evaluated for every held-out obser-
vation. The final result is then calculated by taking the mean of all the 
individual evaluations. It allows splitting the set of examples into 37 
pairs of training (36/37 cases) and test (1/37 cases) sets containing 
mutually exclusive examples. 

2.6. Statistics 

The clinical outcomes are expressed as number of cases (n) and 
percent (%) and mean with standard deviation (SD). The statistics were 
made by one ways of ANOVA, followed by Bonferroni * compared to the 
T2 + compared to T3. FTIR analysis was performed using Past 3.0 
software. Mann–Whitney U test was used as the nonparametric test with 
a p-value threshold of 0.05. The analyses were performed using SPSS 
Statistics, together with GraphPad Prism 6. Moreover, to show the cor-
relation between FTIR data and laboratory index values, Pearson cor-
relation test was performed using the Past 3.0 software. Taking into 
account, that statistically significant changes between the analyzed 
groups were present in the white blood cells (WBC), lymphocytes, tri-
glycerides, D-dimer, CRP, ferritin, albumin and total protein levels, so in 
the entire lipids and proteins fraction, we correlate the values of these 
laboratory parameters with average values of IR region corresponding to 
proteins (1500 cm− 1 - 1700 cm− 1) and lipids (2880 cm− 1 - 2980 cm− 1). 

3. Results 

3.1. Population 

Seven patients in the second trimester (T2s) were classified as severe 
cases. One of the pregnant women was taken to the emergency. We 
reported maternal characteristics and pharmacological treatment of the 
studied groups in Table 1. None of the newborns was tested positive for 
COVID-19 genome detection via a swab of the nasopharynx. A radio-
logical chest X-ray confirmation of interstitial pneumonia was obtained 
on admission for all COVID-19 diagnosed pregnant women. Pharmaco-
logical treatment during the hospitalization is reported in Table 1 in the 
title of the baseline characteristics of the participants. 

We followed all of the pregnant women until birth. We performed an 
Apgar score to evaluate whether the child is healthy or not. Neonates 
were healthy. Maternal and pregnancy outcomes are listed in Table 2. 

Table 1 
Characteristics of the approved participants. Total pregnant women with 
COVID-19 infection (n = 27).  

Maternal baseline characteristics 
Maternal age, mean (SD)  30.8 + 6.4 
RT-PCR assay of a maternal nasopharyngeal swab   

Positive n (%)  50 (100) 
Negative n (%)  Null 

Pregnancy BMI, kg/m2  29.7 + 4.8 
Positive chest X-ray (CT) n (%)  11 (42) 
Severe case (CT) n (%)  3 (12) 
Pharmacological treatment n (%)   

Azithromycin  6 (23) 
Plaquenil  16 (61) 
Clexane  26 (100) 
Lopinavir + ritonavir (Kaletra)  3 (12)  

Table 2 
Maternal and pregnancy outcomes of the approved participants. Total popu-
lation n = 26.  

Delivery mode  
Vaginal, n (%) 54 (14) 
Cesarean section, n (%) 46 (12) 
Covid related cesarean n (%) 19 (5) 

GA at delivery, weeks median (range) 38 (36–41) 
Induction of delivery related to COVID-19 6 (23.07) 
Infected neonates, positive, n (%) 1 (3.8) 
Apgar_1 Score mean (SD)  

T2 7.16 (0.79) 
T3 6.85 (1.64) 
T2s 7.28 (0.45)  
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3.2. Laboratory indexes 

It is known that we do not have the exact treatment protocol for the 
COVID-19 disease. The main monitoring parameters are respiratory 
rate, oxygen saturation and body temperature. Clinical follow-up of the 
count of lymphocytes, CRP, D-dimer and ferritin define the grade of the 
disease. The gradual increase in these markers is considered as cytokine 
storm or macrophage activation syndrome. Although we still do not 
have an exact scoring system, an increase in the level of CRP, D-dimer, 
ferritin, and triglyceride levels with a decrease in the count of throm-
bocytes and fibrinogens is defined as cytokine storm. On the other hand, 
it is known that the levels of neutrophil and procalcitonin are important 
markers for the consideration of the COVID-19 disease. The laboratory 
indexes including: peripheral blood cells, biochemical parameters and 
coagulation indicators of the COVID-19 infected pregnant women in the 
second trimester (T2), third trimester (T3), and severe second trimester 
(T2s) are presented in Table 3. 

