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Abstract

Antibody-antigen co-crystal structures are a valuable resource for the fundamental understanding 

of antibody-mediated immunity. Determination of structures with antibodies in complex with 

their antigens, however, is a laborious task without guarantee of success. Therefore, homology 

modeling of antibodies and docking to their respective-antigens has become a very important 

technique to drive antibody and vaccine design. The quality of the antibody modeling process is 

critical for the success of these endeavors. Here, we compare different computational protocols for 

predicting antibody structure from sequence in the biomolecular modeling software Rosetta - all 

of which use multiple existing antibody structures to guide modeling. Specifically, we compare 

protocols developed solely to predict antibody structure (RosettaAntibody, AbPredict) with a 

universal homology modeling protocol (RosettaCM). Following recent advances in homology 

modeling with multiple templates simultaneously, we propose that the use of multiple templates 

over the same antibody regions may improve modeling performance. To evaluate whether multi­

template comparative modeling with RosettaCM can improve the modeling accuracy of antibodies 

over existing methods, this study compares the performance of the three modeling algorithms 

when modeling human antibodies taken from antibody-antigen co-crystal structures. In these 
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benchmarking experiments, RosettaCM outperformed other methods when modeling antibodies 

with long HCDR3s and few available templates.
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Introduction

Antibody-antigen co-crystal structures are essential to the understanding of the molecular 

interactions of antibodies with their target epitopes. These structures are obtained 

through experimental methods such as X-ray crystallography or high-resolution electron 

microscopy.1–3 High-throughput sequencing has allowed for the identification of large 

numbers of antibody heavy and light chain variable region gene sequences to guide 

discovery of specific antibodies and drive vaccine development.4 However, with an 

estimated 1011 potential unique antibody variable gene sequences in a single individual, 

determining the structure of a large number of antibodies is not achievable with current 

experimental methods.5,6

Structural homologs identified through sequence similarity have been used to predict 

antibody variable region structure since the initial work of Kabat and Wu in 1972.7 

While protein homology modeling mostly relies on templates with high sequence similarity, 

antibody modeling is more complex. The antibody structure generally contains regions of 

high conservation such as the framework, and regions of high diversity, specifically the 

complementarity-determining regions (CDRs). Antibodies are Y-shaped proteins, with two 

variable domains or fragments (Fv), a heavy chain and a light chain Fv, forming the tips of 

the arms that bind to the antigen. The variable domains are structured as two β-sandwiches 

each containing two β-sheets formed of antiparallel β-strands around a hydrophobic core. 

This highly conserved β-sheet structure is termed the immunoglobulin fold and provides a 

scaffold for the hypervariable loops at one end that form the antigen-binding site. These 

loops, known as complementarity-determining regions (CDRs), are encoded by genes 

produced through recombination of the V(D)J gene segments. V (variable), D (diversity), 

and J (joining) segments exist as multiple copy arrays on the chromosome, and their 

recombination is initiated by double-strand DNA breaks, followed by the deletion and 

sometimes inversion of segments and their subsequent ligation together.8 The variable 

domain of the heavy chain is encoded by genes formed through the recombination of 

VH, DH, and JH genes while the light chain variable domain is encoded by the VL and JL 

genes.8 This recombination process contributes to the massive immunoglobin diversity in 

vertebrate immune systems. Canonical structural classes of CDRs have been defined based 

on loop size and the presence of certain residues at key positions in the loop and framework 

regions from reported crystal structures.9,10 Five of the six CDRs fall into known canonical 

classes, approximately 85% of the time, but the structurally diverse HCDR3 has eluded 

classification. Current efforts focus on dividing the HCDR3 region in a torso and head 

region.10,11
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The Rosetta software suite is an academically developed framework for protein structure 

prediction and design.12,13 RosettaAntibody is a popular antibody modeling application built 

on the Rosetta that utilizes conformational clusters from antibody canonical classes based 

on the classification by North et al. to predict antibody variable region structure.10,14 A 

significant limitation of RosettaAntibody is the unavailability of good structural templates 

for some CDR conformations, causing the grafting on templates with low sequence 

identity without the ability to refine this part of the structure. RosettaAntibody models the 

HCDR3 de novo instead of using data from existing antibody structures, as the inherent 

diverse nature of HCDR3 loops has yet escaped classification through clustering.15,16 A 

recent major improvement in RosettaAntibody has been achieved through the re-docking 

of the heavy-light chain Fv interface after modeling.16,17 RosettaAntibody continues to 

perform well in antibody modeling challenges. In an assessment of eleven antibodies, 

RosettaAntibody modeled the HCDR3 loop in five out of six cases with short HCDR3 loops 

(8 to 10 residues) at a backbone RMSD <2.0 Å, although it struggled more for long HCDR3 

loops (11 to 14 residues), where backbone RMSDs averaged around 5 Å.16

AbPredict is another antibody modeling protocol built into the Rosetta modeling suite. 

AbPredict selects templates for each of four regions: the variable heavy chain domain 

(including HCDR1 and HCDR2), the variable light chain domain (including LCDR1 and 

LCDR2), HCDR3, and LCDR3, similar to the assembly of the antibody from during V(D)J 

recombination.18 Templates for the four regions are grafted onto a reference structure. 

Afterwards, a database is used to optimize the heavy chain-light chain orientation.18 

AbPredict shares RosettaAntibody’s limitation of relying heavily on template quality 

without the ability to de novo model regions that lack good templates. However, 

because AbPredict operates independently of sequence homology, instead searching for 

combinations of backbone conformation observed in natural antibody structures, AbPredict 

can sample a greater conformational space, potentially improving accuracy in HCDR3 

loops.18

RosettaCM is the generic comparative modeling method of the Rosetta modeling suite. 

