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Highlights
The outcomes of SARS-CoV-2 infec-
tion and COVID-19 show enormous
variation among individuals. Given that
the sources of this variation are largely
unknown, they have been described
as ‘immunological dark matter’.

Emerging studies suggest that the gut
microbiome contributes to immunologi-
cal dark matter. Gut microbial composi-
tion and function are associated with
several key risk factors for severe
COVID-19 outcomes, including host
inflammatory status, age, and biological
sex. Crucially, the gut microbiome regu-
lates host inflammation and endocrine
Coronavirus disease 2019 (COVID-19) continues to exact a devastating global
toll. Ascertaining the factors underlying differential susceptibility and progno-
sis following viral exposure is critical to improving public health responses. We
propose that gut microbes may contribute to variation in COVID-19 outcomes.
We synthesise evidence for gut microbial contributions to immunity and inflam-
mation, and associations with demographic factors affecting disease severity.
We suggest mechanisms potentially underlying microbially mediated differential
susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2). These include gut microbiome-mediated priming of host inflammatory re-
sponses and regulation of endocrine signalling, with consequences for the cellu-
lar features exploited by SARS-CoV-2 virions. We argue that considering gut
microbiome-mediated mechanisms may offer a lens for appreciating differential
susceptibility to SARS-CoV-2, potentially contributing to clinical and epidemio-
logical approaches to understanding and managing COVID-19.
function in ways that may alter suscepti-
bility to SARS-CoV-2 infection.

Efforts to study the gut microbiome
alongside other host demographic and
physiological variables may shed light
on differential susceptibility to SARS-
CoV-2 infection, and may thereby con-
tribute to improving patient care and
epidemiological modelling.
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The host microbiome as a contributor to immunological dark matter
The emergence of SARS-CoV-2, which causes COVID-19, has triggered a pandemic with devas-
tating global consequences. Here, we evaluate how the gut microbiome (see Glossary) may act
as a driver of COVID-19 risk and contribute to COVID-19 outcomes. Several risk factors contribute
to the risk of COVID-19 disease severity [1,2], and COVID-19 symptoms range from mild and
transient to prolonged illness that may involve pronounced inflammation and death. The striking
variation in outcomes suggests that sociodemographic or biological factors characteristic of
individual hosts or populations may modify the course of SARS-CoV-2 infection. Recently,
dynamic causal modelling [3] has been applied to epidemiological patterns. This approach
emphasises differential susceptibility, which suggests that there are populations that are resis-
tant or less susceptible to infection [4–7] and, by implication, populations that are more susceptible
and at greater risk of virulent infection. The specific causes of differential susceptibility to SARS-
CoV-2 remain under investigation and, because many of these causes are presently unobserved
or ‘hidden’, they have been referred to as immunological dark matter [6,8]. The goals of under-
standing host–virus interactions and effectively treating infections both require knowledge of
the factors contributing to outcome heterogeneity. Accounting for as much of this heterogeneity
and differential susceptibility as possible may help clarify requisite population immunity levels to
attenuate viral transmission [9] and inform development of early interventions for those who exhibit
characteristics that are predictive of symptom severity.

We propose that the gut microbiome contributes to differential susceptibility or immunological
dark matter underlying SARS-CoV-2 infection. Indeed, the potential of the gut microbiome to
confer risk or resilience against diseases has already been investigated in the context of other
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pathogens. For example, gut microbes have been shown tomodulate susceptibility to Salmonella
infection (caused by a bacterium) [10] and malaria (caused by a plasmodium) [11]. We suggest
here that the gut microbiome may confer upon hosts both risk and resilience to SARS-CoV-2,
depending on the baseline microbial profile of the host. Researchers have already proposed
important ways in which pandemic-related conditions (e.g., lockdowns and distancingmeasures)
affect microbial communities [12] and here we discuss the converse, focusing on the gut
microbiome as a biomarker and a contributing factor to COVID-19 outcomes. We first synthesise
recent research connecting the gut microbiome to SARS-CoV-2 and briefly evaluate associations
between the gut microbiome and relevant aspects of host physiology in the context of immune
responses to SARS-CoV-2. We then analyse the gut microbiome as it relates to prominent
risk factors for COVID-19 symptom severity. Finally, we explore the implications of the gut
microbiome and differential susceptibility for management of the COVID-19 pandemic. At
present, the gut microbiome→risk factor→COVID-19 pathway is largely speculative and has
not yet been clearly established. Nevertheless, we hope that discussion of these associations
and potential underlying mechanisms may guide future research into these connections.