Peripheral blood counts were different among groups, as seen in 
Table 3. White blood cells were increased significantly in T2 vs T3 (p <
0.01). The counts of neutrophils were the highest for the T3 group and 
were slightly over the reference range. The number of lymphocytes was 
significantly decreased in the second-trimester pregnant women with 
severe COVID-19 infection, compared to T2 and T3 women (p < 0.05). 
Conversely, the platelets were in the reference range and there were no 
significant differences between the groups. The lipase and triglyceride 
levels of the T2s group were much higher than in the T2 and T3 pregnant 
women (p < 0.05). D-dimer levels were in all groups higher than the 
reference level. Statistically, there was an increase of the D-dimer in the 
T3 group compared with the T2 group (p < 0.05) as illustrated in 
Table 3. A significant increase in the level of CRP in the T2s group vs T2 
and T3 (p < 0.05) was observed. Although, the ferritin levels were in the 
reference range, ferritin was higher in the T2s group compared to the T3 
and T2s. The pro-calcitonin level was almost in the reference range, but 

Table 3 
The laboratory indexes of peripheral blood cells.   

T2 Mean 
(SD) 

T3 Mean 
(SD) 

T2s Mean 
(SD) 

Reference 
(Unit) 

Lymphocytes 1.54 ± 0.62 2.11 ±
0.955 

1.14 ± 0.26 1.3–3.5 (10^3 
μL) 

Neutrophils 5.08 ± 1.64 5.53 ± 2.42 5.53 ± 1.63 2.1–6.1 (10^3 
μL) 

White blood cells 
(WBC) 

6.42 ±
1890 

8.27 ±
2457 

7.06 ±
1611 

4.3–10.3 
(10^3 μL) 

Platelets counts 221.40 ±
5.80 

245.80 ±
5.70 

214.50 ±
5.40 

156 - 373 
(10^3 μL) 

Biochemical parameters  
T2 Mean 
(SD) 

T3 Mean 
(SD) 

T2s Mean 
(SD)  

Amylase 65.80 ±
27.50 

72.70 ±
23.80 

112.00 ±
105.00 

28 - 100 (U/L) 

Lipase 33.90 ±
14.80 

40.80 ±
22.40 

47.10 ±
37.00 

10 - 40 (U/L) 

Triglyceride 185.00 ±
124.00 

272.00 ±
140.00 

315.00 ±
71.50 

150 - 200 
(mg/dL) 

AST 20.20 ±
7.60 

28.90 ±
8.59 

25.00 ±
11.70 

15 - 42 (IU/L) 

ALT 14.20 ±
6.45 

17.00 ±
4.97 

18.90 ±
9.53 

10 - 40 (U/L) 

Coagulation indicators  
T2 Mean 
(SD) 

T3 Mean 
(SD) 

T2s Mean 
(SD)  

CRP 13.80 ±
10.10 

19.8 ±
30.60 

59.80 ±
36.80 

<3.00 (mg/L) 

Ferritin 29.20 ±
26.00 

58.4 ±
42.70 

37.70 ±
9.47 

20 - 200 (mg/ 
ng) 

D-dimer 1.54 ± 0.59 2.93 ± 1.94 37.70 ±
9.47 

0,00–0.50 μg/ 
mL 

Pro-calcitonin 0.04 ± 0.02 0.06 ± 0.06 0.06 ± 0.04 0–0.05 μg/L  

Fig. 1. Levels of albumin and total protein (g/dL). * Compared to the T2, + compared to T3. *p < 0.05, **p < 0.01, þp < 0.05, ++p<0.01 were consid-
ered significant. 

Fig. 2. Representative FTIR spectra of serum collected from COVID-19 infected 
pregnant women: T2 (black spectrum); T3 (red spectrum); T2s (blue spectrum) 
and without COVID-19 disease (green spectrum). 
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due to the measurement error its value was not statistically significant 
among the groups. All these changes may be aggravating factors for the 
course of COVID-19 disease. 