Templates are selected manually based on the protein being modeled, and the sequence of 

interest is threaded onto its corresponding template structure. Rosetta de novo fragments are 

used to fill in any gaps not covered by the templates. The resulting model is optimized 

by all-atom refinement to generate full-chain models.19 The ability of RosettaCM to 

integrate multiple templates with de novo fragments to generate a single model allows 

it to sample a broader structural landscape and select sub-templates for different protein 

regions, with performance improving with higher sequence similarity. However, because 

Rosetta sampling is stochastic in nature, not every modeling trajectory will converge on to a 

local energy minimum on the score function. Because of time constraints, RosettaCM cannot 

exhaustively sample the complete structural space.20

In this study, we developed a RosettaCM-based protocol for homology modeling of 

antibodies that uses its power to use multiple templates for each antibody region. We 

compared our protocol to different Rosetta-based computational protocols for predicting 

the structure of an antibody from its sequence by using a benchmark set. We collected a 

template database of human antibody-antigen structures from the Protein Data Bank (PDB). 
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We performed a basic local alignment search tool (BLAST)21 search for antibody sequences 

from next generation sequencing against the template database to evaluate the availability 

of high sequence similarity templates. 1,000 models of each antibody in the benchmark set 

were generated by the multi-template protocol, RosettaAntibody, and AbPredict. The ten 

best models selected based on Rosetta energy score were compared to the native crystal 

structure to determine modeling quality. Finally, we outlined our new protocol for modeling 

antibodies in Rosetta and compared it to existing protocols to provide a guideline for 

modeling antibodies with Rosetta.

Results

Database of human antibodies in complex with their antigen

Many benchmarks on antibody modeling are conducted on unbound antibody structures 

and on antibodies from multiple species.22 However, in many real-world tasks for antibody 

modeling, the final models are docked to respective antigens. Furthermore, often only 

antibodies from human origin are of interest, especially in the development of human 

therapeutic antibodies. For this reason, we constructed a template database of diverse, 

high-quality human antibodies that were co-crystalized with their antigen structures 

publicly available in the Protein Data Bank (PDB). The resolution was better than 4.5 

Å and redundant antibodies were removed from the template database. This dataset of 

588 structures was processed by removal of crystallographic copies and relaxation with 

constraint backbone atoms to be used as template database for all following benchmark 

studies. The template database can be found in Table S1 of the Supporting Material.

Template availability for antibody sequences varies for every loop region

In order to understand the current status of template availability for a random given human 

antibody sequence, we used antibody sequences from the Human Immunome Program 

(HIP) database, which contains multiple immune repertoires and represents therefore an 

ideal test case.6 A BLAST21 search was conducted against a randomized set of almost 5 

million heavy chain sequences and almost 2 million light chain sequences from the HIP 

database and the highest similarity match with our structure database was recorded. To 

further understand which regions of the antibody have the highest template availability, this 

analysis was broken down in each respective CDR, determined by the Chothia numbering 

scheme9 (Figure 1). This analysis revealed that the expected coverage of a human HCDR3 

by a template in our human antibody structure database is between 50 and 70 percent. This 

finding contrasts with the HCDR1, HCDR2, LCDR1, and LCDR2, which have expected 

coverages of 80 percent or higher, and the LCDR3 with an expected coverage of 70 percent 

or higher.

The Rosetta software suite supports multiple protocols for homology modeling.

RosettaAntibody and AbPredict are two antibody-specific protocols. RosettaAntibody 

selects templates for HCDR1, HCDR2, LCDR1, LCDR2, and LCDR3 from a database 

of antibody structures and grafts these onto a template heavy and light chain framework 

based on their canonical loop conformations.10 It then models HCDR3 de novo and 

optimizes the heavy chain and light chain orientation.15,23 AbPredict, in contrast, selects 
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templates for each of four regions: the heavy chain Fv (including HCDR1 and HCDR2), 

light chain Fv (including LCDR1 and LCDR2), the HCDR3, and the LCDR3 to mimic 

the method by which genomic recombination is used in the human body to produce a 

diversity of antibodies. Templates for the first four regions are grafted onto a reference 

structure, and a database is used to optimize the heavy chain-light chain orientation.24 Both 

RosettaAntibody and AbPredict allow selection of more than one template for each region, 

however they are recombined in a predetermined way. RosettaCM, the general framework 

for comparative modeling in Rosetta, assembles topologies from given sequence alignments 

through recombination of templated regions and the construction of untemplated regions de 
novo. A gap closure method is used to regularize junctions between segments. It can accept 

any number of input structures as templates and can be adapted for specific purposes like 

antibody modeling.19 In order to understand, which method allows for the best performance 

in the modeling of human antibodies in co-crystal structures and overcomes the lack of 

high sequence similarity templates for some regions of these antibodies, these methods 

need to be compared. A single template method in RosettaCM was chosen as a further 

control to estimate the gain of performance through availability of multiple templates. It 

used the structure with the overall highest sequence similarity as the only template. For 

RosettaCM a multi-template approach was chosen that collected five templates for each 

CDR and framework, however, the full antibody was used as template. The default template 

search was used for RosettaAntibody and AbPredict. As a control for the performance of 

all methods, the antibody modeled based on its own crystal structure using RosettaCM was 

used. The methods tested vary in how they select and use templates.

Antibody homology modeling methods were compared in a benchmark

As a benchmark set, 87 human antibodies from antibody-antigen co-crystal structures were 

collected to directly compare the quality of models produced by each antibody homology 

modeling method. As primary quality criterion, the backbone root mean square deviation 

(RMSD) was measured against the native antibody crystal structure. The full list of 

structures in the benchmark is provided in Table S2 in Supporting Materials. To simulate the 

modeling of human antibodies with unknown structures, we prevented each methodology 

from using the existing crystal structure as a template and chose the ten best models from 

each method using their Rosetta energy as selection criterion. The median RMSD of these 

ten models to the native antibody crystal structure was calculated and recorded over the 

entire antibody backbone as well as for each individual CDR (Figure 2 and Table 1).

