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Introduction
Pancreatic islets are cell clusters dispersed throughout the pancreas, composed primarily of  endo-
crine cells that coordinate glucose homeostasis. Islet β cells secrete insulin, which acts to lower blood 
glucose, and α cells secrete glucagon, which acts to raise blood glucose. In addition to α and β cells, 
cooperative interaction of  less prevalent endocrine cells (δ, γ, and ε) and nonendocrine cell popula-
tions in the islet microenvironment, including endothelial cells, macrophages, pericytes (stellate cells), 
nerve fibers, and immune cells, provide additional signals to modulate islet function (1). Islet α and β 
cells are characterized by the precise expression of  transcriptional and signaling machinery that allows 
sensing and integration of  glucose, nutrient, and neurohormonal signals and proportional response 
with regulated hormone secretion. Importantly, pancreatic islet dysfunction through impaired insulin 
and/or glucagon secretion is a hallmark of  most forms of  diabetes (2–5). Thus, identifying key factors 
and molecular pathways governing α and β cell identity and function is crucial to understanding, treat-
ing, and preventing diabetes.

One set of  important molecules governing α and β cell identity and function are islet-enriched transcrip-
tion factors (TFs) that have been shown to have important roles in islet development and in the maintenance 
of  the islet cell phenotype, particularly in mouse and islet-like cells derived from human stem cells (6–9). 
Importantly, several islet-enriched TFs have species differences between human and mouse, highlighting 

Islet-enriched transcription factors (TFs) exert broad control over cellular processes in pancreatic α 
and β cells, and changes in their expression are associated with developmental state and diabetes. 
However, the implications of heterogeneity in TF expression across islet cell populations are not 
well understood. To define this TF heterogeneity and its consequences for cellular function, we 
profiled more than 40,000 cells from normal human islets by single-cell RNA-Seq and stratified α 
and β cells based on combinatorial TF expression. Subpopulations of islet cells coexpressing ARX/
MAFB (α cells) and MAFA/MAFB (β cells) exhibited greater expression of key genes related to 
glucose sensing and hormone secretion relative to subpopulations expressing only one or neither 
TF. Moreover, all subpopulations were identified in native pancreatic tissue from multiple donors. 
By Patch-Seq, MAFA/MAFB-coexpressing β cells showed enhanced electrophysiological activity. 
Thus, these results indicate that combinatorial TF expression in islet α and β cells predicts highly 
functional, mature subpopulations.
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the need to closely investigate TFs in human systems (10, 11). For example, members of  the Maf TF family 
show differences in cell-type distribution and timing of  expression (12, 13). Such TFs interact in complexes 
and networks to exert broad control over cellular processes, making them foundational regulators of  cell 
states. In fact, in addition to their coordinated role in islet cell development, loss or misexpression of  key TFs 
has been highlighted in numerous forms of  diabetes (14–17).

Importantly, with advances in scientific methodologies, it has been increasingly recognized that islet 
cells are heterogeneous. This is particularly apparent in β cells: recent work has highlighted human β cell 
heterogeneity in function (18), cell-surface protein expression (19, 20), and transcriptomic profile (21, 22). 
In contrast, heterogeneity within human α cells has been much less studied. Given the central role for 
islet-enriched TFs in regulating cell states, potential heterogeneity in these TFs may represent distinct cellu-
lar states with broad implications for human islet biology and diabetes.

RNA-Seq has been an essential technology to broadly characterize islet gene expression in an unbiased 
manner. Hallmark gene transcripts and gene pathways have been analyzed at the whole-islet level (23, 24) and 
in a cell type–specific manner using FACS with either cell-surface markers on live cells or intracellular proteins 
in fixed and permeabilized cells to obtain purified α and β subpopulations (25–27). However, these approaches 
provide limited ability to assess heterogeneity within a given cell type. To address this, single-cell RNA-Seq 
(scRNA-Seq) is an exciting and evolving technology that can be used to understand cell-type heterogeneity 
and has begun to be applied to human islets (18, 28–32). While the magnitude of  high-resolution data from 
these studies is exciting, there are also important technical challenges inherent to the small scale of  input 
material (33, 34), highlighting the importance of  a robust comparison between bulk and scRNA-Seq. Further, 
it remains unclear how α and β cells identified by protein-based methods (e.g., FACS) compare with cells 
characterized by the clustering approach applied in scRNA-Seq that arranges cells by transcriptional similarity.

To investigate how heterogeneity of  islet-enriched TFs in human islets relates to islet function, we focused 
on 3 TFs, namely ARX, MAFB, and MAFA. ARX and MAFB are enriched in islet α cells, as are MAFA 
and MAFB in β cells, and all 3 play important roles in islet cell development and disease as suggested by 
existing bulk RNA-Seq data sets (10, 17, 26, 27). Since our goal was to understand single-cell heterogeneity, 
we translated findings from a bulk context to a single-cell context by systematically analyzing the same islet 
preparation by both approaches to establish congruency between bulk and scRNA-Seq methods. Finally, we 
generated an scRNA-Seq data set of  over 40,000 islet cells from adult donors, which included endocrine, 
immune, and endothelial cell populations, that is accessible through a user-friendly web portal. This data set 
provided sufficient cell numbers to classify α and β cells into subgroups based on combinatorial ARX/MAFB 
and MAFA/MAFB expression, respectively, and allowed us to identify key correlates to α and β cell function. 
We further validated the existence of  these cell populations within human pancreatic tissue in situ and linked 
MAFA/MAFB transcriptional heterogeneity of  human β cells to their electrophysiological properties.

Results
Transcriptional and immunohistochemical profiling of  human α and β cells suggests a role for key TFs — ARX, 
MAFA, and MAFB — in islet cell development and disease. In vivo and in vitro studies have helped identify TFs 
with cell-specific expression patterns in islets. In α cells, aristaless related homeobox (ARX) factor is essen-
tial for α cell differentiation and function, a finding that has been confirmed in human α cells (8, 35–37). 
Indeed, ARX transcripts are heavily enriched in α cells (Figure 1, A and B, refs. 12, 38, 39, and Supplemen-
tal Figure 1, A and B; supplemental material available online with this article; https://doi.org/10.1172/
jci.insight.151621DS1). Of  note, α cells from donors with type 1 diabetes (T1D) showed decreased ARX 
expression compared with α cells from nondiabetic donors (Figure 1C), indicating that this factor may con-
tribute to impaired glucagon secretion observed in T1D (17, 18, 40).

