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A B S T R A C T   

The SARS-CoV-2 virus like many other viruses has transformed in a continual manner to give rise to new variants 
by means of mutations commonly through substitutions and indels. These mutations in some cases can give the 
virus a survival advantage making the mutants dangerous. In general, laboratory investigation must be carried to 
determine whether the new variants have any characteristics that can make them more lethal and contagious. 
Therefore, complex and time-consuming analyses are required in order to delve deeper into the exact impact of a 
particular mutation. The time required for these analyses makes it difficult to understand the variants of concern 
and thereby limiting the preventive action that can be taken against them spreading rapidly. In this analysis, we 
have deployed a statistical technique Shannon Entropy, to identify positions in the spike protein of SARS Cov-2 
viral sequence which are most susceptible to mutations. Subsequently, we also use machine learning based 
clustering techniques to cluster known dangerous mutations based on similarities in properties. This work uti
lizes embeddings generated using language modeling, the ProtBERT model, to identify mutations of a similar 
nature and to pick out regions of interest based on proneness to change. Our entropy-based analysis successfully 
predicted the fifteen hotspot regions, among which we were able to validate ten known variants of interest, in six 
hotspot regions. As the situation of SARS-COV-2 virus rapidly evolves we believe that the remaining nine 
mutational hotspots may contain variants that can emerge in the future. We believe that this may be promising in 
helping the research community to devise therapeutics based on probable new mutation zones in the viral 
sequence and resemblance in properties of various mutations.   

Contributions of the work: 

1. The paper proposes a computational methodology to identify po
tential mutational hotspots in spike protein of SARS-CoV-2. The high 
throughput methodology can also identify some of the dangerous 
mutations emerging in the distant future  

2. Understand and identify the similarities and patterns among the 
different type of mutations using clustering analysis. Such an anal
ysis may possibly help biologists to better understand the relation
ships between SARS-CoV-2 mutations. 

1. Introduction 

The SARS-CoV-2 virus has rapidly evolved by continually mutating, 
affecting more than 180 million people across the globe. Ever since the 
genome sequence of SARS-CoV-2 became available, mutations at several 
sites in the genome have been identified raising concerns regarding 
enhanced transmissibility of the virus [1]. The mutating nature of the 
virus has inspired global efforts from research community to actively 
track and understand the emergence of variants of concern[2–4]. One of 
the first mutation that rapidly spread throughout the world, mutation 
D614G, was first reported in April 2020 [5]. This mutation has now been 
classified under several lineages and is found to be a factor in increased 
transmission of the virus [6–9]. The discovery of this mutation was 
followed by identification of a series of mutations in the virus belonging 
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to the B. 1.1.7 lineage, which was first found in the Southeast of England 
[10]. The mutations, namely A222V, S477 N, N501, H69, N439K, 
Y453F,11S98F, D80Y, A626S, V1122L, have been noted as variants of 
interest in many studies [10–13] and are the focus of this work as well. 
These variants were selected because they were marked as the Variant 
Under Investigation SARS-CoV-2 VUI 202012/01 (Variant Under 
Investigation, the year 2020, month 12, variant 01) by different studies 
done in the United Kingdom [14]. The mutation, A222V belongs to the 
B.1.177 lineage and has been noted to have a dominating presence in 
European countries[15,16]. N439K and Y453F have been found to have 
a higher binding affinity to the hACE2 receptor and are noted to reduce 
the neutralizing potential of antibodies specific to SARS-CoV-2 [17–19]. 
N439K often co-occurs with 69–70 deletion in the spike protein, the 
effect of this combined double mutation is being investigated by re
searchers (COVID-19 Genomics UK consortium, 2021; [20]. N501Y is 
the causative factor in the increased infectiousness of the disease [21]. 
The numerous effects of such mutations on the increased transmissibility 
and lethality of SARS-CoV-2, make it imperative to study these muta
tions and understand their effects[22]. 

To tackle the COVID -19 pandemic, efforts from the researchers have 
involved exploring traditional paradigm of in-vitro experimentation and 
data analysis-based methodologies like machine learning. Data driven 
modelling techniques, with their ability to analyze large amounts of 
data, build a functional mapping between the input parameters and 
output. This paper explores the use of data-driven methodologies to 
understand the mutations in the SARS-CoV-2 spike proteins. To under
stand and identify the mutation hotspots we have examined the 
sequence entropy and its correlation with experimentally identified 
variants of concern. 