To determine the differences in the amount of the protein level, we 
measured the albumin level and the total protein level in all groups 
(Fig. 1). In T2 pregnant women group the albumin levels were 36.67 
(3.46), in the T3 group 34.23 (1.69) and T2s group 29.15 (1.8) with a 
mean (SD). Statistically, there was a significant decrease of the albumin 
level (Fig. 1a) in the T3 and T2s groups compared to the T2 group (p <
0.05) and a significant decrease in the T2s group compared to the T3 
group. Additionally, we measured the total protein values in all the 
groups (Fig. 1b). The total protein value for the T2 group was 67.60 
(4.52), for the T3 group, it was 66.75 (4.56) and for the T2s group 59.85 
(7.2) with a mean (SD). Although albumin levels were increased in the 
T3 group, the total protein value was not decreased significantly (p <
0.01). But there was an important reduction in the protein level in the 
T2s group compared to T2 and T3 group (p < 0.01). 

3.3. FTIR measurements 

In this study, we used FTIR spectroscopy to obtain the information 
about chemical changes, which occurred in blood serum of pregnant 
women, who become infected with COVID-19. 

In Fig. 2 visible peaks were marked in the collected FTIR spectra. 
These peaks correspond to functional groups building proteins and lipids 
structures. The peak at 1401 cm− 1 corresponds to CH2, as well as scis-
soring vibrations of CH2 groups from carbohydrates and proteins were 
observed. Amide II and amide I vibrations were located at 1537 cm− 1 

and 1628 cm− 1, while vibrations of lipids functional groups were 
noticed at 1737 cm− 1, 2893 cm− 1, and 2981 cm− 1, respectively [21–26]. 
The description and the positions of the peaks visible in Fig. 1 from all 
analyzed groups, were assembled in Table 4. 

When we compare the control group with groups of women suffering 
from COVID-19, structural changes in the biomolecules must have 
occurred, as peaks shift were observed. Indeed, the shift of peaks cor-
responding to stretching vibrations of C––O from COO–, amide I and 
amide II, as well as symmetric and asymmetric vibrations of CH3 groups, 
were visible in all three groups of COVID-19 women. 

In Table 4 differences in positions of peaks between COVID-19 
groups, which passed COVID asymptomatically and very seriously are 
visible. This could suggest, that the course of COVID-19 depends on the 
protein fraction. Therefore, we decided to make a deconvolution of the 
amide I region, which provides information about the secondary struc-
ture of the protein fraction [27] (Fig. 3). 

When we compare the amide I region obtained for COVID-19 
(Fig. 3a) (Fig. 3b) (Fig. 3c) and control (Fig. 3d) groups, a different 
structure of the 1600 cm− 1 – 1700 cm− 1 range, was observed. Conse-
quently, a different number of deconvolution curves was obtained. In 
COVID-19 groups, five curves were visible, while in the control group, a 
higher number of fitted curves was noticed. These curves originate from 
the secondary structure of proteins: α-helix and β-sheet [28]. Therefore, 

Table 4 
Description of vibrations presented in FTIR spectra of sera collected from women 
with and without COVID-19 with the marked shift of peaks.  

Wavenumber (cm− 1) 

Con. T2 Δ =
Con- 
T2 

T3 Δ =
Con- 
T3 

T2s Δ =
Con- 
T2s 

Vibrations 

1401 1397 4 1397 4 1396 5 C=O stretching 
of COO−

1449 1448 1 1448 1 1448 1 CH2 scissoring 
1537 1530 7 1531 6 1530 7 Amide II 
1628 1631 − 3 1632 − 4 1633 − 5 Amide I 
2893 2887 6 2887 6 2888 5 Symmetric CH3 

stretching 
2981 2975 6 2973 8 2977 4 Asymmetric 

CH3 stretching  

Fig. 3. Deconvolution of the amide I band of serum collected from COVID-19 infected pregnant women: T2 (a); T3 (b); T2s (c) and without COVID-19 disease (d).  
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the ratio between these two kinds of secondary structures was calculated 
and presented in Table 5. 

3.4. Multivariate analysis 

FTIR spectra and deconvolution of amide I region showed that 
deformation vibrations of CH groups may be used as a spectroscopic 
marker for the COVID-19 disease in pregnant women. Moreover, in the 

protein fraction, a marker responsible for the course of the disease was 
identified. However, to confirm these results and show, which IR region 
plays the most important role in distinguishing between the control and 
COVID-19 samples, Partial Least Squares analysis (PLS) was performed 
(Fig. 4). 