Multi-template modeling in RosettaCM matched the performance of RosettaAntibody and 
AbPredict for modeling the backbone

Backbone quality as defined by the backbone RMSD was measured to compare the overall 

antibody structure of the models generated by the methods tested to their respective crystal 

structure. The entire backbone of the ten best generated models by each method for each 

antibody in the benchmark set was analyzed. We found the control method to have a median 

RMSD of 0.56 Å, so an RMSD difference of 0.5 Å was chosen as the minimum difference 

to indicate a significant improvement between methods.
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Multi-template modeling using RosettaCM was found to outperform RosettaAntibody for 

15 of the 87 human antibodies tested. In addition, RosettaAntibody failed to model eight 

of the human antibodies in our benchmark set and never outperformed the multi-template 

method. Multi-template modeling outperformed AbPredict in modeling the backbone for 

eleven of the 87 human antibodies tested, with AbPredict failing to model an additional 14 

human antibodies in our benchmark set. AbPredict outperformed multi-templating modeling 

for seven human antibodies in our benchmark set. RosettaAntibody outperformed AbPredict 

in modeling the entire backbone for six of the 87 human antibodies tested, while AbPredict 

outperformed RosettaAntibody for 19 of the human antibodies in our benchmark set (Figure 

3). AbPredict modeled 29 antibodies with a backbone RMSD between 0.5 and 1 Å, an 

improvement over both the multi-template method (14 antibodies) and RosettaAntibody 

(two antibodies, compare SI Figure S6). However, the multi-template method modeled 

60 antibodies with a backbone RMSD between 1.0 and 1.5 Å, besting both AbPredict 

(25 antibodies) and RosettaAntibody (45 antibodies). Therefore, the multi-template method 

modeled more antibodies at a backbone RMSD of less than 1.5 Å than AbPredict and 

RosettaAntibody. Conversely, the multi-template method only modeled one antibody at a 

backbone RMSD of greater than 2.0 Å, compared to nine antibodies for RosettaAntibody 

and eight antibodies for AbPredict (Figure 4). Therefore, the multi-template method more 

consistently produced models at a backbone RMSD of less than 2 Å to the native crystal 

structure when compared to both AbPredict and RosettaAntibody. For HCDR1 and HCDR2 

as well as all three LCDRs, the multi-template method offered minor improvements in loop 

modeling performance compared to both AbPredict and RosettaAntibody, the results of 

which can be seen in Figures S1–S5 in the Supporting Material.

Multi-template modeling using RosettaCM modeled the HCDR3 loop more accurately than 
RosettaAntibody and AbPredict in most cases

HCDR3 as defined by the backbone RMSD was measured to compare the HCDR3 structure 

of the models generated by the methods tested to their respective native crystal structure. 

Analysis of the ten best models by total score for each method showed that multi-template 

modeling using RosettaCM produced models with a lower median HCDR3 RMSD to 

the native crystal structures than RosettaAntibody for 53 of the 87 human antibodies 

tested in our benchmark, defined as an RMSD improvement of at least 1 Å. In addition, 

RosettaAntibody failed to adequately model the HCDR3 loop, defined as an RMSD > 15 

Å or an error thrown by the protocol that prevented any models from being generated, 

for ten of the human antibodies tested in our benchmark. Examples of errors thrown by 

RosettaAntibody included errors in grafting and incompatibility between loop flexibility and 

length. RosettaAntibody outperformed the multi-template method in modeling the HCDR3 

loop for four of the human antibodies in our benchmark. Similarly, multi-template modeling 

outperformed AbPredict in modeling the HCDR3 loop for 44 of the human antibodies tested 

in our benchmark, with AbPredict failing to adequately model the HCDR3 loop for an 

additional 14 antibodies, mostly due to the lack of suitable templates with the same loop 

length. AbPredict outperformed the multi-template method in modeling the HCDR3 loop for 

four of the human antibodies in our benchmark (Figure 5). None of the RosettaCM-based 

methods, including multi-template modeling, ever failed to model the HCDR3 loop. The 

multi-template method modeled the HCDR3 loop at an RMSD of 0 to 2.5 Å for 34 
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antibodies in the benchmark set, a large improvement over both RosettaAntibody (four 

antibodies) and AbPredict (one antibody). In addition, the multi-template method modeled 

the HCDR3 loop of only eleven antibodies at an RMSD greater than 5 Å, fewer than both 

RosettaAntibody (35 antibodies) or AbPredict (27 antibodies).

Multi-template modeling using RosettaCM showed the greatest improvement in HCDR3 
loop modeling for longer loops and loops with lower template sequence identity

The performance of the different modeling methods also was analyzed based on HCDR3 

loop length, categorized as short (1 to 6 amino acids in length), medium (7 to 13 amino acids 

in length), and long (14 to 20 amino acids in length). Of the 87 antibodies in the benchmark 

set, four were categorized as having short HCDR3 loops, 72 as having medium-length loops, 

and eleven as having long HCDR3 loops. For every method excluding the control, modeling 

performance decreased as loop length increased. For the multi-template method, median 

RMSD to the native structure for short HCDR3 loops was 2.5 Å, 2.8 Å for medium-length 

loops, and increased to 4.2 Å for long loops. AbPredict experienced a similar degradation 

in HCDR3 modeling performance with increasing loop length with a median RMSD to 

the native structure of 4.0 Å for short HCDR3 loops, 4.3 Å for medium-length loops, and 

6.0 Å for long HCDR3 loops. The performance of RosettaAntibody saw an even greater 

amount of performance degradation for modeling the HCDR3 loop with increasing loop 

length. Median RMSD to the native structure was 3.4 Å for short HCDR3 loops, increasing 

to 4.5 Å for medium-length loops and 7.6 Å for long HCDR3 loops. Meanwhile, HCDR3 

modeling performance for the control method saw little variation at different loop lengths 

with a median HCDR3 RMSD to the native structure of 0.9 Å for short loops, 0.6 Å for 

medium-length loops, and 0.7 Å for long loops.

HCDR3 modeling performance of the different methods was also assessed at different levels 

of template similarity, defined as the highest HCDR3 template sequency identity of any 

template used by the multi-template method to guide antibody structure prediction. The 

modeling performance of the multi-template method improved with increasing HCDR3 

template sequence identity. Between 0 and 20 percent template sequence identity, median 

HCDR3 RMSD to the native structure was 3.7 Å, decreasing to 3.1 Å between 20 and 40 

percent, 2.8 Å between 40 and 60 percent, and 2.4 Å between 60 and 80 percent. AbPredict 

also experienced a similar trend, with a median HCDR3 RMSD of 4.3 Å between 0 and 20 

percent template sequence identity, 4.9 Å between 20 and 40 percent, 4.0 Å between 40 and 

60 percent, and 3.7 Å between 60 and 80 percent. However, RosettaAntibody exhibited little 

variation in performance with differing HCDR3 template sequence identity, with the best 

performance at 40 to 60 percent template sequence identity (4.4 Å median HCDR3 RMSD) 

and the worst at 0 to 20 percent template sequence identity (5.3 Å median HCDR3 RMSD), 

as seen in Figure 4.