Tomaszewski et al., defined mutational entropy as a measure of 
molecular heterogeneity of the SARS-CoV-2 proteome which is esti
mated from the positional variance in these sequences [7]. In our work, 
we measure the positional variance in the sequence of the SARS-CoV-2 
spike proteins by calculating Shannon Entropy. In case of proteins, 
Shannon entropy is shown to have a strong correlation with protein 
structural entropy [23], and can provide insights into the compositional 
stability of the proteins. The Shannon entropy is also directly propor
tional to the inverse packing density of proteins [24], and the packing 
density is further related to increased mutagenesis. Moreover, higher 
local flexibility regions have an increased value of entropy and are prone 
to mutations [21]. Our study explores these relationships of Shannon 
entropy to estimate the mutational hotspots in the SARS-CoV-2 spike 
protein. Higher value of entropy at a position in the sequence is indic
ative of increased randomness at that site whereas low value of entropy 
at a certain site is indicative of an increased stability and decreased 
randomness at the said location. 

Apart from identifying the hotspots of interest, we also analyze the 
similarity of these mutations by employing a k-means clustering algo
rithm. To generate the embedding for the clustering algorithm we 
leverage the protein sequence data by using language modeling ap
proaches. Through transfer learning, some of the highly successful 
models in the Natural Language Processing (NLP) domain have been 
applied to protein sequence to generate meaningful representations that 
can be used in tasks like structure prediction [25]. We used the 
Prot-BERT language modeling to represent these spike protein se
quences in the form of semantic rich embeddings [26]. The Prot-BERT 
model has been trained on 80 billion amino acids, representing wide 
variety of protein sequences. The embeddings generated via the 
Prot-BERT model can be used for different downstream tasks. In our 
work, we use embeddings to determine the similarities between muta
tions using unsupervised machine learning techniques. This analysis will 
help in understanding the relationships between the mutations and 
assist the research community to tackle the virus. 

1.1. Related work 

Machine learning models have been used in many ways to study and 
understand the different aspects of COVID-19 pandemic. These models 
have been previously used for forecasting the COVID-19 cases [27–29], 
propose the potential antibodies [30], understand the possible evolu
tions of the virus [31], understand the economic and social effects of 
social distancing [32,33], understand the efficiency of lockdowns [34], 
study the transmission and spread of the virus [35,36]. Data driven 
models have also been used to analyze the SARS-CoV-2 mutations. In 
their paper [37], use techniques topological like persistent homology to 
understand the SARS-CoV-2 mutations and uncover some underlying 
patterns. In another study [38], develop the Informative Subtype 
Markers (ISM) to visualize and analyze the spread of different mutated 
SARS-CoV-2 sequences. 

2. Methods 

2.1. Data 

To understand the effect of the mutations we focus only on the spike 
protein of the virus sequence. We select the spike protein region because 
it is the major component of the SARS-CoV-2 virus that is responsible for 
eliciting host immune responses of neutralizing antibodies. It is the 
presence of this spike protein on the antigen that allows it to interact and 
penetrate the host cells. Therefore, more attention to spike protein has 
been given in the analysis of the mutations of the SARS-CoV-2 virus. To 
this end, we collect the spike protein data from the GISAID server to 
analyze the effect of the mutations on the spike protein on its trans
missibility. We downloaded three hundred eleven thousand two hun
dred and fifty-six spike protein sequences from the GISAID server (http 
s://www.gisaid.org/) on January 3, 2020 [11,39]. The comprehensive 
dataset had sequences related to the SARS-CoV-1 virus too, therefore the 
first stage of preprocessing involved the elimination of sequences that 
were not from 2020. This resulted in a dataset comprising three hundred 
ten thousand five hundred and ten sequences. Most of these sequences 
are comprised of 1273 amino acids, with maximum length being 1278 
amino acids. To ensure uniformity in our calculation of the positional 
entropy, the ones with length less than 1278 were made up to length 
1278 by appending the relevant number of ‘X’s to the end of the gene 
sequence for the entropy analysis. The original spike protein sequence 
found in Wuhan is referenced from Zhao et al. [1] and the mutations in 
all the collected sequences in the data are analyzed with respect to this 
sequence. There was a large presence of repeated spike protein se
quences found in different countries, so we decided to curate the data 
further and create data with only the unique sequences as featurizing the 
same sequence twice using Prot-BERT would have been redundant. We 
found fifty-three thousand eight hundred and ninety-eight belonging to 
prime variants of interest that are unique sequences of the spike protein. 
Subsequently, this dataset was used to generate embedding via the 
ProtBERT Model. These embeddings were further used to carry out 
unsupervised machine learning analysis. To understand the spread of 
the data and visualize it, we generated the plot using t-SNE [40] shown 
in Fig. 1. 