The PLS results presented as plots showed, that in the FTIR spectra, 
the peaks corresponding to CH2 scissoring vibrations and amide II, 
amide I vibrations could be used as a potential marker, allowing the 
separation of the COVID-19 samples from control. 

3.5. Correlation between laboratory and FTIR results 

The Pearson correlation test was performed to obtain the information 
about the correlation of clinical laboratory results with the FTIR data, i. 
e. correlation between lymphocytes, WBC, triglycerides, ferritin, D- 
dimer, albumin, total proteins concentrations and both: proteins and 
lipid absorbances from the FTIR spectra, Table 6. 

The correlation test showed, that in all three analyzed groups of 
patients (T2, T3, T2s), a positive correlation between lipid vibrations 
and lymphocytes was noticed. Moreover, a correlation between proteins 
and lymphocytes, WBC, CRP, D-dimer and total protein amount was 
visible in T2 group. In these groups, correlation between lipids and 
triglycerides, ferritin, albumin and total protein amount was observed. 
In the T3 group, correlation between the proteins measured by FTIR and 
WBC, as well as total proteins was noticed, while lipids correlated with 
albumin in T3 group. In the T2s group correlation between proteins and 
ferritin, and also between lipids and CRP, as well as total protein amount 

Table 5 
Peak positions of α-helix and β-sheet, as well as their area values obtained after deconvolution of amide I region of women with and without COVID-19.  

Con. Peak area T2 Peak area T3 Peak area T2s Peak area Vibrations α/β ratio 

1609 1.598 1606 2.139 1606 1.393 1608 1.872 cross-β Con. = 0.340 
1621 2.584 1632 8.782 1633 7.717 1633 6.371 cross-β T2 = 0.269 
1646 1.886       α-helix T3 = 0.230 
1653 1.087 1652 3.284 1653 2.336 1652 1.926 α-helix T2s = 0.211 
1660 2.738 1667 1.023 1667 0.817 1665 0.704 anti-parallel β-sheet  
1681 1.837 1678 0.262 1678 0.210 1674 0.202 anti-parallel β-sheet  

The obtained results showed, that in COVID-19 groups, the value of α-helix and the β-sheet ratio is between 0.21 and 0.27, while in the control group – 0.34. This 
means, that COVID-19 could have caused changes in the protein fraction. 

Fig. 4. PLS plot with the marked line separating the wavenumber values sta-
tistically significant in distinguishing between control and COVID samples. 

Table 6 
Correlation between laboratory index and FTIR results.   

T2 group T3 group T2s group 

Proteins FTIR range Lipids FTIR range Proteins FTIR range Lipids FTIR range Proteins FTIR range Lipids FTIR range 

Lymphocytes 0.64 0.66  0.90  0.93 
WBC 0.66  0.90    
Triglycerides  0.75     
CRP 0.75     0.77 
Ferritin  0.75   0.77  
D-dimer 0.75      
Albumin  0.66  0.90   
Total protein 0.64 0.66 0.90   0.93  

Table 7 
Classification results obtained by three machine learning methods for 8 datasets.  

Datasets Random forest C5.0 DNN 

Accuracy Error Accuracy Error Accuracy Error 

4 categories with all 453 attributes 64.86% 35.14% 78.38% 21.62% 62,16% 37,84% 
4 categories with 13 attributes selected (confirmed + tentative) 75.68% 24.32% 75.68% 24.32% 62,16% 37,84% 
4 categories with 7 attributes selected (confirmed) 78.38% 21.62% 75.68% 24.32% 62,16% 37,84% 
3 categories with all 453 attributes 75.68% 24.32% 78.38% 21.62% 81,08% 18,92% 
3 categories with 3 attributes selected (confirmed) 67.57% 32.43% 72.97% 27.03% 64,86% 35,14% 
2 categories with all 453 attributes 97.30% 2.70% 97.30% 2.70% 100,00% 0,00% 
2 categories with 223 attributes selected (confirmed + tentative) 97.30% 2.70% 97.30% 2.70% 100,00% 0,00% 
2 categories with 115 attributes selected 97.30% 2.70% 97.30% 2.70% 100,00% 0,00%  
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was visible. 

