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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), affecting multiple
organ systems, including the respiratory tract and lungs. Several studies have reported that the tryptophan-kynurenine pathway is
altered in COVID-19 patients. The tryptophan-kynurenine pathway plays a vital role in regulating inflammation, metabolism,
immune responses, and musculoskeletal system biology. In this minireview, we surmise the effects of the kynurenine pathway
in COVID-19 patients and how this pathway might impact muscle and bone biology.

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is responsible for the current pandemic, suspected
to originate from infected bats [1]. Coronavirus disease
2019 (COVID-19), caused by SARS-CoV-2, has turned out
to be a major global catastrophe affecting millions of indi-
viduals across the globe [2]. In the United States, as of today,
more than 30 million lives have been affected by COVID-19,
and over six hundred thousand Americans have lost their
lives, according to the Johns Hopkins Coronavirus Resource
Center [3]. COVID-19 can present a wide spectrum of
symptoms such as cough, fever, shortness of breath, muscle
pain, and loss of taste and smell [4]. Mild to severely affected
patients may experience elevated proinflammatory cytokines
such as IL-1, TNF- α, and IL-6 [5], which negatively affect
human health (Figure 1). Excessive activation of these proin-

flammatory cytokines (cytokine storm) leads to the alter-
ation of several metabolic signaling pathways (e.g., the
tryptophan-kynurenine pathway).

Recent studies have shown that the tryptophan-
kynurenine pathway (Trp-Kyn) is altered in COVID-19
patients. A study conducted by Thomas et al. analyzed
serum metabolites of COVID-19 patients and found that
tryptophan (Trp) levels were reduced, and L-kynurenine
(Kyn) was elevated [5]. A study performed by Fraser et al.
reported similar findings (elevated levels of Kyn in
COVID-19 patients) [6]. Another study reported that Kyn
levels were elevated, along with kynurenic acid (Kyn-A)
and quinolinic acid (QA) in the serum of COVID-19
patients [7]. The study conducted by Lawler et al. demon-
strated elevated levels of QA in the blood plasma of
COVID-19 patients [8]. Sex-specific differences have also
been reported in the levels of Kyn-A and QA metabolites
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in COVID-19 patients. Serum metabolic analyses performed
by Cai et al. reported elevated levels of Kyn-A in male
patients compared to female patients [9]. Lionetto et al.
assessed serum metabolites in COVID-19 patients and
found that Kyn/Trp levels were elevated in male patients
[10]. Moreover, Cai et al. (2020) reported an elevated Kyn-
A: L-Kyn was associated with increased severity of
COVID-19 infection in male patients [9]. The studies men-
tioned above indicate that activation of the tryptophan-
kynurenine pathway might be one of the reasons for the
increased susceptibility of males to COVID-19 infection.

Several studies also reported elevated levels of genes
involved in tryptophan metabolic pathways [11, 12]. The
study conducted by Policard et al. reported that
indoleamine-pyrrole 2,3-dioxygenase (IDO-1) is signifi-
cantly upregulated in COVID-19 patients [11]. Another
study also reported similar findings showing elevated levels
of IDO-1 in COVID-19 patients [12]. The study con-
ducted by Grunewald et al. in the murine model demon-
strated that IDO-1, IDO-2, and TDO-2 were significantly
upregulated in murine coronavirus infection [13]. The
prevalence and severity of COVID-19 disease are directly
associated with age and the underlying condition, such
as diabetes, obesity, and cardiovascular disorders [14, 15].
It is well known that the tryptophan-kynurenine pathway
elevated with age and above mentioned underlying condi-
tions [16].

The findings from these studies strongly indicate that
the Trp-Kyn pathway is altered in COVID-19 patients,
leading to a decrease in Trp levels and an increase in
Kyn and its metabolites. Recent studies also demonstrated
reduced muscle mass and bone loss in COVID-19 patients
[17–20]. Based on the findings from our group and
published literature, we came up with a novel perspective
suggesting that the activation of the Trp-Kyn pathway in
COVID-19 patients might be involved in bone and muscle
loss.