Further, we also analyze the geographical locations and the general 
distribution of the countries that were a part of the dataset we found that 
United Kingdom and Denmark contributed to over 50% of the mutation 
sequences in the dataset with 140458 mutation sequences from United 
Kingdom and 20346 from Denmark. These two countries have proac
tively studied the different mutations and made the data available for 
public use via the GISAID server. To analyze the mutation sequence data 
from other countries, a distribution of the dataset comprising of coun
tries with more than 200 but less than 5000 mutation sequences is 
shown in Fig. 2. 
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2.2. Positional entropy calculations 

The positional entropy is a measure of the randomness at the given 
position in the sequence [41]. To calculate the positional entropy for our 
dataset we use Shannon Entropy formulation stated in Equation (1) 
[42]: 

H(i)= −
∑

k∈L
Pk(i) × log 2Pk(i) (1)  

Where L is a list of all possible amino acids in all the sequences and Pk(i)
is the probability of finding the kth amino acid at that position. 

We use equation (1) to find the positional entropy for all the posi
tions in the SARS-CoV-2 spike protein sequence. Using the dataset ob
tained from the GISAID server, we first pre-process the data using 
Biopython[43] to extract the sequences from the FASTA file downloaded 

from the server. We found that the length of the spike protein sequence 
varied from 1270 to 1278, the distribution of the sequence lengths is 
shown in Fig. S1. We also observed that the positions that contain 
ambiguous sites or unidentified amino acid in the spike protein sequence 
have been denoted with character “X” in the dataset. These positions 
with character “X” are handled by a masking operation that calculates 
the entropy without considering them [38]. We proceed by calculating 
the positional entropy values using equation (1) and all the values for 
the positional entropy are stored in an array. 

To identify the regions of high entropy that can possibly be associ
ated with harmful mutations, we use a running mean (window length =
15, step size = 1), here the first positional index of the window gets 
assigned the value of the running mean. In the running mean calcula
tion, we don’t consider the first 60 and last 60 amino acids in the se
quences because of the sequencing uncertainty. After calculating the 
running mean (window length = 15, step size = 1) for positional en
tropy, we stored it in another array. The array containing all the running 
means is then sorted and top 100 entropy values in the sequence are 
selected. Subsequently, we define the hotspots in the sequence as having 
≥2 consecutive high entropy positions among the top-100 positional 
entropy values. For example: 210 and 211 both belong to the top 100 
positional entropy values, and hence region 210–224 has been identified 
as a hotspot. To ensure both the positions (210 & 211) are included, we 
select the lowest index (210) as the start position of the hotspot and next 
15 positions (included in the running mean) are considered as the hot
spot (210–224). Additional details about the distribution of sequence 
lengths (Fig. S1) in the data and the starting positions of running mean 
windows for the top 100 positional entropy values are provided in the 
supplementary information (Table S1). 

2.3. Prot-BERT model 

The Prot-BERT trained on the UniRef100 dataset was used to 
generate sequence embeddings [26]. The Prot-BERT model has 30 
layers, 16 attention heads, and embedding hidden size 1024. The 
Prot-BERT model was chosen because the embeddings generated have 
been used for different downstream tasks successfully increasing our 

Fig. 1. t-SNE plot capturing the distribution of the data collected from the 
GISAID server. Some of the variants of concern like N439K, N501Y are clustered 
near each other. From the t-SNE, we can easily infer that the SARS-CoV-2 
mutations have unique characteristics. 

Fig. 2. Plot showing the distribution of the sequences in the data. Apart from United Kingdom and Denmark, the other countries actively tracking the variants of 
concern include USA, Australia, South Africa, and Switzerland. 
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confidence in using the same. We generate the embedding for the spike 
proteins of the mutated sequences using the pre-trained model on the 
hugging face api [44]. The Hugging face interface allows the users to 
easily use the pre-trained models on various Natural Language Pro
cessing (NLP) tasks. The curated data containing the unique sequences 
of spike protein were entered in the pre-trained Prot-BERT model and an 
embedding of size 1024 for every sequence. These embeddings are then 
used to study similarities and understand distributions between the 
mutations via K-Means clustering. 