3.6. Machine learning methods applied to COVID data 

The results obtained (Table 7) using Random Forest, C5.0, and Deep 
Neural Networks algorithms indicate that the proposed methods can 
effectively classify the studied groups. 

The study was conducted on eight information databases containing 
cases grouped into 2, 3, or 4 categories. These were three databases 
containing all 453 attributes (wavelengths) describing each of the 37 
patients. In addition, sets were used after performing significant attri-
bute selection with Boruta algorithm. The restricted attribute space 
contained attributes that were either confirmed as significant or iden-
tified as tentative. 

The accuracy of the classification was in the range from 64.86% to 
97.30%. Correspondingly, the classification error is between 2.70% and 
35.14%. The obtained results clearly show that the proposed method 
allows for 97.30% correct differentiation between sick and healthy pa-
tients. Only one of the 37 cases was diagnosed incorrectly. 

In Table 8 of additional values of parameters characterizing the 
quality of classification are presented. The parameters used include 
sensitivity, specificity, F1 score, and Matthews correlation coefficient. 
The results obtained for the 2 class sets are very good. The value of the 
sensitivity parameter (96.30%–100%) shows that almost all sick people 
are correctly identified as having the condition. The specificity param-
eter value (91.67%–100%) shows that almost all healthy people are 
identified as not having the condition. 

In addition, a decision tree diagram was constructed with the C5.0 
algorithm on the full two-class set which is shown in Fig. 5. From this 
simple diagram it can be seen that the wavenumber at 1700.9078 
perfectly distinguishes between sick (26 Covid cases) and healthy (11 No 
Covid cases) patient groups. 

3.7. Analysis of FTIR absorbance dynamics 

To find the differences between the IR spectrum of the COVID-19 
patients and the spectrum of healthy persons, we developed a method 
based on the spectral absorbances dynamic as a function of the wave-
number. In this approach, we exploit the fact that in IR spectra, for 

instance A, for a carefully selected range of wavenumbers k, two types of 
absorbance dynamics can be distinguished. First, we have dA

dk > 0, and for 
the second type, dA

dk < 0. In the case when dA
dk > 0 the absorption is 

increasing with k , while if dA
dk < 0 the absorption is decreasing. The 

simple difference between such defined dynamics for wavenumber k can 
be used as an indicator of the differences between the IR spectra under 
consideration. Here the first IR spectrum, is the reference spectrum 
calculated as an average of the control group (ControlSpec) and the 
second one is the spectrum of the COVID-19 patient from the group – T2 
+ T3 + T2s (CovidSpec). We are looking for wavenumbers, for which the 
opposite dynamics of absorption in ControlSpec and CovidSpec spectra 
take place. As result, we obtain the set of wavenumbers, which indicates 
differences in absorption dynamics between ControlSpec and CovidSpec 
spectra. This set can be used as potential set of markers, which distin-
guish COVID-19 patients from the group of healthy individuals. In 
Table 8 we present the results for the CovidSpec group. 

4. Discussion 

We reported, that using of FTIR spectroscopy markers, which 
correspond to the way of passing COVID-19 by pregnant women could 
be identified. Additionally, in the literature we found information about 
successful using of FTIR spectroscopy to detect other type of viruses [8, 
29,30]. Furthermore, to validate FTIR results, we show laboratory in-
dexes associated with the count of peripheral blood cells, biochemical 
parameters, and coagulation indicators. Indeed, in our study, similarly 
to other works [31,32], the levels of D-dimer, CRP, ferritin and pro-
calcitonin were higher in symptomatic T2s group (Table 3). Conse-
quently, our medical data can be correlated with characteristic 
parameters in people suffering from symptomatic and asymptomatic 
COVID-19. Furthermore, in pregnant women with symptomatic 
COVID-19, the highest level of triglycerides was noticed (Table 3), 
which also agrees with the available literature [33]. Given that medical 
data coincide with COVID-19 findings from other studies, we are 
confident that we have carefully and representatively selected the 
investigated groups. 