Specific examples from benchmarking revealed method-dependent advantages and 
disadvantages in HCDR3 modeling

Examples were investigated for cases where the multi-template approach significantly 

outperformed both RosettaAntibody and AbPredict in modeling the HCDR3 loop and for 

cases where either RosettaAntibody and AbPredict significantly outperformed the multi­
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template approach in modeling the HCDR3 loop (Figure 6). For each example, the ten 

best models by score for the methods concerned were aligned onto the native crystal 

structure of the antibody to help visually determine the modes of success and failure of 

the different methods in modeling the HCDR3 loop. In the case of the Peptostreptococcus 
magnus protein L antibody (PDB: 1HEZ)25, each of the top ten models produced by the 

multi-template method closely matched the HCDR3 loop of the native crystal structure. 

Half of the top ten models produced by AbPredict approximated the general shape of 

the HCDR3 loop, while the other half deviated more significantly from the native crystal 

structure, suggesting a lesser degree of consistency among models produced by AbPredict 

when compared to the multi-template method. None of the top ten models produced by 

Rosetta Antibody approximated the general shape of the HCDR3 loop and displayed a 

greater degree of variability amongst themselves when compared to both the multi-template 

method and AbPredict. These observations remained when investigating examples in which 

either AbPredict or RosettaAntibody significantly outperformed the multi-template method. 

AbPredict significantly outperformed the multi-template method in modeling an anti-HIV-1 

capsid protein antibody (PDB: 1AFV)26, but the multi-template method showed a greater 

structural consistency among the top ten models by score whereas some of the top AbPredict 

models had additional kinks not present in the other models. The even greater degree 

of variability present among RosettaAntibody models continued in the modeling of an 

Zika virus envelope protein-specific antibody (PDB:5KVF)27, where although the top ten 

models by score had a lower RMSD to the native crystal structure than the multi-template 

models, none of the models by either method closely approximated the shape of the native 

HCDR3 loop. The multi-template models once again showed a great degree of structural 

consistency while none of the RosettaAntibody models shared a similar loop shape. The 

greater degree of structural inconsistency amongst the top models of RosettaAntibody 

when compared to AbPredict was also shown in the modeling of an human vascular 

endothelial growth factor-binding antibody (PDB: 2QR028), where AbPredict significantly 

outperformed RosettaAntibody in modeling the HCDR3 loops. The top ten models produced 

by AbPredict each approximated the shape of the native HCDR3 loop, while none of the 

top models produced by RosettaAntibody approximated the shape of the native HCDR3 loop 

and exhibited a great degree of structural inconsistency amongst themselves.

Discussion

In summary, we constructed a database of human antibody structures to use as templates 

for antibody modeling and we compared the coverage of these templates against a large 

database of human antibody sequences. We modeled 87 human antibodies with known 

structures using the Rosetta template-based antibody modeling techniques RosettaAntibody 

and AbPredict as well as three methods of our own design based on RosettaCM (multi­

template modeling, single template modeling, and a control method). We selected the best 

models produced by each method for each test antibody using their Rosetta energy score and 

we compared these models to their corresponding native crystal structures by calculating the 

backbone RMSD over the entire variable region as well as each CDR to their native crystal 

structure. We found that our multi-template method had similar performance to AbPredict 

and our single-template method when modeling the entire variable region backbone and 
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offered minor improvements in backbone quality over RosettaAntibody. In addition, both 

our single template and multi-template methods never failed to model the entire antibody 

backbone as opposed to AbPredict and RosettaAntibody, both of which had errors in 

CDR identification and template selection. Our multi-template method offered significant 

improvements over AbPredict and RosettaAntibody in modeling HCDR3 in model quality, 

reliability, and robustness.

Many assessments of antibody modeling in the past, have mostly been evaluating apo­

structures of antibodies. We asked if these methods are capable of sampling the bound 

conformation of an antibody. Therefore, we decided to only use antibodies as templates 

and in our benchmark set that were derived from co-crystal structures of antibodies with 

their respective antigens. One rationale behind that is that apo-crystal structures sometimes 

contain artificial contacts or conformations for the loops, dependent whether the loop form 

crystal contacts in the interfaces.29

One important question we considered was whether or not we were warranted in using 

multiple homology templates for each CDR. We compared sequences in our template 

database to sequences in the HIP database to test this hypothesis and found that HCDR3 

likely had the most to gain from the use of multiple templates, as indicated by the expected 

template coverage of 50 to 70%. Although other CDRs had higher expected template 

coverage, a distribution in sequence coverage was observed for all CDRs, suggesting that 

multiple templates for each region could help for more unique CDR sequences. This 

observation prompted the design of our multi-template method using multiple templates 

for each CDR region.

The performance of AbPredict in modeling the entire variable region backbone was 

comparable to our multi-template method, an interesting result given the large difference 

between the two protocols in modeling each of the CDRs. The modeling approach used 

by AbPredict helps explain this observation, as a single template is used for the entire 

heavy chain excluding HCDR3 and a second template is used for the entire light chain 

excluding LCDR3. The grafted intermediate is optimized using a Monte-Carlo search 

over all conformational degrees of freedom for minimization of strain over the side 

chain and backbone,18,30 representing a similar technique as that used by RosettaCM on 

which the single template and multi-template methods are based. This finding matches the 

observations outlined by the developers of AbPredict describing a deviation of less than 1.2 

Å for the top ranked models over backbone-carbonyl atoms.18 RosettaCM’s selection of the 

backbone was only guided by the weight of the template in the protocol based on sequence 

similarity, but it cannot be ruled out that similar template stretches were selected during the 

modeling process.

Meanwhile, the larger difference in the modeling performance by RosettaAntibody 

compared to the multi-template method over the entire variable region backbone can 

likewise be explained by RosettaAntibody’s modeling approach. Each CDR (expect 

for HCDR3) is grafted onto a single heavy chain and a single light chain template. 