The gut microbiome and host immunity in the context of COVID-19
The gut microbiome, host antiviral responses, and inflammation
The gut microbiome plays critical roles in training and regulating the immune system of the host
[13–15]. Gut microbes confer colonisation resistance, reducing the probability of pathogens
successfully establishing themselves in the local gut ecosystem [16]. Gut microbes also regulate
early antiviral responses. For instance, germ-free mice possess mononuclear phagocytes that
show impaired cytokine gene expression, especially with respect to type I interferons, which
are critical for effective host antiviral response [17]. Similarly, antibiotic-induced ablation of gut
microbial populations reduces the capacity of the host to launch robust antiviral responses,
and thus, influenza virus infection triggers more severe symptoms in antibiotic-treated mice
compared with untreated controls [18]. These findings suggest that a healthy gut microbiome
is necessary for appropriate antiviral defence.

Gut microbial imbalances have been shown to affect acute inflammation well beyond the gut,
including the lung. There is now extensive research elucidating the influence of gut microbes on
pulmonary immunity through what is commonly referred to as the microbiome–gut–lung axis
[19–21]. Gut dysbiosis has been associated with infection by various respiratory viruses,
including influenza A virus (IAV) and respiratory syncytial virus (RSV) [22,23]. Moreover, gut dysbiosis
during influenza infection has been shown to contribute to pneumococcal superinfection in the lung
[24]. The mechanisms underlying microbiome–gut–lung associations continue to be explored, but
disturbances in the gut microbiome can increase the permeability of the intestinal barrier, permitting
translocation of gut bacteria to the lung, which may trigger local immune responses [25]. Microbial
metabolites, such as short-chain fatty acids (SCFAs) derived from gut microbial fermentation of die-
tary fibre, have also been shown to modulate immunological reactivity in the lung [21,26] and have
been detected in the lung compartment itself [27]. For instance, mice with high circulating SCFA
levels were protected against allergic lung inflammation after exposure to dust mite extract [21].
This reduced reactivity was attributable to SCFA-induced alteration of bone marrow
haematopoiesis, leading to the lungs having dendritic cells with an impaired capacity to activate
effector TH2 cells, which potentiate proinflammatory responses. Overall, such results indicate
roles for the gut microbiome in altering host responses to at least some respiratory infections.

SARS-CoV-2 entry into susceptible cells is promoted by virus–cell fusion, which occurs when the
SARS-CoV-2 spike protein binds to the cellular receptor angiotensin-converting enzyme 2
(ACE2) and is cleaved by transmembrane protease serine 2 (TMPRSS2) and other host
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Glossary
Cytokine: any of several proteins
secreted by various immune cells (e.g.,
chemokines, interleukins, interferons,
and tumour necrosis factors). Cytokines
facilitate cell–cell signalling, and can
exert proinflammatory or anti-inflamma-
tory effects.
Cytokine storm: state of systemic
hyperinflammation involving dramatically
elevated concentrations of proinflam-
matory cytokines and other immune
cells. Cytokine storms can lead to dys-
function of secondary organs,
multiorgan failure, and death.
Differential susceptibility: general
phenomenon that susceptibility to a dis-
ease is not uniform in a population but
varies among individuals. In COVID-19,
differential susceptibility is relevant both
at the level of clinical susceptibility (i.e.,
being at higher or lower risk of develop-
ing COVID-19) and the level of trans-
mission (i.e., some individuals may
experience more virulent replication of
SARS-CoV-2 and are more likely to
infect others).
Dynamic causal modelling: analytical
method that exploits Bayesian model
comparisons (a model selection tech-
nique based on variational Bayes) to
best explain empirical timeseries,
enabling tests of various hypotheses.
Dynamic causal modelling was originally
developed for the analysis of neuroim-
aging timeseries, but could be used to
test many types of quantitative hypoth-
esis, including epidemiological hypothe-
ses.
Dysbiosis: state in which the homeo-
static integrity of a host-associated
microbial community is impaired. Gut
dysbiosis can entail changes inmicrobial
composition, diversity, abundance, or
function.
Germ-free: biological state entailing
completemicrobial exclusion. Germ-free
animals are born and raised under strict
laboratory conditions that ensure steril-
ity. Given that germ-free animals do not
experience microbial colonisation, com-
parisons between germ-free animals
and conventional (wild-type) animals
enable assessments of causal gut
microbial contributions to host physio-
logical development and function.
Gnotobiotic: a state in which all micro-
bial exposures are known. This term
encompasses germ-free animals and
formerly germ-free animals that have
been intentionally colonised with specific
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proteases, triggering conformational changes that enable membrane fusion [28,29]. ACE2 and
TMPRSS2 are abundant in alveolar tissue [28,30], but are also widely distributed across other
host tissues, including the gut [31–34]. Therefore, any effects of gut microbes on ACE2 and
TMPRSS2 might be expected to affect the risk of SARS-CoV-2 infection.