MAFA is a bona fide β cell factor exerting direct control over insulin expression as well as key com-
ponents of  glucose-stimulated insulin secretion, and it is expressed relatively late in β cell development, 
making it a commonly used marker of  fully mature β cells (41–43). MAFA is thought to play a broadly 
similar role in adult mouse and human β cells, and existing RNA-Seq data sets underscore its β cell spec-
ificity (Figure 1, A and B and Supplemental Figure 1, A and B). MAFA is clearly present in adult β cells, 
but its expression actually does not peak until several years after birth, as illustrated by previous histological 
studies (12) and transcriptomic profiles of  β cells from fetal versus adult donors (Figure 1D and ref. 26). 
These data temporally correlate increased MAFA levels with the acquisition of  increased glucose sensitivi-
ty (44–46), suggesting that MAFA plays a role in β cell maturation and function.
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In contrast to ARX and MAFA, MAFB is expressed by both α and β cells (Figure 1, A and B and 
Supplemental Figure 1, A and B) and shows significant species differences: it is retained in human β cells 
during adulthood, whereas in rodents it becomes restricted to α cells in the early postnatal period (11). Of  
note, the MAF factors are thought to be capable of  forming both homo- and heterodimers (47), providing 
an opportunity for synergy between MAFA and MAFB in β cells. In α cells, MAFB is known to directly 
bind to the GCG promoter to regulate glucagon expression (32), rendering it an important regulator of  α 
cell function. Like ARX, MAFB is reduced in α cells from donors with T1D (Figure 1C).

The unique and dynamic expression patterns of  ARX, MAFA, and MAFB demonstrated by bulk RNA-
Seq (Figure 1, A–D, and Supplemental Figure 1, A and B) suggest that these TFs are linked to key aspects 

Figure 1. Bulk RNA-Seq and immunohistochemistry data highlight unique expression patterns of transcription fac-
tors ARX, MAFA, and MAFB in human α and β cells. (A–D) Normalized expression values (A, C, and D) and fold change 
(B) of ARX, MAFA, and MAFB in previously published bulk RNA-Seq data sets from α cells (green) and β cells (blue). 
Data in A is from Brissova et al. (17) and Saunders et al. (27) (n = 5 donors); additional data sets from Arda et al. (10) (n 
= 5 donors) and Blodgett et al. (26) (n = 7 donors) are included in B. See also Supplemental Figure 1, A and B. (C) Expres-
sion of ARX and MAFB is decreased (ARX fold change: –2.7; MAFB: –3.4) in α cells from donors with type 1 diabetes 
(T1D) compared with nondiabetic (ND) donors (17). (D) Expression of MAFA is increased (fold change: 7.1) in adult β cells 
compared with fetal β cells, while MAFB is decreased (fold change: –2.0) (26). All data shown as mean + SEM; symbols 
represent individual donors (A, C, and D) or average value per data set (B). Asterisks indicate significant (adjusted P val-
ue < 0.05) fold change of α versus β in A and B, T1D versus ND in C, and adult versus fetal in D. (E) Immunohistochem-
ical staining of pancreatic sections from a nondiabetic adult (55 years, Supplemental Table 4), showing specificity of 
ARX, MAFA, and MAFB (red) in α cells (GCG; green) and β cells (CPEP; blue). Arrowheads indicate cells negative (white) 
or positive (purple) for transcription factors; scale bar: 50 μm. See also Supplemental Figure 1, C and D.
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of  α and β cell function. However, our analysis of  their special distribution in adult human pancreatic tissue 
revealed that not all α or β cells in a given islet express them (Figure 1E and Supplemental Figure 1, C and 
D). Thus, to further understand the role of  these TFs, we sought to determine the cell-to-cell variability that 
cannot be discerned from a pooled cell population profiled by bulk RNA-Seq. Given the known importance 
of  TFs in regulating cellular processes, we hypothesized that TF heterogeneity at the single-cell level could 
define α or β cell subtypes with different functional properties.

Gene expression profiles of  α and β cells defined by scRNA-Seq are largely concordant with those obtained by 
bulk RNA-Seq. To translate gene expression findings from bulk RNA-Seq into the single-cell context, we 
systematically analyzed FACS-purified α and β cells (17, 27, 48) from a healthy 39-year-old donor by the 
2 approaches in parallel (Figure 2A, Supplemental Figure 2A, and Supplemental Table 1). Approximate-
ly 10,000 cells for each cell type were pooled to generate bulk RNA-Seq libraries (“FACS-Bulk-α” and 
“FACS-Bulk-β”) and 10,000 or more α cells and β cells were processed for scRNA-Seq to capture 6371 and 
1190 single cells after quality control (“FACS-SC-α” and “FACS-SC-β”), respectively.

Because bulk RNA-Seq and scRNA-Seq involve different chemistries that may bias direct comparisons 
of  gene expression levels, we initially assessed relative differences by looking at differential expression 
between α and β cells profiled by each approach (FACS-Bulk-α vs. FACS-Bulk-β compared with pooled 
data from FACS-SC-α vs. FACS-SC-β). Genes differentially expressed in both data sets were highly cor-
related (r = 0.91, P < 2.2 × 10–16) and showed the expected enrichment of  β cell–specific genes (e.g., INS, 
IAPP, MAFA) as well as α cell–specific genes (GCG, TM4SF4, ARX) (Figure 2B). Importantly, there were 
very few differentially expressed genes that were regulated in opposite directions (Figure 2B), suggesting 
that trends in gene expression were consistent between the 2 methods. In addition, gene expression in 
each cell type was quite concordant between bulk and scRNA-Seq (r > 0.5, P < 2.2 × 10–16); however, as 
expected, overall gene coverage was much greater in bulk RNA-Seq (Figure 2, C and E). To determine what 
biological information this extra coverage provided, we visualized enriched pathways by gene ontology 
(GO) and Kyoto Encyclopedia of  Genes and Genomes (KEGG) for genes detected by scRNA-Seq (“SC”) 
as well as for genes uniquely captured by bulk RNA-Seq (“Unique Bulk”) that were most specific to each 
cell type (Figure 2, D and F, Supplemental Figure 2, F and G; and ref. 49). Enriched processes were highly 
related and integrated, highlighting important islet cell functions (GO: ion homeostasis, regulated exocyto-
sis, autophagy, etc.; KEGG: glycolysis, insulin secretion, cAMP signaling, etc.). Taken together, these data 
indicate that although bulk RNA-Seq captured a greater breadth of  genes, scRNA-Seq analysis provided 
data for a similarly broad and comprehensive set of  pathways and processes specific to α and β cell biology.