Following this step, the only optimizations over the entire backbone are removal of grafting 

anomalies, optimization of the heavy chain/light chain orientation, and the final all-atom 
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refinement step with coordinate constraints to backbone atoms in RosettaRelax.16 Since 

it lacks the Monte-Carlo-based all-atom search for minimization shared by AbPredict and 

the RosettaCM-based methods, RosettaAntibody has a greater dependence on backbone 

template similarity over the entire heavy chain and light chain. Given the diversity of 

human antibodies tested in our benchmark, it is unlikely that every antibody had a close 

template match for the entire heavy chain and light chain regions. This approach helps 

demonstrate the greater versatility of the other methods in adopting a Monte-Carlo-based 

all-atom minimization search.

The multi-template method saw significant improvement in HCDR3 modeling performance 

over AbPredict. This enhanced performance likely can be attributed to both the template 

selection and subsequent modeling approach used by AbPredict when compared to the 

multi-template method. While the multi-template selects five templates for the HCDR3 

loop, optimizing for sequence similarity and diversity, AbPredict randomly selects all 

available HCDR3 fragments with similar loop length for use as templates. Owing to the 

underlying RosettaCM framework, the multi-template method is able to choose structural 

information from all five of its HCDR3 templates simultaneously, as well as any other 

templates selected for other use in other regions, to guide modeling, as well as incorporating 

information from templates used elsewhere in the antibody and fragment libraries, for 

all 1,000 models produced. In contrast, AbPredict proceeds by random recombination of 

each HCDR3 template with three templates used for the other regions of the antibody 

variable domain. Given the same 1,000 models, AbPredict must pursue fewer modeling 

trajectories for each random recombinational template pairing.18 Consequently, the best 

models produced by AbPredict show a greater variation amongst themselves when compared 

to the multi-template method and these models have fewer opportunities to approach the 

global energy minima. However, this can be overcome by producing higher number of 

models.

RosettaAntibody adopts an almost exact opposite approach to modeling the HCDR3 loop 

as AbPredict, yet this also contributes to its inferior HCDR3 modeling performance when 

compared to the multi-template method for the majority of antibodies in our benchmark 

set. RosettaAntibody exclusively uses de novo modeling for the HCDR3 loop. The 

HCDR3 loop is modeled with simultaneous optimization of the heavy chain/light chain 

orientation.16 The advantages and disadvantages of this approach can be seen in the results, 

as RosettaAntibody approaches the HCDR3 modeling performance of the multi-template 

method for short loops. However, as loop length increases, RosettaAntibody exhibited the 

greatest performance degradation of any modeling method tested. This loss of performance 

can be expected since the number of possible conformations increases with loop length in 

accordance with Levinthal’s paradox,31 but the number of explored conformations remains 

constant to produce 1,000 models, so the correct conformation has a lower probability 

of being sampled. Although the multi-template method also experienced performance 

degradation with increasing loop length, the template-based approach helps reduce the 

conformational search space, affording the multi-template method a higher probability of 

sampling the correct conformation when compared to RosettaAntibody. RosettaAntibody 

did model the HCDR3 loop of 4 antibodies at a lower median RMSD than our multi­

template method. In each case, the median RMSD for RosettaAntibody was greater than 
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3.5 Å and showed much greater variation amongst themselves compared to the multi­

template method, suggesting that the multi-template method was biased towards a set of 

conformations that did not allow it to sample near the correct conformation.

Despite the template-dependent nature of the multi-template method, although increasing 

template sequence identity improved HCDR3 model quality, the multi-template method 

offered significant improvements over both AbPredict and RosettaAntibody at even the 

lowest band of sequence identity (0% to 20%). However, the approach adopted by the 

multi-template method prevents it from sampling as large of a conformational space as the 

other two methods. Therefore, if a template of high sequence identity is present but adopts a 

different conformation than the antibody being modeled, the multi-template method can be 

biased to produce inaccurate models.

Conclusions

Antibody modeling is still challenging despite the availability of many methods even in the 

same software framework, such as Rosetta. For the modeling of human antibodies from 

co-crystal structures we constructed a benchmark to compare available methods in Rosetta. 

A multi-template method based on RosettaCM adds to the already available toolset for 

antibody structure prediction, RosettaAntibody and AbPredict, especially when approaching 

the structurally diverse and difficult to model HCDR3 loop. This advantage is especially 

present for longer HCDR3 loops and structures with little to no template availability, where 

the recombination of sparsely available templates together with fragment insertion offer an 

improvement in contrast to the choice of a single template or pure de novo modeling. For 

antibodies with shorter HCDR3 loops and when high-similarity templates are available, all 

methods tested performed comparably well. Noteworthy, is the performance of AbPredict 

for the modeling of the overall backbone. The choice of method for antibody modeling tasks 

heavily depends on the available template and input structures. RosettaAntibody has been 

well-tested in the past, contains in-depth documentation and performs well if the antibody 

to be modeled has a good template match in the canonical structural clusters as defined by 

North et al.23 In cases, where there are less templates available a combinatory method such 

as RosettaCM offers advantages in the overall modeling performance. However, when the 

chosen templates contain no useful template information, the method will not overcome the 

lack of a template through conformational sampling. RosettaCM has been well-documented 

in the past and tutorials are available.19 AbPredict, despite performing well in the modeling 

of the backbone, heavily depends on the HCDR3 template, which when sampling the correct 

conformation performs well, otherwise the deviation is high. AbPredict was less robust 

in our hands. Overall, the choice of method for the modeling of a human antibody, as 

observed in antibody-antigen co-crystal structures, depends on the template availability. In 

some instances, obtaining models from multiple protocols as a consensus approach might be 

in order.
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Methods

Construction of a template database of human antibody structures from the PDB

Antibodies with complete heavy chain and light chain sequences without chain breaks 

in the variable the domains were chosen from the PDB.32 If multiple structures were 

found in the PDB with identical heavy chain and light chain sequences, the structure 

with the lowest resolution was chosen for the database. Structures were renumbered and 

trimmed to the variable heavy chain/light chain pair. The trimmed structure underwent all­

atom refinement with coordinate constraints on the backbone atoms using RosettaRelax33. 

A table of all antibody template structures can be found in Supporting Table S1 

and further material is available for download under: https://github.com/pranavkodali/

RosettaCMAntibodyBenchmark/tree/main.