2. The Tryptophan-Kynurenine (Trp-
Kyn) Pathway

Tryptophan (Trp) is an essential amino acid that plays a vital
role in protein synthesis, growth, mental health, and
immune responses [21]. As age advances, proinflammatory
cytokines, such as IL-6, IL-1β, and IFN-γ, lead to the activa-
tion of indoleamine 2,3-dioxygenase (IDO-1) [22]. An
increase in levels/activity of IDO-1 along with inflammaging
further leads to immunosuppression, neurodegenerative dis-
orders, cardiovascular diseases, and fragility [21–24]. Aug-
mentation of the levels/activity of IDO-1 decreases Trp
levels and leads to the generation of several Trp intermediate
metabolites [25]. Trp is catabolized by rate-limiting enzymes
such as indoleamine 2,3-dioxygenase-1 (IDO-1), indolea-
mine 2,3-dioxygenase-2 (IDO-2), and tryptophan 2,3-dioxy-
genase-2 (TDO-2) into N-formylkynurenine and Kyn [26].
Further, Kyn is broken down into Kyn-A and 3-
hydroxykynurenine by kynurenine aminotransferases
(KAT) and kynurenine 3-monooxygenase (KMO) [27].
Trp also acts as a substrate for the generation of nicotin-
amide adenine dinucleotide (NAD+) through the conversion
of quinolinic acid. NAD+ plays a crucial role in regulating
several cellular processes, including energy production,
chromosome stability, immune cell signaling, longevity
mechanisms, and DNA repair [28, 29]. The Kyn and its
metabolites induce downstream signaling by directly activat-
ing Ahr signaling [30] and/or indirect activation of the
MEK- (mitogen-activated protein kinase (MAPK)/extracel-
lular signal-regulated kinase (ERK) kinase-) ERK1/2 MAPK
signaling pathway [31, 32].

IDO-1 is a master regulator of the Kyn pathway and
downstream regulator of interferon signaling [33], which is
activated during viral infection [34]. On the other hand, it
has been reported that interferon-γ stimulates the expres-
sion of ACE2 (the receptor for SARS-CoV-2) in COVID-
19 infection [35]. Hence, the interferon-γ signaling cascade

Inflammation

Lungs Liver Brain Bone Muscle Heart

Pneumonia
fibrosis

Hepatic
damage

Degenaration
of neurons

Bone loss Weakness
fatigue
atrophy

saropenia

Myocardial
atrophy

myocarditis
cardiac arrythmia

Cytokine
storm

INF-γ
IL1-β
IL-6

IL-17
TNF-𝛼

Inflammation

Lungs Liver Brain Bone Muscle Heart

Cytokine
storm

INF-γ
IL1-β
IL-6

IL-17
TNF-𝛼

Figure 1: Illustration of impact of COVID-19 caused by infection with SARS-CoV-2 on various human organs-lungs, liver, brain, bone,
muscle, and heart. (Figure is created by using http://BioRinder.com.)
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potentiates inflammation in SARS-CoV-2 pathology [5].
Enhanced inflammation further leads to an increase in
IDO-1 activity followed by enhanced degradation of Trp
into Kyn and its metabolites. Our group identified the Trp-
Kyn catabolic pathway as a novel causal mechanism in
age-associated musculoskeletal complications (stem cell dys-
function and muscle and bone loss). We hypothesized that
elevated levels of Kyn and its metabolites might be involved
in COVID-19 musculoskeletal pathophysiology (Figure 2).

3. The Try-Kyn Pathway in COVID-19-Induced
Musculoskeletal Pathophysiology

Kyn is known to increase with age and is involved in deleteri-
ous effects on the musculoskeletal system [24, 36–38].
Recently published data have demonstrated a loss of bone
and muscle in COVID-19 patients [17–20]. We hypothesize
that an increase in cytokine levels leads to activation of the
IDO-Kyn pathway, which raises the levels of Kyn and its
metabolites, leading to activation of the aryl hydrocarbon
receptor (AhR) and downstream signaling. Induction of AhR
signaling directly by viral particles [39] or by Kyn metabolites
leads to bone and muscle loss. Viral infection activates AhR
through an IDO1-AhR-IDO1-positive feedback loop, which
eventually causes upregulation of downstream effectors, such
as TCDD-inducible PARP (TiPARP), and enhances the
expression of cytokines (e.g., interleukin IL-1β, IL-10, and
TNF-α) [39]. Therefore, we hypothesize that elevations in
the cytokine expression elicit IDO-Kyn-AhR activation that
results in bone and muscle loss.