We next asked whether gene expression profiles of  FACS-purified α and β cells (17, 27, 48) were 
similar to those identified by unsupervised clustering (identification of  cells after sequencing). Islet cells 
from 2 healthy donors were profiled by scRNA-Seq either directly after dispersion from whole islets (WIs; 
“WI-SC-α” and “WI-SC-β”) or after FACS purification (“FACS-SC-α” and “FACS-SC-β;” Figure 2A and 
Supplemental Table 1) with a similar gene capture across all 4 cell populations (Supplemental Figure 2B). 
Principal component analysis (PCA) indicated that overall variance was not governed by cell identifica-
tion approach but rather cell-type differences (Figure 2G) driven by known α and β cell genes (e.g., GCG, 
SLC7A2, INS, PCSK1) as well as markers not extensively studied in islets (e.g., RGS4, FXYD3, MEG3, 
HADH; Supplemental Figure 2C). In addition, gene expression profiles of  FACS-α and FACS-β samples 
showed strong linear correlation (r = 0.99, P < 2.2 × 10–16) with WI-α and WI-β samples, respectively (Sup-
plemental Figure 2, D and E). Visualization of  canonical α and β cell markers (Figure 2H) highlighted that 
cell-cell heterogeneity was apparent regardless of  cell identification method. Finally, key islet-enriched TFs 
showed consistency between WI and FACS samples for each cell type, both in magnitude of  expression (z 
score, indicated by color) and in number of  cells expressing the factor (dot size) (Figure 2I). These results 
indicate that a) cell sorting did not appreciably alter the transcriptional profile of  α and β cells and b) post 
hoc identification of  cell types by unsupervised clustering was consistent with identification by cell-surface 
proteins. Thus, both approaches are suitable for investigating TF heterogeneity.

scRNA-Seq reveals heterogenous TF expression in α and β cells. One major advantage of  scRNA-Seq is  
its ability to dissect heterogeneous cell composition within and across cell types. However, because some 
subpopulations are relatively rare, robust data sets are required to sufficiently characterize these popula-
tions. In this study, we obtained 44,953 high-quality single-cell transcriptomes of  handpicked islets from n 
= 5 healthy donors with robust dynamic insulin and glucagon secretion profiles characterized by perifusion 
to ensure healthy and functional cells were being assessed (Supplemental Table 1 and Supplemental Figure 
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3A). Graph-based unsupervised clustering (50) reliably detected major endocrine cell types (α, β, δ) and 
acinar, ductal, stellate, endothelial, and immune cells (Figure 3A). Clusters were annotated to identify cell 
types, including rare populations such as γ and ε, using markers listed in Supplemental Table 2, and identi-
fied cell types were represented in each donor (Supplemental Figure 3B). Cell populations were confirmed 
by the specific expression of  additional known identity markers (Figure 3B). Within cell types, the expected 
clustering by individual donor (Supplemental Figure 3C) was apparent. To facilitate the exploration of  this 
robust single-cell data set, we created a web application that allows one to browse single-cell gene expres-
sion by both cell type and donor (Supplemental Figure 3D).

To investigate the cell-specific signatures of  human α and β cells, we analyzed expression patterns of  
canonical islet-enriched TFs. PAX6, RFX6, NEUROD1, and NKX2-2 were detected in all endocrine cell 
types, whereas PDX1, NKX6-1, and MAFA were enriched in β cells; IRX2 was specifically detected in α 
cells; and ARX was detected in α, γ, and ε cells, consistent with previous single-cell studies (refs. 28, 29, 50 
and Figure 3C). PAX6, NEUROD1, and MAFB were among the most prevalent endocrine factors, detected 
in more than 75% of  α and β cells (Figure 3C). Of  particular interest, MAFB — known in humans to be 
expressed in both α and β cells — was also enriched in the immune cell population, which had been over-
looked in previous studies because of  low abundance of  immune cells in isolated islets. Interestingly, we 
noticed that each of  these key TFs had a bimodal distribution, meaning there was a clear subpopulation 
of  cells without detection of  each factor (Figure 3D), consistent with our observations for MAFA, MAFB, 
and ARX in pancreas tissue (Figure 1E). Ranges in the number of  detected genes per cell for cells express-
ing low (natural log [unique molecular identifiers per 10,000 + 1] < 0.5) and high (natural log [unique 
molecular identifiers per 10,000 + 1] > 0.5) MAFA, MAFB, and ARX were comparable, with the majority 
of  cells having more than 1000 detected genes (Supplemental Figure 3E). These results indicate that the 
bimodality of  TF distribution is unlikely to be due to cells having a high dropout rate; there was also no 
evidence that cell-cycle state contributed to the stratification (Supplemental Figure 3F). Given the crucial 
role that islet-enriched TFs play in islet cell identity and function, particularly when acting in TF regulatory 
networks, we thus hypothesized that combinations of  key TFs would identify important islet cell subtypes.

Heterogeneity of  ARX and MAFB expression in α cells by scRNA-Seq predicts expression of  key α cell functional 
genes. Since both ARX and MAFB are downregulated in α cells from donors with T1D (17), we tested the 
hypothesis that these factors cooperatively regulate α cell function. We first confirmed heterogeneous ARX 
and MAFB expression in α cells from all 5 donors (Figure 4A). Of 24,248 total α cells, we identified popula-
tions of  α cells in which neither ARX nor MAFB was detected (“None”; 10%), populations where only ARX 
or only MAFB was detected (4% and 48%, respectively), and a population with codetection of  both ARX and 
MAFB (“Both”; 38%) that were relatively stable across all 5 donors (Figure 4B). For these 4 populations, we 
investigated expression of  other islet-enriched TFs, α cell–enriched genes, and genes related to ion flux, glu-
cose metabolism, vesicle trafficking, exocytosis, and cell stress (Figure 4C and Supplemental Figure 4). Inter-
estingly, we observed that numerous α cell–enriched TFs (RFX6, PAX6, NEUROD1, ISL1, IRX2) and genes 
related to nutrient sensing or glucagon secretion (ACLY, PKM, GSTA4, GPX3, G6PC2, KCTD12, KCNK16, 
KCNJ6, ABCC8) were elevated in α cells in which MAFB and ARX were codetected compared with the other 
populations, whereas genes related to cell stress (DDIT, ATF4) were highest in the “None” group, suggesting 
that the presence of  both factors may support increased metabolic activity and glucagon secretory capacity. To 
confirm these findings, we analyzed 3 additional scRNA-Seq data sets of  human islets that utilized different 
single-cell technologies (18, 28, 29) and found the results to be consistent (Supplemental Figure 5A).