Construction of a benchmark set of human antibodies from the PDB

The structural antibody database (SAbDab)34 was used to provide information on all human 

antibodies in the PDB. A list of every human antibody in complex with a protein antigen 

was compiled. The list was refined to only include non-engineered structures obtained by 

X-ray diffraction with a resolution of 3.5 Å or better. The 87 antibodies in the PDB that 

satisfied these requirements were selected as the test set. A table of all antibody-antigen 

structures can be found in Supporting Table S2.

Comparison of an immune repertoire to available structural templates

An antibody heavy chain sequence was randomly selected from the Human Immunome 

Program (HIP) Database35. The three heavy chain CDRs were identified from sequence. 

Blast36 identified human antibodies in the PDB with the highest sequence identity to each 

CDR and results were filtered to only include structures in our database of human antibody­

antigen structures. The highest sequence identity was recorded, and the process was repeated 

more than four million heavy chain sequences. The process was also repeated almost two 

million times for antibody light chain sequences in the HIP database but modified to identify 

and run Blast against the three light chain CDRs for each sequence. The heavy chain and 

light chain data were graphed separately as histograms in Seaborn 0.9.1 with sequence 

identity binned at five percent intervals.

Antibody structure prediction using RosettaCM

The sequence of the target antibody was downloaded from the PDB.32 A script derived 

from RosettaAntibody was used to identify the three heavy chain CDRs and the three light 

chain CDRs from the sequence23. Blast36 identified human antibodies in the PDB with 

the highest sequence identity to each CDR, heavy chain, light chain, and entire antibody, 

and results were filtered to only include structures in our template database of human 

antibody structures with the structure corresponding to the input sequence excluded from the 

database. The fifteen best matches for each region were narrowed down to the five templates 

that maximized coverage of each region using ClustalW37 and repeated templates between 

regions were for a total of 28 templates. Each template file was aligned individually with 

target sequence in ClustalO38. Each template structure underwent all-atom refinement using 
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RosettaRelax with coordinate constraints for the backbone atoms33. The sequence of the 

target antibody was threaded onto each relaxed template structure in RosettaCM19. Each 

template was assigned a weight in the hybridize mover corresponding to sequence identity 

with the target identity to amplify the influence of more similar templates. 1000 models 

were generated using RosettaCM19 and underwent all-atom refinement with coordinate 

constraints to backbone coordinates in RosettaRelax33. A final ensemble of 10 models were 

selected based on Rosetta all-atom score. This process was repeated for every antibody in 

the benchmark set.

Antibody structure prediction using RosettaAntibody

The sequence of the target antibody was downloaded from the PDB.32 The sequence 

was passed to RosettaAntibody23, and the protocol was executed in accordance with the 

published RosettaAntibody Protocol with several notable changes23: RosettaAntibody was 

recompiled with an additional flag to allow for the exclusion of the structure corresponding 

to the input sequence from template selection. The first grafted model was used as a 

starting point for 1,000 refined models as described in the original protocol, but additional 

grafted models were not used to match the number of models generated by the RosettaCM 

protocol. An additional all-atom refinement step with coordinate constraints to backbone 

atoms in RosettaRelax33 was added at the end of the RosettaAntibody Protocol for the 1,000 

generated refined models. A final ensemble of 10 models were selected based on Rosetta 

all-atom score. This process was repeated for every antibody in the benchmark set.

Antibody structure prediction with AbPredict

The sequence of the target antibody was downloaded from the PDB.32 The sequence was 

formatted in accordance with the published AbPredict protocol18,39. VL, VH, LCDR3, and 

HCDR3 lengths were determined in accordance with the published AbPredict protocol and 

used to select fragments of the appropriate length from a database containing templates 

for each VL, VH, LCDR3 and HCDR3 length.39 A anti-meningococcal subtype P1.4 PorA 

antibody (PDB: 2BRR)40 is used by the protocol as backbone of the model assembly, 

followed by a random combination of the VL, VH, LCDR3 and HCDR3 backbone 

fragments. The protocol threads the target sequence onto this arbitrary backbone and 

executes a simulated-annealing Monte Carlo search. The process was done 40 times for 

each of 25 fragment combinations. The obtained models underwent all-atom refinement with 

coordinate constraints to backbone atoms in RosettaRelax33. A final ensemble of 10 models 

were selected based on Rosetta all-atom score. This process was repeated for every antibody 

in the benchmark set.

Antibody structure prediction using a single template

The RosettaCM protocol was followed with the following changes. Blast identified the 

human antibody in the PDB with the highest sequence identity to the entire antibody to 

be used as the template, and results were filtered as described for RosettaCM. 200 models 

were generated using RosettaCM19 and underwent all-atom refinement with coordinate 

constraints to backbone coordinates in RosettaRelax33. A final ensemble of two models were 

selected based on Rosetta all-atom score. This process was repeated for every antibody in 

the benchmark set.
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Modeling the antibody structure based on its own crystal structure serves as positive 
control

The single template protocol was executed with the following change: The structure of the 

target antibody was downloaded from the PDB and used as the template and the sequence 

derived from the structure was aligned with the sequence of the target sequence. This 

process was repeated for every antibody in the benchmark set.

Data analysis

The native structure of the target antibody was downloaded from the PDB32 and trimmed to 

the to the variable heavy chain/light chain pair. The trimmed structure underwent all-atom 

refinement with coordinate constraints to backbone atoms in RosettaRelax33 The three 

heavy chain CDRs and the three light chain CDRs were identified from sequence with an 

adapted script from the RosettaAntibody framework23. The relaxed native structure and each 

relaxed generated model were aligned and the RMSD between the two overall structures 

was calculated in PyMol 2.3.4. The findseq PyMOL script was used to identify each CDR 

and calculate the RMSD of the CDR between the relaxed native structure and each relaxed 

generated model. Score versus RMSD plots were generated in Seaborn 0.9.1 for each 

antibody in the test set and plots representing results from the entire test set.