2.4. K means 

Clustering is an unsupervised learning technique used to group a 
collection of unlabeled data sharing similarities. Each cluster comprises 
data sharing common traits which are distinct from members of other 
clusters, thereby resulting in clusters with high internal homogeneity 
and high external heterogeneity [45]. Clustering can be broadly classi
fied into two categories, hierarchical and non-hierarchical clustering. 

The k-means clustering technique used in this study is a non- 
hierarchical clustering approach. This technique involves defining the 
number of clusters ‘k’. Each cluster is represented by a central location 
defined as the centroid, Ckj where k is the cluster number and j are the 
number of attributes. The algorithm allocates each data point to the 
nearest cluster by minimizing the distance from centroid. It starts off by 
randomly assigning centroids and thereafter continues as an iterative 
process to optimize the centroid locations depending on the points 
assigned to that cluster. This process continues until there is no further 
change in the centroid values or until the maximum number of iterations 
is reached [46]. 

Clustering is one of the most important data mining techniques to 
group unlabeled data based on common traits. In this work, we used K 
means clustering to group the different mutations based on similarities 
in properties. The embeddings generated using the ProtBert model were 
used as features for the clustering model. 

To perform k-means clustering we use the scikit-learn library, that 
builds k-means model under the hood after entering the model param
eters [47,48]. The number of clusters chosen for this task was 10, based 
on the number of different mutation types being 10 and also because we 
got the highest silhouette score of 0.7228 [49] when using 10 clusters. 
We also implemented the MST-kNN clustering technique but the algo
rithm did not perform very well, it had a very low silhouette score of 
− 0.7638 and hence was not used for any further clustering analysis. We 
use the silhouette scores metric as it is a measure of how well an algo
rithm can differentiate between different clusters in the data. The score 
varies from − 1 to +1 and high silhouette score indicates that the data
points have been clustered appropriately, with similar datapoints clus
tered together and dissimilar datapoints clustered differently. Other 
parameters for k-means such as the maximum number of iterations was 
chosen to be 1000 and the total number of initializations was chosen as 
50 after multiple trials with other values in order to stabilize the cluster 
formation. 

3. Results 

3.1. Positional entropy 

The advantage of analyzing the entropy lies in the fact that 
sequential entropy is correlated to molecular motility is an important 
factor for the mutation [7,23,24]. Furthermore, studies have found a 
significant relationship between these high entropy hotspot regions of 
the viral sequence and enhanced virulence in the mutations associated 
with these regions, which have had a crucial role in the evolution of this 
disease. Hence, these sites are regions of interest in vaccine development 
and medicine formulation[38]. We calculated the positional entropy for 
all positions of the spike protein genomic sequence and have estimated 
the mutational hotspot regions in these viral sequences. Table 1 

highlights some of these regions of interest we have identified which 
correspond to some of the most dominant mutations that have been 
noted in various countries. From this analysis, we have noted that the 
regions of interest have successfully captured the D614G mutation, 
which is one of the most dominant mutation and is found to enhance the 
replication of SARS-CoV-2 in the lung cells [50]. The regions of interest 
also captured the following mutations - A222V, N439K, Y453F, S477 N, 
N501, D614G and V1122L [12]. 

Apart from the above mutations, the following other mutations have 
also been correctly identified in our hotspots - E484K, T478K, and 
L452R. It has been shown that for the mutation, E484K along with the 
some mutations from B.1.1.7 lineage requires increased amounts of 
antibody serum to prevent infection [51] making it especially 
dangerous. Interestingly, our methodology is capable of capturing some 
of the potentially harmful mutations that may emerge in the future. For 
example: Our model that uses sequence data before 2020 identifies one 
of the hotspot regions from 439 to 453. A mutation of significance, 
L452R which was first identified by the California Dept of Public Health 
on 17th Jan 2021 [52] and was later found to be dominant mutation in 
the months of April and May 2021 worldwide. Similarly, another mu
tation E484K belonging to the B.1.25 family was recognized as variant of 
concern was recognized in South Africa in April 2021 [53]. This muta
tion lies in the region 473–487 which includes another mutation of 
significance S477 N [16,54]. This emergence of variants of concern from 
hotspot regions identified by our methodology demonstrates the accu
rate prediction of Shannon entropy based analysis. 