Figure 2. Gene expression profiles of α and β cells defined by scRNA-Seq are largely concordant with those obtained by bulk RNA-Seq. (A) Schematic 
depicting comparison of sorted human α and β cells profiled by bulk (FACS-Bulk) and single-cell (FACS-SC) RNA-Seq (n = 1, 39-year-old donor), as well 
as single α and β cells identified by cell surface markers (FACS-SC) compared with those from dispersed whole islets (WI-SC) identified by unsupervised 
clustering (n = 2, 14- and 39-year-old donors). (B) Genes differentially expressed (log2 fold change) between α and β cells as assayed by scRNA-Seq (y axis) 
and bulk RNA-Seq (x axis). (C–F) Gene expression and associated gene ontology term enrichment for α (C and D) and β (E and F) cells by bulk and scRNA-Seq. 
Scatterplots (C and E) show average expression (unique molecular identifier [UMI] counts) from scRNA-Seq (7269 α; 2511 β) compared with TPM normalized 
expression of bulk RNA-Seq (10,000 cells/sample) from corresponding populations. Only genes log2TPM > 1 (bulk) and UMI > 1 (single cell) were considered 
to assess gene detection; r is Pearson’s coefficient and P is significance from t test statistic. Metascape (49) network visualizations (D and F) show enriched 
ontology terms from genes detected by scRNA-Seq (“SC”) and 1000 genes uniquely detected by bulk RNA-Seq (“Unique Bulk”) that were most differen-
tially expressed in each cell type. Colors correspond to shaded regions of C and E. (G) Principal component analysis (PCA) of sorted α and β cells identified 
by cell-surface marker expression (FACS-SC) and those derived from dispersed whole islets and identified by unsupervised clustering (WI-SC). (H) Heatmap 
showing variable expression of known α cell– and β cell–enriched markers within and between each sample. (I) Relative expression of transcription factors 
across samples; dot size indicates the percentage of cells with detectable transcripts and color indicates gene’s mean expression by z score.
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We next asked whether ARX/MAFB heterogeneity existed at the protein level given the known differ-
ences that exist between transcript and protein expression (51). To assess this, we performed immunohis-
tochemical analysis of  ARX and MAFB on pancreatic tissue sections from nondiabetic donors (Figure 
4D and Supplemental Figure 5B). Cells were classified by automated algorithm for “low” or “high” 
ARX and MAFB immunofluorescence, setting an intensity threshold that remained consistent across all 
islets from a given tissue. By this measure, all 4 combinations of  ARX/MAFB-expressing α cells were 
detected in each donor evaluated: ARXlo MAFBlo (41%), ARXhi MAFBlo (19%), ARXlo MAFBhi (9%), 
and ARXhi MAFBhi (30%; Figure 4E). Taken together, our results indicate the presence of  α cell subpop-
ulations classified according to unique and conjunctional expression of  ARX and MAFB and suggest 

Figure 3. Transcription factor expression in human pancreatic islets by scRNA-Seq. (A) UMAP visualization of 44,953 pancreatic islet cells from n = 5 islet 
preparations, identified by unsupervised clustering; cell populations include β (24%), α (54%), δ (2.5%), ε (0.08%), acinar (3.3%), ductal (4.7%), endothelial 
(2.2%), stellate (7.7%), and immune cells (0.5%). Cell clusters were annotated using known gene markers (Supplemental Table 2). Populations of γ and ε cells 
could not be resolved from the δ cell cluster; thus, these populations were manually selected using the “CellSelector” function to identify cells positive for 
PPY and GHRL, respectively. Libraries were sequenced at approximately 80,000 reads/cell yielding a median of 2365 genes per cell. (B) Dot plot showing rel-
ative expression of cell-type markers to validate cell-type annotation after unsupervised clustering. (C) Dot plot showing relative expression of transcription 
factors across all cell types. In B and C, dot size indicates the percentage of cells with detectable transcripts; color indicates gene’s mean expression z score. 
(D) Detected levels of common transcription factors expressed in α and β cells expressed as natural log (unique molecular identifiers per 10,000 + 1).
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Figure 4. Heterogeneity of ARX and MAFB expression in α cells by scRNA-Seq correlates with expression of key functional genes. (A) UMAP visualization 
of 24,248 α cells (n = 5 donors) pseudocolored to show detected expression, from left to right, of ARX (blue); MAFB (red); and both ARX and MAFB with 
0.5 color threshold scale. (B) Scatterplot on the left is depicting 4 distinct α cell populations based on detected expression (natural log of unique molec-
ular identifiers per 10,000 + 1) of ARX and MAFB: those expressing neither factor (10%), those expressing only ARX (4%) or only MAFB (48%), and those 
coexpressing ARX and MAFB (38%). Chart on the right shows cell populations by donor, with the outermost circle reflecting totals. (C) Dot plot showing the 
relative expression of selected genes related to α cell identity, ion flux, glucose metabolism, vesicle trafficking, exocytotic machinery, and cellular stress of 
the 4 α cell populations in B. Dot size indicates the percentage of α cells with detectable transcripts; color indicates the gene’s mean expression z score. See 
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that combined expression of  these 2 markers likely identified highly functional and mature α cells.
β Cells coexpressing MAFA and MAFB exhibit characteristics of  enhanced secretory function. Given the ability of  

MAFA and MAFB to heterodimerize (47) and the unique expression changes during β cell maturation (10, 
12, 26), we hypothesized that MAFA and MAFB coexpression represents a unique subpopulation of  human 
β cells. To test this, we resolved 11,034 β cells into subgroups in which only MAFA or only MAFB was detect-
ed (4% and 52%, respectively), both MAFA and MAFB were detected (“Both”; 22%), and neither MAFA nor 
MAFB was detected (“None”; 21%; Figure 5, A and B). We assessed these groups for the same set of  key cel-
lular identity and functional genes described above for α cells, and we saw a general trend of  increased expres-
sion of  key functional genes with dual MAFA and MAFB expression (Figure 5C and Supplemental Figure 6). 
Specifically, numerous genes related to cell identity (PDX1, PAX6, NEUROD1, ISL1, PCSK1, IAPP), glucose 
metabolism (ACLY, G6PC2, GPX3), ion channels (ABCC8, KCNJ6), and exocytosis (VAMP2, SYT7, PCLO, 
TSPAN7, RGS9, FAM159B, BMP5) were all increased in MAFA- and MAFB-coexpressing cells compared 
with other subgroups. In contrast, stress genes (HSPA5, HERPUD1, DDIT3, ATF4) were either significantly 
reduced in the coexpression group or significantly elevated in the “None” group. These expression patterns 
indicate that presence of  both factors may be crucial for increased metabolic activity and insulin secretion. 
Analysis of  3 independent single-cell studies of  human islets utilizing other platforms (18, 28, 29) confirmed 
these results (Supplemental Figure 7A). The presence of  β cell MAFA/MAFB heterogeneity at the protein 
level (MAFAlo MAFBlo, 46%; MAFAhi MAFBlo, 8%; MAFAlo MAFBhi, 29%; MAFAhi MAFBhi, 16%) was 
validated by immunofluorescence in pancreatic sections, where cells representative of  all 4 populations were 
identified in each of  multiple nondiabetic donors (Figure 5, D and E and Supplemental Figure 7B).