Fourier Transform InfraRed spectra of women, who had COVID-19, 
show a shift of peak originating from C––O vibrations from lipids, in 
comparison with the control group (Fig. 2). These vibrations were 
observed in carbohydrate fractions [22]. It is known, that one part of our 
immune system is correlated with carbohydrates. Furthermore, the 
surface of the COVID-19 is heavily glycosylated, with pre-existing an-
tibodies to glycans. Therefore, antibody responses to carbohydrates 
could be induced, affecting disease severity and clinical outcome. 
Moreover, some studies showed, that pre-existing aluminum antibodies 
have the potential to recognize the virus and influence the progression of 
the disease [22]. Viruses, e.g., COVID-19 use the host’s glycosylation 
machinery as a camouflage strategy, hiding hypothetical immunogenic 
epitopes, and also using host carbohydrate-binding receptors as entry 
mechanisms [23,24]. Moreover, it was found that antibodies with low 
affinity to some virus glycoproteins increase viral infection [25]. Our 
results showed, that carbohydrates could play a very important role in 
the infection of COVID-19. Structural changes, which were observed in 
FTIR spectra indicated, that these structures may be involved in our 
immune system’s defense against the virus. 

Our immune system produces antibodies, which have a structure 
very similar to proteins [34]. Therefore, to control the COVID-19 

Table 8 
Classification results of sick and healthy patients (two-class dataset) with additional classification quality parameters.   

Datasets Accuracy Error Selectivity Specificity F1 MCC 

RF 2 categories with 453 attributes 97.30% 2.70% 96.30% 100% 98.11% 93.56% 
C5.0 2 categories with 453 attributes 97.30% 2.70% 100% 91.67% 98.04% 93.88%% 
DNN 2 categories with 453 attributes 100% 0% 100% 100% 100% 100%  

Fig. 5. Diagram of a decision tree built from a full two-class set.  
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infection, it is important to rapidly generate multiple high-affinity an-
tibodies or antibody-like proteins (ALPs) against the virus proteins [35]. 
Moreover, activation of specific proteins was observed during the dis-
ease. Consequently, we noticed differences in the protein fraction and its 
structure in woman with COVID-19 (Fig. 3). Interestingly, the PLS plot 
(Fig. 4) showed, that the infrared region, which differentiates our 
samples, is placed in the range corresponding to amide II and amide I 
vibrations (proteins structure) and CH deformation vibrations. To 
investigate the accuracy of our results, three different machine learning 
and neural network, we done, Table 7. Importantly, we obtain accuracy 
values from 65% to 97% depending on the method. 

We also tested new methods to determine infrared regions, which 
identify COVID-19 and its course. These methods were used for the first 
time for diagnostics of pediatric precursor B lymphoblastic leukemia 
[35], where the Authors showed, which blood parameter was correlated 
with structural changes visible form the spectra. In our study, we 
showed, that the phase shift is equal to π, consequently, it is significant, 
for the infrared region corresponding to proteins and lipids, Table 9. 
Consequently, we confirmed the data obtained from the PLS analysis, as 
well as machine learning and neural networks based on data from FTIR 
spectra. Importantly, using dynamics of the absorbance spectra and 
Lissajous curves we also showed, that amides and lipids levels obtained 
from laboratory are an important factor in the course of COVID-19. 

5. Conclusion 

In this study we report that the COVID-19 has effects on peripheral 
blood cells, biochemical parameters and coagulation indicators of both 
second trimester and third trimester pregnant women independently on 
the disease course, which is consistent with the literature. Furthermore, 
we report that the albumin level decreases both in third trimester and 
severe second trimester women with COVID-19. The obtained FTIR 
spectra showed significant differences between COVID-19 women with 
severe and light symptoms. In the first ones, shifts of peaks originating 
from asymmetric stretching vibrations of CH3 groups from lipids were 
noticed in comparison with results obtained for COVID-19 women with 
light symptoms. This could mean that these chemical fractions play a 
critical role in the course of COVID-19. Machine learning methods 
estimated the accuracy of FTIR results to be around 90%. The results of 
the absorbance spectra dynamics and Lissajous curves clearly showed, 
that 1392 cm− 1, 1421 cm− 1, 1460 cm− 1, 1590 cm− 1, 2925 cm− 1 and 
2954 cm− 1 IR wavenumbers differed for COVID-19 and non-COVID-19 
women. 
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