There is conclusive evidence demonstrating that Kyn
increases bone resorption by activating the AhR signaling
pathway [38, 40, 41]. An increase in Kyn levels accelerates
skeletal aging, leading to decreased osteoblast numbers and
increased osteoclast numbers and activity, resulting in bone
loss via decreased formation and enhanced resorption [42].
The study performed by our group analyzed the direct
effects of feeding Kyn on bone mass and also evaluated the
short-term effects of intraperitoneal injection of Kyn on
bone turnover in CD-1 mice [24]. Micro-CT analysis
revealed a significant bone loss upon Kyn feeding in adult
mice, and serum analysis revealed an increase in the levels
of osteoclastogenic markers such as RANKL and pyridino-
line crosslinks (PYD) [24]. Our study also reported an
increase in bone marrow adiposity with Kyn treatment.
Moreover, bone marrow stromal cells isolated from Kyn-
injected mice showed a decrease in the expression of
Hdac-3 and its cofactor NcoR1 and augmentation of the
expression of lipid storage genes such as Cidec and Plin1
[24], suggesting a phenotype similar to accelerated aging since
such changes are also observed in aged bonemarrow cells [43].
A study conducted by Kalaska et al. revealed that elevated Kyn
levels decrease bone strength in rats [44]. Kynmetabolites may
also exert effects on bone: a study performed by Darlington
et al. measured the ratio of 3-hydroxyanthranilic acid to
anthranilic acid and found that anthranilic acid levels were
increased, and 3-hydroxyanthranilic acid levels were
decreased in osteoporotic patients [45].

Studies performed by our group have shown that in vitro
treatment of RAW264.7 cells, a macrophage-like cells line,
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Figure 2: Overview of effects of SARS-CoV-2 infection on the muscle and bone. The SARS-CoV-2 infection elicits systemic inflammation
(Cytokine storm), which activates the tryptophan-kynurenine pathway. Kynurenine is broken down into several downstream metabolites,
which further activates AhR signaling, affecting the integrity and structure of the musculoskeletal system. (Figure is created by using
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with Kyn induces osteoclastogenesis by upregulating osteo-
clast transcription factors (such as c-fos and NFATc1) which
leads to an increase in TRAP+ osteoclasts [40]. Another
metabolite, Kyn-A, inhibits the differentiation of osteoblasts
and increases osteoclastogenesis through the extracellular
signal-regulated kinase (ERK) pathway [36, 46]. Another
study conducted by our group demonstrated that Kyn treat-
ment of human and mouse myoblasts increases reactive oxy-
gen species formation [47]. Consistent with this in vitro
studies, in vivo treatment of mice with Kyn leads to
increased lipid peroxidation accompanied by reduced mus-
cle size and muscle strength [47]. Several Trp downstream
metabolites such as Kyn, Kyn-A, and 3-hydroxykynurenine
are endogenous AhR ligands likely to induce musculoskele-
tal damage [38, 40, 41, 48].

The decline in tryptophan levels and elevated levels of
Kyn and its metabolites postcovid will affect not only mus-
culoskeletal health but also accelerate other age-related dis-
eases (such as Alzheimer and Parkinson). The decline in
tryptophan levels will impair the serotonin and melatonin
pathway, which leads to the development of neurological
disorders such as depression, cognitive impairment, sleep
disorder, Alzheimer, and Parkinson’s [49]. Moreover, a
decrease in tryptophan levels will also affect protein synthe-
sis leading to weight loss and muscular atrophy [50]. Some
of the comorbidities that have been associated with severe
COVID-19 are aging, diabetes, hypertension, chronic lung
disease, cancer, and HIV. It is well known that the
tryptophan-Kyn pathway is activated in the abovementioned
conditions [51–55].

Inhibiting Trp-Kyn and/or AhR signaling may represent
a novel therapeutic approach for preventing COVID-19-
dependent musculoskeletal health and other age-related dis-
eases. There are several Trp-Kyn/Ahr inhibitors that are
undergoing clinical trials for various diseased conditions
[56]. Currently, indoximod (IDO inhibitor), epacadostat
(IDO inhibitor), and IK175 (Ahr inhibitor) are being used
for inhibiting Trp-Kyn-Ahr signaling [26].

4. Conclusion

Current studies regarding the activation of the IDO-Kyn-
AhR pathway in COVID-19 patients have opened up a
new frontier for the scientific research community. Based
on the available literature, it seems inevitable that activation
of the IDO-Kyn-AhR pathway in COVID-19 patients should
lead to bone and muscle loss, inducing significant musculo-
skeletal damage. However, there is currently advancement in
COVID-19 therapies (Figure 3), but no strategies are avail-
able to address musculoskeletal-related issues. Given that
the IDO-Kyn-AhR pathway is activated in COVID-19
patients, the use of inhibitors of IDO and/or AhR might be
beneficial to reduce or prevent bone and muscle loss in this
disease. IDO1 inhibitors (such as indoximod) and AhR
inhibitors (e.g., IK 175) may help prevent bone and muscle
loss. Some of these inhibitors are currently in clinical trials
to treat several cancers and related complications. However,
we suggest the necessity of conducting detailed clinical stud-
ies to design therapeutic strategies using these inhibitors to
prevent bone and muscle loss in COVID-19 patients. The
above-discussed literature is based on old variants of
COVID-19. It will be interesting to know how delta and
other recent variants circulating in the population will affect
the IDO-Kyn-AhR pathway.
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