To determine whether the β cell subpopulation in which both MAFA and MAFB were detected, enriched 
for numerous genes related to metabolism and hormone secretion, had functionally relevant consequences 
compared with other β cells, we utilized human Patch-Seq data from Camunas et al. (18). Transcriptomes 
from 194 β cells within this data set (Figure 6A) showed high similarity with our larger data set of  11,034 β 
cells (Figure 5C and Supplemental Figure 7A). In addition to producing an mRNA profile, the Patch-Seq 
approach captured an electrophysiological profile of  each cell, generating linked data on cell size, exocytosis, 
and ion channel currents. In agreement with transcriptome data, β cells with detection of  both MAFA and 
MAFB showed increased electrophysiological activity across several parameters, including early exocytosis, 
early and late Ca2+ current, and late Ca2+ conductance when compared with cells in which MAFA only, 
MAFB only, or neither factor was detected (Figure 6B). Of note, MAFA/MAFB β cells were comparable in 
size to those expressing only one or neither factor, suggesting that neither the transcriptomic data nor the ele-
vated electrophysiological activity can be attributed to larger cells expressing more genes (Figure 6B). Thus, 
these data provide strong support that heterogeneous populations of  β cells on the basis of  combinatorial 
MAFA/MAFB expression exist and that coexpression of  both factors marks β cells with elevated function.

Discussion
By transcriptional profiling and assessment of  protein expression at the single-cell level, we found that sev-
eral key islet-enriched TFs important for α and β cell maturity and function had a heterogenous expression 
pattern within normal human islet cells. To unravel the functional consequences of  this heterogeneity in TF 
expression, we systematically analyzed the same islet preparation by bulk and scRNA-Seq approaches and 
established congruency between the 2 methods. Capitalizing on our large scRNA-Seq data set, we stratified 
α and β cells based on differential or combined detection of  key TFs (ARX/MAFB in α cells; MAFA/MAFB 
in β cells) that are known to act cooperatively. We found that coexpression of  these TF combinatorial 
pairs predicted greater expression of  genes related to glucose metabolism, ion flux, and hormone secretion, 
including known α and β cell functional markers and those not extensively studied in islets. Importantly, we 
identified subpopulations with TF heterogeneity at the protein level by spatial analysis of  normal human 
tissue and demonstrated, using Patch-Seq, greater electrophysiological activity in β cells coexpressing 
MAFA and MAFB. These results suggest that combinatorial expression of  key islet TFs defines and predicts 
highly functional and mature α and β cells.

Supplemental Figure 5 for comparison with other single-cell studies. (D) Immunohistochemical staining of ARX (blue) and MAFB (red) in glucagon-express-
ing (GCG-expressing) α cells (green) of a nondiabetic adult (55 years, Supplemental Table 4). Numbered arrowheads indicate the presence of 4 α populations: 
1, ARXlo MAFBlo; 2, ARXhi MAFBlo; 3, ARXlo MAFBhi; 4, ARXhi MAFBhi. (E) Quantification of α cell populations shown in D (n = 2369 α cells). Outermost circle 
represents composite count and inner circles represent α cells from each of n = 3 donors (see also Supplemental Figure 5B).
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Figure 5. Heterogeneity of MAFA and MAFB expression in β cells by scRNA-Seq correlates with expression of key genes involved in β cell function. (A) 
UMAP visualization of 11,034 β cells (n = 5 donors), pseudocolored to show detected expression, from left to right, of MAFA (red); MAFB (blue); and both MAFA 
and MAFB with 0.5 color threshold scale. (B) Scatterplot on the left depicts 4 distinct β cell populations based on detected expression (natural log of unique 
molecular identifiers per 10,000 + 1) of MAFA and MAFB: those expressing neither factor (22%), those expressing only MAFA (4%) or only MAFB (52%), and 
those coexpressing MAFA and MAFB (22%). Chart on the right shows cell populations by donor, with the outermost circle reflecting totals. (C) Dot plot show-
ing the relative expression of selected genes related to β cell identity, ion flux, glucose metabolism, vesicle trafficking, exocytotic machinery, and cellular stress 
of the 4 β cell populations in B. Dot size indicates the percentage of β cells with detectable transcripts; color indicates the gene’s mean expression z score. See 
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Bulk RNA-Seq and scRNA-Seq have provided immense knowledge of  the human islet transcriptional 
landscape, but each technology has strengths and drawbacks. Despite the prevalence of  both approaches 
and notable studies comparing bulk and single-cell approaches on a common islet preparation (29, 31), this 
study is, to our knowledge, the first to report direct comparisons of  bulk RNA-Seq on FACS-purified human 
α and β cells and scRNA-Seq on FACS-purified and dispersed cells from the same individuals. We highlight 
that although sensitivity to low-expression genes was reduced in scRNA-Seq, the detected genes covered 
a broad range of  biological pathways that allowed reconstruction of  GO enrichment maps obtained from 
bulk RNA-Seq (Figure 2, D and F). Further, α and β cells showed very similar expression profiles regardless 
of  cell-type identification method, with neither clustering via transcriptional similarity nor presence of  
characterized cell-surface proteins showing an apparent bias. This indicates that enrichment methods using 
cell-surface markers are an appropriate method to investigate a subpopulation of  islet cell types.

Lower gene detection in scRNA-Seq compared with bulk was an expected finding given that bulk 
RNA-Seq generates reads from nearly the entire length of  a gene, while the 10x Genomics platform, used 
in this study, does so only from the 3′ end. Single-cell technologies that capture full-length transcripts (e.g., 
Smart-Seq2) fare better in direct comparison of  gene expression levels (34). Indeed, the smaller working 
range and lower signal-to-noise ratio were reflected in our scRNA-Seq data. Despite this, detected transcript 
levels in both data sets converged linearly and were involved in a broad range of  similar biological process-
es, emphasizing the high fidelity of  both methods to assess islet cell biology (Figure 2, C–F). To mitigate 
the differential scale, we also compared the relative transcript abundance in the form of  α versus β cell 
enrichment (Figure 2B). Again, scRNA-Seq was not as sensitive to changes across all transcripts, but those 
that were detected exhibited very high correlation.