To further illustrate the positional entropy hotspots, we have plotted 
the positional entropy for the entire sequence of the spike protein of 
SARS-CoV-2 in Fig. 3. Based on our analysis, we found nine other hot
spot regions including 329–343, 386–400, 425–439, 530–544, 700–714, 
763–777, 905–919, 955–968, 1172–1186. Based on validation analysis 
presented in Table 1 it is likely that the new mutation of concern may 
emerge in these hotspot regions. 

To structurally understand the mutations further, we also identified 
the regions where the dangerous mutations belong in the structure of the 
spike protein. The analysis was based on study done by Huang et al., 
where they identify the different regions in the spike protein based on 
the positions in the sequence [55]. It must be noted that there are seven 
possible dangerous mutations in the receptor binding domain of the 
spike protein, these mutations are possibly more lethal because of their 
location on the binding interface. The locations of these mutations on 
the spike protein have been presented in Table 2. 

We also validate the mutations in Table 1 by using– EV mutation[56] 
methodology that determines the favorability of a mutation by calcu
lating the prediction epistatic score. The data for mutation effect using 
EV mutation for SARS-CoV-2 is available on the server created by 
Ref. [57], we used the data from this server to analyze the epistatic 
mutation effect predict for mutations presented in Table 1. The novel 
aspect of the EV mutation method is its ability to take into account 
epistasis by taking into consideration the interactions between all pairs 
of amino acids residues in the neighborhood to quantify the mutational 
effects. A higher value of the prediction score using EV mutation 

Table 1 
Hotspots found by analyzing the positional entropy. To 
determine a hotspot region a running mean (window length =
15, step size = 1) is calculated and top 100 value are selected. 
We found six such regions of interest in our analysis in which 
ten mutations of interest emerged.  

Hotspots Mutation 

211–225 A222V 
439–453 N439K, L452R, Y453F 
473–487 S477 N, T478K, E484K 
487–501 N501Y 
602–616 D614G 
1121–1135 V1122L  
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indicates a highly favorable mutation. The analysis using EV mutation 
has been presented in Table 3. 

Among the ten different mutations in Table 1, Table 3 presents the 
EV mutation score for seven different mutations. The data for S477 N, 
E484K and N501Y is unavailable on the server (Nathan Rollins*, Kelly 
Brock*, Joshua Rollins* et al., 2020), and hence is not presented in 
Table 3. We observe that A222V and T478K are highly favorable mu
tations as they have the highest possible prediction epistatic score 
among all mutations for the wild-type residue (A for site 222 and T for 
site 478). The D614G mutations is also highly favorable, and mutations 
Y453F, V1122L and N439K may be considered as moderately favorable. 
On the other hand, the mutation L452R may not be as favorable based on 
prediction epistatic score. The EV mutation scores validate most 

mutations identified in the hotspots from our methodology in Table 1, 
further indicating the calculating the positional entropy of the sequence 
can be a useful metric for identifying future mutation hotspots. 

The positional entropy formulation developed in this work used the 
data from the year 2020 and yet was able to identify some of the mu
tations that emerge later in April and May 2021 such as E484K and 
L452R validating our methodology further. We believe that our method 
may potentially be used to identify the dangerous mutations in advance 
and aid in the fight against the pandemic. 

3.2. Clustering with K-means 

The clustering analysis was done on the embeddings generated from 
the Prot BERT model. The embeddings for all the sequences are a 2D 
array of shape (sequence length, 1024) where 1024 is the hidden 
dimension of the model. Subsequently, we applied mean pooling to the 
sequence length dimension of the embeddings and generate a vector of 
dimension 1024 for each sequence. This 1024-dimensional vector is 
used for k-means clustering analysis. 