Example scripts and commands for all executed protocols can be found in the Supporting 

Material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Sequence similarity between randomly chosen antibody sequences from the HIP database 

and our template database of human co-crystal structures. Over 4 million antibody heavy 

chains and almost 2 million antibody light chains were tested using a BLAST search and 

their highest percentage match was recorded for each CDR individually and binned in steps 

of 5 percent. A. distribution of template similarity for heavy chain CDRs. B. Distribution of 

template similarity for light chain CDRs.
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Figure 2: 
Workflow for benchmark set-up and protocol used to compare different antibody homology 

modeling methods in Rosetta.
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Figure 3: 
Comparison of antibody backbone modeling performance for the best models produced by 

each method to the best multi-template models. The performance of RosettaAntibody (A), 

AbPredict (B), Single Template (C), and our control method (D) were each individually 

compared to our multi-template method by graphing that method’s median RMSD against 

our multi-template method’s median RMSD for each antibody. Each chart has a line at 

y=x representing equal performance between methods. Points above the line represent cases 

where our multi-template method outperformed another method, whereas points below the 

line represent the opposite case.
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Figure 4: 
Comparison of antibody HCDR3 and backbone modeling performance for the best models 

produced by each method. 1000 models of each benchmark antibody were produced 

using the Multi-Template, Rosetta Antibody, and AbPredict protocols, and 200 models 

using the Single Template and Control protocols. All generated models were aligned to 

their respective native crystal structures and backbone RMSD was calculated between the 

HCDR3 loop of the native crystal structure and each corresponding model. The median 

RMSD for models of each benchmark antibody in the top 1% by score in Rosetta Energy 

Units for each method were recorded (A). The same technique was used to calculate RMSD 

of the backbone to the native structure (B). These models were also binned by HCDR3 

sequence identity to the best template (C) and loop length (D). Short represents HCDR3 
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loop lengths of 1–6 amino acids (AA), medium of lengths 7 to 13 AA, and long of lengths 

14 to 20 AA.
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Figure 5: 
Comparison of antibody HCDR3 modeling performance for the best models produced by 

each method to the best multi-template models. The performance of RosettaAntibody (A), 

AbPredict (B), Single Template (C), and our control method (D) were each individually 

compared to our multi-template method by graphing that method’s median RMSD against 

our multi-template method’s median RMSD for each antibody. Each chart has a line at 

y=x representing equal performance between methods. Points above the line represent cases 

where our multi-template method outperformed another method, whereas points below the 

line represent the opposite case.
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Figure 6: 
Examples of significant differences in HCDR3 modeling performance between multi­

template modeling and AbPredict/RosettaAntibody. The top 10 models by score in Rosetta 

Energy Units for the two methods being compared in each example were aligned onto 

the corresponding antibody’s relaxed native crystal structure (grey). Our multi-template 

modeling method, displayed in purple (B), significantly outperformed AbPredict, displayed 

in green (A) and RosettaAntibody, displayed in pink (C), in modeling the HCDR3 loop 

of a Peptostreptococcus magnus protein L-binding human antibody (PDB ID 1HEZ)25. 

AbPredict only significantly outperformed our multi-template method in modeling the 

HCDR3 loop (D) when modeling an HIV-1 capsid protein-binding human antibody (PDB 

ID 1AFV)26. RosettaAntibody significantly outperformed our multi-template method in 

modeling the HCDR3 loop (E) when modeling the Zika virus envelope protein-binding 

human antibody (PDB ID 5KVF)27. AbPredict significantly outperformed RosettaAntibody 

in modeling the HCDR3 loop (F) when modeling a human vascular endothelial growth 

factor-binding antibody (PDB ID 2QR0)28.
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Table 1:

Median backbone and HCDR3 RMSDs by method for each antibody tested from the benchmark set.

PDB Median Backbone RMSD to Native Crystal 
Structure of the Top 10 of Models by Energy 
Score

Median HCDR3 RMSD to Native Crystal 
Structure of the Top 10 of Models by Energy 
Score

HCDR3 
Sequence 
Identity to 
the Closest 
HCDR3 
Template

HCDR3 
Length

Multi-
Template

Rosetta 
Antibody

AbPredict Multi-
Template

Rosetta 
Antibody

AbPredict

1ADQ 1.25 2.41
x
† 3.99 x x 0.36 14

1AFV 1.42 1.46 0.84 3.15 4.54 1.65 0.55 11

1EGJ 0.99 1.18 0.81 2.20 5.21 2.77 0.40 10

1EO8 1.44 1.49 1.99 4.09 4.45 6.22 0.44 9

1HEZ 0.85 1.25 1.01 1.60 8.52 3.53 0.25 12

1I9R 1.15 1.19 1.12 2.01 4.63 5.23 0.33 9

1IQD 1.15 1.38 2.60 1.72 4.17 4.73 0.38 8

1KB5 1.06 x 0.95 2.30 x 2.62 0.60 10

1KEN 1.89 1.79 1.90 5.22 6.00 3.92 0.45 11

1NCB 1.43 1.08 x 3.31 4.10 x 0.36 11

1NMB 1.66 1.72 0.94 3.10 6.69 5.74 0.31 13

1NSN 1.30 1.31 x 2.62 2.33 x 0.75 4

1OB1 1.23 1.55 2.62 3.66 4.87 8.01 0.36 11

1ORQ 1.36 1.17 1.58 1.79 2.75 3.22 0.56 9

1OSP 1.79 1.33 1.68 3.07 4.55 5.20 0.33 12

1QFU 1.37 2.27 0.84 4.23 9.00 4.94 0.31 13

1RJL 1.09 1.23 0.95 4.55 4.05 3.81 0.27 11

1YJD 1.15 1.46 0.87 3.05 4.29 4.39 0.45 11

1YQV 1.49 1.31 x 5.47 4.53 x 0.57 7

1ZTX 1.18 1.26 3.65 1.58 5.13 9.69 0.40 10

2ADF 1.07 1.26 0.98 2.44 2.84 3.26 0.44 9

2ARJ 0.92 1.53 x 1.83 4.19 x 0.56 9

2HMI 1.29 1.26 1.88 3.62 5.22 6.29 0.31 13

2I9L 0.93 1.56 0.68 2.21 5.79 3.25 0.20 10

2JEL 1.01 1.22 0.99 2.39 2.29 3.46 0.33 9

2NYY 0.99 1.25 1.41 1.99 3.41 5.37 0.56 9

2NZ9 0.96 1.05 1.11 2.07 3.09 3.14 0.22 9

2Q8B 1.09 x x 2.45 x x 0.33 3

2QR0 1.25 1.73 1.16 1.75 6.01 2.62 0.67 9

2R29 1.17 1.48 x 1.68 3.32 x 0.57 7

2R56 0.96 1.73 0.96 1.31 8.67 5.67 0.42 12

2XRA 1.71 2.21 1.65 4.01 7.23 4.29 0.38 13

2YPV 1.22 1.09 0.72 3.33 5.18 4.75 0.60 10

2ZCH 1.25 1.30 x 3.49 7.68 x 0.46 13
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PDB Median Backbone RMSD to Native Crystal 
Structure of the Top 10 of Models by Energy 
Score