Though it is widely appreciated that numerous TFs act in protein complexes to regulate cellular identity 
and function, the significance of  their heterogenous expression for maintaining identity and function has not 
been explored. Building on the strength of  scRNA-Seq to resolve cell heterogeneity, we explored numerous 
islet-enriched TFs and found bimodal distribution patterns that suggest the presence of  unique combinato-
rial profiles. In this manuscript, we investigated expression patterns of  3 TFs with known changes in islet 
cell development and diabetes: α cell–specific ARX, β cell–specific MAFA, and MAFB, which is expressed in 
both α and β cells and has a unique expression profile compared with rodent islets. Interestingly, other islet- 
enriched TFs were consistently elevated in ARX/MAFB-coexpressing α cells and MAFA/MAFB-coexpressing 
β cells, supporting the concept of  islet-enriched TFs acting in self-regulating networks, and making it likely 
that combinatorial profiles of  other TFs also reveal interesting populations with functional consequences. 
Larger data sets and network-based approaches considering additional TF combinations should be used to 
examine more complex expression patterns and how these patterns change in type 1 and 2 diabetes islet cells.

One contribution to bimodal distribution in detection of low-abundance transcripts like TFs in scRNA-Seq 
is gene dropout, where a gene is detected only in a subset of cells because of low mRNA quantity. Although it 
is tempting to fully attribute such bimodal distributions to dropout, we showed greater expression of functional 
genes in one subpopulation (often dual-positive cells), suggesting that dropout is not simply a stochastic event 
and could instead reflect cell states, cell activity, or a biological process such as transcriptional bursting (52). 
These findings were replicated in 3 additional scRNA-Seq data sets of human islets generated by various sin-
gle-cell technologies (18, 28, 29), and all showed trends consistent with the current study. Finally, taking advan-
tage of the Patch-Seq approach from our previous study, we were able to validate increased cellular function 
reflected by electrophysiological parameters (Figure 6). Thus, while it is not possible with current technologies 
to prove that cells with undetectable TF expression truly have no expression, these data indicate that such obser-
vations are not simply technical in nature and instead are reflective of important underlying human islet biology.

Our data suggest that ARX/MAFB-coexpressing α cells and MAFA/MAFB-coexpressing β cells have 
elevated expression of  functional genes compared with cells that express only one or neither factor. None-
theless, elevated expression for certain genes in single TF-expressing populations (e.g., MDH2 and KCN-
MA1 in MAFB-expressing β cells) may provide insight into how these individual TFs act in each cell type. 
Indeed, a comparison of  our data to molecular studies of  these TFs in mice or human stem cells revealed 

Supplemental Figure 7 for comparison to other single-cell studies. (D) Immunohistochemical staining of MAFA (red) and MAFB (blue) in C-peptide–expressing 
(CPEP-expressing) β cells (green) of a nondiabetic adult (55 years, Supplemental Table 4). Numbered arrowheads indicate the presence of 4 populations: 1, 
MAFAlo MAFBlo; 2, MAFAhi MAFBlo; 3, MAFAlo MAFBhi; 4, MAFAhi MAFBhi. (E) Quantification of β cell populations shown in D (n = 2566 β cells). Outermost circle 
represents composite count and inner circles represent β cells from each of n = 3 donors (see also Supplemental Figure 7B).
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numerous similarities. For example, our data demonstrated that MAFA/MAFB-coexpressing β cells were 
distinct from populations that expressed only a single TF, which suggests that although these factors are 
related, they have distinct targets and roles within the β cell. This is consistent with a recent report showing 
that in mice, MAFB does not compensate for MAFA loss (12). Further, our data highlight MAFB as playing 

Figure 6. β Cells coexpressing MAFA and MAFB have enhanced electrophysiological activity compared with β cells expressing one or neither factor. (A) 
Dot plot showing the relative expression of selected genes in β cells expressing neither MAFA nor MAFB, those expressing only MAFA or only MAFB, and 
those coexpressing MAFA and MAFB, based on data from Camunas et al. (18). Dot size indicates the percentage of cells with detectable transcripts; color 
indicates gene’s mean expression z score. (B) Electrophysiological function in MAFA- and MAFB-expressing β cell subpopulations. Significantly higher Ca2+ 
currents and exocytosis were observed for β cells expressing both MAFA and MAFB with similar cell size across all subpopulations. Mann-Whitney test 
adjusted for multiple hypothesis testing with Benjamini-Hochberg (BH) procedure; *P < 0.05; **P < 0.01.
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a key role in defining both β and α cell identity, in line with a recent report where MAFB deletion in human 
embryonic stem cells disrupted the differentiation process for both β and α cells (53). Thus, our approach 
highlights how TF profiles at the single-cell level can be used to predict transcriptional and functional con-
sequences of  genetic manipulation, highlighting an immense power for large scRNA-Seq data sets.

Although there were not sufficient cells for robust statistical comparison of  all subsets, it is interesting 
to note that the electrophysiological profile of  the cells expressing neither MAFA nor MAFB was similar to 
those cells expressing only one of  the factors, thus suggesting a specific benefit to having combined expres-
sion of  both factors in adult human β cells that is not apparent with only one of  the TFs. These findings 
have several implications given the unique timing of  MAFA and MAFB expression in the human β cell 
and differ slightly from our transcriptional data that suggested more of  a progressive increase, in which the 
double-negative group showed the lowest expression followed by single TF groups and coexpressing cells 
had the highest expression of  genes related to hormone secretory function. Future investigation with larger 
functional data sets will be needed to further delineate these interesting findings as well as directly evaluate 
the role of  MAFA, MAFB, and other enriched TFs in human islet cell hormone secretion.

Given the potential inconsistencies between transcript- and protein-level expression in human islets 
(51), we pursued identification of  heterogeneous TF protein expression in human pancreatic tissue. Though 
there were discrepancies in subpopulation distribution estimated by transcript versus by immunodetection, 
the presence of  all TF combinations in tissue indicates this heterogeneity is not limited to one experimen-
tal approach. Differences may also arise from posttranscriptional control of  protein levels that would not 
be apparent at the transcript level. Novel, single-cell multiomic techniques will be required to define the 
precise correlation between TF mRNA and protein abundance, and these techniques may also help define 
how the described heterogeneity relates to other forms of  β cell heterogeneity that have been previously 
described or hypothesized (18–22). Heterogeneity within α cell populations has been less studied, but our 
data indicate it may have an unappreciated role within the islet as well.