The cluster centers resulting from k-means clustering correspond to 
the different mutation types, thereby verifying our assumption that the 
different cluster types get grouped separately. We find that 7 out of 10 
different mutations are identified as cluster centers with a few repeats. 
On analyzing the spike protein sequences that form the clusters and the 
sequence representative of the cluster center, we find that in most cases 
most of the sequences are identified to be of the same type as the cluster 
center whereas in most other cases the mutation type of the cluster 
center is amongst the top 3 mutation types present in the cluster, the 
other two types of possibly similar characteristics (Table 4). For 
example, from the plots (Fig. 4) show the clusters of S477 N and N439K 
have a majority of S477 N and N439K components. Furthermore, A222V 
has the second highest count in the cluster representing S477 N (Fig. 4) 
indicating similarities between them. D80Y is one of the majorities in 
the N439K cluster, thereby implying similarity in characteristics. In a 
study done by Ref. [58], it was found that A222V and S477 N are both 
stabilizing mutations thereby validating our findings that these two 
mutations may have some similar characteristics. This similarity anal
ysis between the mutations is significant because when designing ther
apeutics that can counter new mutations understanding characteristics 
of mutations computationally can save a lot of experimental time and 
accelerate the therapeutic development process. 

4. Conclusion 

In this study, we developed a methodology to determine the hotspots 
for mutations in spike protein sequences of SARS-CoV-2. This study can 
enable us to know variants of interests beforehand so that therapeutics 
can be developed for them. We found fifteeen regions of interest in the 
sequence of the spike protein that may be the potential hotspots for 
novel mutations in SARS-CoV-2. Six of these hotspots contain ten mu
tations which have already been flagged as possibly more transmissible 
by the previous research. Interestingly, some of the new emerging var
iants from India and South Africa which have been marked dangerous in 
April 2021 and May 2021 were identified by our methodology even 
though we use the sequence data on the GISAID server before December 

Fig. 3. Variation of entropy and the position in the spike protein. Hotspots with 
higher likelihood of mutagenesis and high entropy have been marked in red in 
the plot. The red regions(hotspots) have the maximum mean entropy over a 
window of length 15. The blue regions in the plot indicate the regions of 
relatively lower mean entropy over the window of length 15. According to 
positional entropy analysis the dangerous spike protein mutations are more 
likely to emerge from the hotspots (red regions). 

Table 2 
Location of the mutations in the spike protein of the SARS-CoV-2, we have 3 
regions of the spike protein where mutations can be located.  

Spike Protein Region Mutation 

N – Terminal domain A222V 
Receptor-Binding Domain N439K, L452R, Y453F, S477 N, T478K, E484K, 

N501Y 
Heptapeptide repeat 

sequence 
V1122L  

Table 3 
Analysis of the SARS-CoV-2 mutations using EV mutation, the prediction 
epistatic score is an indicator of whether a mutation is fit or not fit. The higher 
score indicates that the mutation indicates that the mutation is a better fit. The 
third column indicates the rank among all the possible mutations at the site. The 
possible values for rank range from 1 to 19 as there are 20 amino acids and a 
single amino acids can mutate into 19 other amino acids. The rank depends on 
the EV mutation score, highest score will get rank-1 that indicates the mutation 
is highly favorable and lowest score gets rank-19 indicates that mutation is not 
favorable according to EV mutation calculations.  

Mutation Prediction epistatic score Rank among all mutation possibilities 

A222V 0.5465 1 
N439K − 3.8605 10 
L452R − 6.1483 15 
Y453F − 6.5665 7 
T478K 0.4154 1 
D614G − 4.7144 2 
V1122L − 6.9294 9  

Table 4 
Clusters where the top 3 dominant mutations in the cluster concur with the 
cluster center mutation. The top-3 dominant mutations are most likely to be 
similar in characteristics to the mutation in cluster.  

Cluster Centers Dominant Mutations in the Cluster 

S477 N S477N, A222V, S98F, N439K 
N439K N439K, D80Y, N501Y, H69-70 
N501Y D80Y, N439K, N501Y, H69 
A222V V1122L, A222V, N501Y, S477 N  
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2020. Identifying hotspots beforehand may have implications in the 
development of therapeutics and be aware of the potential threats posed 
by the mutations in the virus. We also use the unsupervised learning- 
based clustering technique k-means to find the similarities between 
the variants of interests that have previously been found to be 
dangerous. The encode the protein sequences we use the Prot-BERT 
model and use features generated by it, for the k-means analysis. Clus
tering the mutation variants based on similarity reduces redundancy of 
time and resources, similar treatment techniques can be implemented 
for mutations that fall into the same cluster. One of the results of our 
analysis was the similarity between the S477 N and the A222V muta
tions, it implies that these mutations share common traits and occur
rences and may be subjected to similar treatment strategies. 
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