Median HCDR3 RMSD to Native Crystal 
Structure of the Top 10 of Models by Energy 
Score

HCDR3 
Sequence 
Identity to 
the Closest 
HCDR3 
Template

HCDR3 
Length

Multi-
Template

Rosetta 
Antibody

AbPredict Multi-
Template

Rosetta 
Antibody

AbPredict

2ZUQ 1.06 1.85 0.83 2.09 3.42 4.14 0.67 6

3B9K 1.19 2.11 1.04 2.54 3.84 2.56 0.67 9

3BGF 1.09 1.32 3.54 3.67 4.88 8.56 0.25 12

3D85 0.97 1.22 1.04 3.02 3.72 3.91 0.33 6

3EFF 1.45 2.11 1.78 4.18 8.23 5.88 0.53 15

3FMG 1.17 1.09 1.00 3.49 3.55 3.82 0.42 12

3KS0 1.69 1.71 x 2.13 3.24 x 0.56 9

3LIZ 1.24 1.30 0.93 4.83 4.20 5.24 0.40 10

3OPZ 1.11 1.36 1.02 2.74 3.66 3.38 0.50 10

3Q3G 1.50 1.77 1.01 4.39 9.42 4.46 0.15 13

3R1G 1.03 1.44 1.13 1.96 3.69 2.90 0.50 10

3RKD 1.06 x 1.61 2.81 x 5.43 0.36 14

3UBX 1.32 1.18 1.05 4.15 6.20 6.28 0.18 11

3V7A 1.28 1.48 1.08 2.55 4.39 3.82 0.45 11

3VG9 1.59 1.81 x 7.54 5.37 x 0.47 15

3VRL 1.27 1.70 1.12 4.15 7.59 4.45 0.62 13

3WFD 1.05 x 0.94 2.08 x 7.24 0.40 15

4AG4 1.25 1.70 0.84 1.61 3.56 5.08 0.71 7

4BZ1 0.77 1.19 0.84 1.41 2.74 3.70 0.38 8

4BZ2 1.34 1.32 0.83 5.25 4.01 5.92 0.58 12

4CAD 1.41 x 0.85 6.98 x 6.21 0.38 16

4CMH 1.07 1.35 1.25 2.44 6.08 3.71 0.36 11

4FFV 1.17 1.10 3.58 1.92 2.30 11.34 0.38 8

4H88 0.96 0.99 0.81 1.79 6.34 3.16 0.60 10

4HT1 1.54 2.01 1.83 1.48 4.45 5.01 0.36 11

4JR9 1.03 2.16 0.81 3.20 2.98 4.12 0.11 9

4JZJ 1.49 1.41 0.92 3.24 6.76 4.25 0.36 11

4K2U 1.07 1.18 0.92 2.47 5.92 3.97 0.42 12

4LVN 1.60 1.13 1.24 4.95 3.89 3.26 0.45 11

4NP4 1.23 1.79 1.29 2.23 8.28 3.45 0.40 10

4PLJ 1.28 x 1.00 3.30 x 5.56 0.57 14

4Q6I 1.26 1.49 x 4.98 6.16 x 0.45 11

4QWW 1.08 1.19 x 5.41 7.01 x 0.50 14

4RDQ 0.92 x 1.13 0.85 x 4.30 0.57 7

4RGM 1.31 1.50 1.16 5.48 4.68 4.70 0.33 12

4RGO 1.26 1.67 0.81 4.45 8.45 5.67 0.42 12

4TNW 2.09 1.77 x 4.19 5.33 x 0.62 13

4UAO 1.16 1.13 1.09 5.01 8.18 4.28 0.33 12
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PDB Median Backbone RMSD to Native Crystal 
Structure of the Top 10 of Models by Energy 
Score

Median HCDR3 RMSD to Native Crystal 
Structure of the Top 10 of Models by Energy 
Score

HCDR3 
Sequence 
Identity to 
the Closest 
HCDR3 
Template

HCDR3 
Length

Multi-
Template

Rosetta 
Antibody

AbPredict Multi-
Template

Rosetta 
Antibody

AbPredict

4ZPT 1.06 0.94 1.20 1.80 2.48 4.78 0.57 7

5BV7 1.65 x 2.07 6.42 x 7.83 0.38 16

5CZX 1.27 1.77 0.91 2.82 3.36 3.44 0.50 10

5DFV 0.93 1.62 1.89 2.72 5.22 4.05 0.33 12

5HBT 1.61 3.41 1.49 2.91 x 5.78 0.25 12

5KVF 1.10 1.42 0.88 7.60 5.12 6.00 0.20 10

5LQB 0.98 1.14 x 3.00 4.08 x 0.33 12

5MHR 1.81 1.84 1.32 2.78 3.69 4.86 0.50 12

5T5F 1.40 1.97 1.18 4.23 6.63 4.92 0.38 13

5USH 1.21 1.87 2.17 2.28 10.10 6.48 0.31 13

5USL 1.84 2.02 3.94 7.28 7.59 10.92 0.27 15

5VEB 0.94 1.41 0.98 1.64 5.21 3.78 0.44 9

5Y9C 1.33 1.44 1.57 3.02 4.41 3.75 0.45 11

5Y9F 1.31 1.52 1.08 3.30 7.86 4.27 0.29 14

6BPA 1.14 1.18 1.01 2.27 4.30 3.08 0.18 11

†
X indicates a failure by the method represented to produce any models of sufficient quality
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