There are limitations to the current study that suggest opportunities for future work. First, the disper-
sion of  islet cells required for scRNA-Seq disrupts the microenvironment, which is known to be crucial for 
coordinated islet function (54, 55). How the α and β cell subpopulations defined in this study function in 
the islet context is presently unknown — although having all highly functional cells would seem beneficial, 
some data have suggested that both mature and immature cells are required within an islet for optimal 
function (56). Importantly, the nature of  scRNA-Seq means we cannot discern whether the heterogeneity 
described here is stable or a snapshot of  a dynamic cell state.

In sum, we highlighted the utility of  a large, scRNA-Seq data set by uncovering previously unappreci-
ated heterogeneity in combined key islet-enriched TF expression and demonstrated that it has implications 
for β cell function. Ultimately, defining the key characteristics of  highly functional α and β cells will allow 
not only a greater understanding of  pathways governing coordinated hormone secretion but also engineer-
ing of  cells closely resembling native α or β cell function for cell replacement therapy to treat diabetes.

Methods
Human pancreatic islet samples. Human islet preparations (n = 5; see Supplemental Table 1 for donor information) 
were obtained through partnerships with the Integrated Islet Distribution Program (IIDP, RRID:SCR_014387; 
http://iidp.coh.org/), Alberta Diabetes Institute (ADI) IsletCore (RRID:SCR_018566; https://www.epicore.
ualberta.ca/IsletCore/), and the Human Pancreas Analysis Program (HPAP; RRID:SCR_016202; https://
hpap.pmacs.upenn.edu/) of  the Human Islet Research Network (HIRN). Assessment of  human islet func-
tion was performed by islet macroperifusion assay on the day of  arrival, as previously described (57). Islets 
were cultured in CMRL 1066 media (5.5 mM glucose, 10% FBS, 1% penicillin/streptomycin, 2 mM L-gluta-
mine) in 5% CO2 at 37oC for less than 24 hours prior to beginning studies.

Cell preparation. Handpicked pancreatic islets were dispersed by manual pipetting using 0.025% HyClone 
trypsin (Cytiva/GE Healthcare, SH30042.01) and subsequently quenched with RPMI media containing 20% 
FBS (MilliporeSigma, TMS-013-B). Cells were washed in the same media twice followed by 1 wash with 
0.04% BSA (Thermo Fisher Scientific, AM2616) in 1× PBS without calcium and magnesium (Corning Cell-
gro, 21-040-CV). Washed cells were immediately counted in a Trypan blue stain–based Cell Countess II 
Automated Cell Counter (Thermo Fisher Scientific, AMQAX1000). Viability obtained from the cell prepa-
rations ranged from 70% to 85%. Cells were resuspended in 0.04% BSA/1× PBS at a density of  630 to 1200 
cells/μL in preparation for scRNA-Seq.
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Purification of α and β cells by FACS. Human islets from preparations 1 and 2 (Supplemental Table 1) were 
dispersed and sorted for α and β cells following protocols described previously (17, 27, 58). Briefly, 0.025% 
trypsin was used to disperse islet cells by manual pipetting and subsequently quenched with RPMI containing 
10% FBS. Previously characterized primary and secondary antibodies (25, 27, 59) are listed in Supplemental 
Table 3, and the gating strategy is shown in Supplemental Figure 2A. Collected α and β cells for scRNA-
Seq were washed in 1× PBS with 0.04% BSA and immediately loaded into the 10x Genomics Chromium 
Controller at 1200 cells/μL based on FACS counts, with single-cell libraries prepared as described below. In 
parallel, 10,000 α and β cells from islet preparation 2 were stored in RNA extraction buffer to be processed for 
bulk RNA-Seq as described below.

Bulk RNA library preparation and sequencing. RNA was extracted from sorted α and β cells using the Invi-
trogen RNAqueous-Micro Total RNA Isolation kit (Thermo Fisher Scientific, AM1931). TURBO DNA-
free (Ambion) was used to treat any trace DNA contamination. RNA was quantified by Qubit Fluorometer 
2.0 and RNA integrity was confirmed (RIN >7) by 2100 Bioanalyzer (Agilent). RNA was amplified using 
NuGen Ovation RNA amplification kit and sheared to an average size of  200 bp, and then libraries were 
prepared using the NEBNext DNA library prep kit (New England Biolabs). Final libraries were sequenced 
on a Novaseq platform (Illumina) using paired-end reads (50 bp) targeting 50 million reads per sample. 
Raw reads were aligned to human reference genome hg38 using STAR v2.6 (60). Strand NGS 3.4 commer-
cial software was used to import aligned files (.bam) and subsequently check alignment quality, filter reads 
based on read quality, quantify transcripts, and normalize counts to transcript per million (TPM). Only 
genes with expression log2 (TPM) greater than 1 for bulk data and unique molecular identifiers greater than 
1 for 10x Genomics single-cell data were considered for the analysis in Figure 2, B–F. Differential expres-
sion analysis between α and β cells was defined as fold change ≥±1, calculated based on P value estimated 
by z score calculations (cutoff  0.05) as determined by Benjamini Hochberg FDR correction of  0.05 (61). 
GO analyses (Figure 2, D and F) and KEGG pathway analysis (Supplemental Figure 2, F and G) were 
performed using Metascape version 3.5 (49), where the network plot was created from a subset of  enriched 
GO terms clustered by similarity greater than 0.3 (Kappa scores), and a representative term from each of  
the 20 clusters was hand-selected for labeling. Network was visualized using Cytoscape (62).

For original/source data used in Figure 1, A and C, bulk RNA-Seq data of sorted human islet α cells are 
available in NCBI’s Gene Expression Omnibus (GEO) under accession number GSE106148 (17) and bulk 
RNA-Seq data of sorted human islet β cells are available under GSE116559 (27). For Figure 1, B and D and Sup-
plemental Figure 1, A and B, normalized bulk RNA-Seq data (TPM or RPKM) were retrieved from GSE57973 
(10) and GSE67543 (26).

Single-cell library preparation and sequencing. Sorted or dispersed islet cell samples were loaded in triplicate 
(approximately 10,000 cells/replicate) on 10x Genomics chromium chips (PN 1000009) to ensure consis-
tent results. Gel bead in emulsion (GEM) generation and barcoding were performed on the 10x Genomics 
Chromium Controller according to the manufacturer’s instructions (10x Genomics Single Cell 3′ Library and 
Gel Bead kit v2, 220104). Immediately after GEMs were generated, samples were transferred to a 0.2 mL 
TempAssure PCR 8-tube strip (USA Scientific, 14024700), capped, and placed into a thermocycler (Bio-Rad 
T100 Thermal Cycler) for reverse transcription. After incubation, the GEMs were broken, and pooled cDNA 
proceeded to cleanup using Silane magnetic beads (10x Genomics, 2000048) to remove leftover reagents. 
cDNA was then amplified through 10 cycles of  PCR and cleaned using SPRIselect beads (Beckman Coulter, 
B23318). Resulting cDNA (average 45 ng/replicate) was checked for quality by Qubit dsDNA HS Assay Kit 
(Thermo Fisher Scientific, Q32854) and Agilent Bioanalyzer High Sensitivity Kit (5067-4626). Final libraries 
were constructed according to the manufacturer’s instructions and underwent 14 cycles of  PCR amplification 
after sample index addition, yielding approximately 953 ng and average library size of  486 bp. Final libraries 
were sequenced with a Novaseq sequencer (Illumina) using paired-end reads (100 bp) to average depth of  
approximately 146,000 reads per cell.

scRNA-Seq alignment, preprocessing, and quality control. Alignment to reference transcriptome (GRCh38-
1.2; gene annotation provided by 10x Genomics) and unique molecular identifier–based gene expression 
quantification was obtained following the Cell Ranger analysis pipeline (v2.1). The “Aggr” function was 
used to aggregate transcript counts and normalize read depth across 5 islet preparations and their technical 
replicates, producing 1 single gene-cell (feature-barcode) matrix. In Figure 2, G–I, the CellRanger “Aggr” 
function was applied to 2 islet preparations, including the samples that were FACS sorted. Further data pre-
processing and clustering were performed using Seurat version 3.1 (50).
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Cells with 200 to 4000 detected genes and less than 10% mitochondrial gene expression were retained, 
and only genes expressed in 3 or more cells were considered for further analysis. Gene expression was 
normalized for each cell by library size and log-transformed using a size factor of  10,000 molecules 
per cell. For feature selection, 2000 highly variable genes were selected using function “FindVariable-
Features.” The data were further centered and scaled to zero mean and unit variance implemented in 
the “ScaleData” function using parameter “vars.to.regress” to regress out mitochondrial gene expres-
sion. Cells coexpressing the insulin (INS) and glucagon (GCG) genes above log expression of  6.5 and 
5, respectively, as well as cells expressing INS or GCG in addition to any other cell-type gene marker, 
were removed as doublets (see Supplemental Table 2 for cell-type markers used). Transcript counts from 
lysed cells (ambient mRNA/background RNA) were estimated and genes identified from empty droplets 
(droplets without cells) using DropletUtils package (63). Using the raw gene-barcode matrix (Cell Rang-
er v3.1), a unique molecular identifier count threshold of  100 and below was used to identify ambient 
transcripts. Approximately 200 genes were identified as ambient genes, and their expression level was 
noted to remove from the original gene barcode matrix in order to account for transcript stemming 
from lysed cells. PCA was performed using previously determined 2000 high variable genes as input. 
An elbow plot, which ranks the principal components (PCs) based on percentage variance per PC, was 
considered to determine the number of  PCs to use for downstream graph-based clustering. “FindNeigh-
bors” and “FindClusters” functions were used with 20 PCs as input for cluster generation and resolution 
at 0.6. Cells from dispersed WIs, FACS-α, and FACS-β samples (n = 27,614 in total) were analyzed by 
graph-based unsupervised clustering applying Louvain algorithm (50, 64) and visualized using uniform 
manifold approximation and projection (UMAP; ref. 65), and α and β cells were annotated with markers 
(Supplemental Table 2) overlaid to unsupervised clusters. Analysis of  cell-cycle state (Supplemental Fig-
ure 3F) was performed using the standard gene list included in the Seurat R package (66).

Immunohistochemical analysis. Lightly paraformaldehyde-fixed human pancreatic tissue cryosections from n 
= 3 donors (age range 20–55 years) were prepared for immunohistochemistry and stained as described previous-
ly (17, 27, 58). Primary and secondary antibodies and their dilutions are listed in Supplemental Table 3; donor 
information is supplied in Supplemental Table 4. Images were acquired at 20× with 2× digital zoom using a 
FV3000 confocal laser scanning microscope (Olympus) and processed using HALO software (Indica Labs) with 
a cytonuclear algorithm (HighPlex FL v3.2.1) to set an intensity threshold (“hi/lo”) for each marker.

Analysis of  previously published scRNA-Seq data sets. Raw gene count matrices were extracted from existing 
scRNA-Seq data sets (18, 28, 29) and further analyzed using the R package Seurat version 3.1 as described above.

Single-cell electrophysiology and gene expression. Patch-Seq was performed as described previously in 
Camunas et al. (18).

Data availability. GEO for sequencing data sets (GSE183568). Single-cell data set visualization can be found 
at https://powersbrissovalab.shinyapps.io/scRNAseq-Islets/.

Statistics. Specific statistical tests used for each data set are described in the figure legends and text where 
appropriate. All Student’s t tests were 2-tailed, with a P value less than 0.05 considered significant. In the 
case of  2-way ANOVA (Supplemental Figures 4 and 6), a P value less than 0.05 was considered significant 
and was followed by Tukey’s multiple-comparison test, also at a threshold of  P less than 0.05. Pearson’s 
correlation (Figure 2, C and E and Supplemental Figure 2, D and E) was performed using the ggpubr pack-
age (http://rpkgs.datanovia.com/ggpubr/). GO enrichment and network visualization (Figure 2, D and 
F) were performed using Metascape 3.5, where P values are calculated based on the accumulative hyper-
geometric distribution (67). All other statistical analyses were performed using GraphPad Prism software.

Study approval. The Vanderbilt University IRB does not consider deidentified human pancreatic speci-
mens to qualify as human subject research. This study used data from the Organ Procurement and Trans-
plantation Network (OPTN) that were in part compiled from the data hub accessible to IIDP-affiliated 
investigators through the IIDP portal (https://iidp.coh.org/secure/isletavail). The OPTN data system 
includes data on all donors, waitlisted candidates, and transplant recipients in the US submitted by the 
members of  the OPTN. The Health Resources and Services Administration of  the US Department of  
Health and Human Services provides oversight to the activities of  the OPTN contractor. The data reported 
here have been supplied by United Network for Organ Sharing as the contractor for the OPTN. The inter-
pretation and reporting of  these data are the responsibility of  the authors and in no way should be seen as 
an official policy or interpretation of  the OPTN or the US government.
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