Research connecting the microbiome, gastrointestinal function, and COVID-19
COVID-19 can present with gastrointestinal symptoms and inflammation [35,36], which has
prompted research into gut microbial contributions to COVID-19 outcomes [37]. In Table 1, we
summarise an emerging body of empirical research on the associations between SARS-CoV-
2, COVID-19 outcomes, and microbial communities. Although we focus mainly on the gut
microbiome in Table 1, we also report data on host-associated microbiomes at other body
sites. Collectively, these studies report differences in the microbial composition of patients with
COVID-19 compared with those of healthy controls or patients with non-COVID-19 respiratory
tract infections [38–43]. Available studies suggest that the gut microbial communities of patients
with COVID-19 exhibit lower taxonomic diversity [42–45] and an increase in opportunistic patho-
gens [42–44], although the extent to which these differences are attributable to concomitant an-
tibiotic treatment in the hospital setting remains unclear. Moreover, the composition of the gut
microbiota has been found to covary with disease severity [44,46,47] and dysfunctional immune
responses [46]. Compared with healthy controls, researchers have observed higher relative
abundances in patients with COVID-19 of gut bacterial taxa including Ruminococcus gnavus,
Clostridium ramosum, Coprobacillus, Akkermansia muciniphila, and Eggerthella lenta, and
lower relative abundances of Alistipes shahii and several butyrate producers, such as Roseburia
intestinalis, Eubacterium hallii, Ruminococcus bromii, and Faecalibacterium prausnitzii [43,44].
The depletion of butyrate producers may be relevant to disease aetiology because butyrate is
the primary metabolic fuel for colonocytes and important for maintaining colonic epithelial integrity
[48]. Additionally, some gut bacterial taxa, including Bacteroides spp. found to be inversely cor-
related with faecal SARS-CoV-2 load in hospitalised patients [43], are capable of modulating
the expression and function of cell surface receptors that regulate viral entry into cells, including
ACE2 in the gut [43]. Relatedly, Bacteroides has been associated with the modification of lung
heparan sulfate, which may in turn alter virion adhesion to host cells [49]. Heparan sulfate is a gly-
cosaminoglycan that regulates structural and functional processes in lung tissue, with implications
for lung pathophysiology [50] (Table 1). Such research supports an association between the
abundance of particular microbial species and the capacity of the virus to successfully infect
the host.

Recent research raises the possibility that the gut microbiome impacts SARS-CoV-2 infection
and COVID-19 severity by modulating T and B cell function. There are two principal subtypes
of T cell: CD4+ T cells and CD8+ T cells. CD4+ T cells release cytokines that activate other immune
cells, thereby potentiating an immune response, whereas CD8+ T cells kill virus-infected cells. B
cells produce neutralising antibodies that bind to peptides in the viral spike and other viral
proteins, inhibiting the capacity of the virion to infect host cells. Through these actions, T cells and
B cells help clear acute infection with SARS-CoV-2 [51], modulate COVID-19 disease severity
[52,53], and play an important role in immunity against reinfection [54,55], including against emerging
variants of concern [56].

While the studies summarised in Table 1 are mostly correlational, some of the findings do appear
to reconcile with the role of gut bacteria in training and regulating the immune system and the
particularly well-established link between gut microbes and the shaping of adaptive T and B
cell responses, both locally and systemically [57–59]. Gnotobiotic studies have shown that
both T cells and B cells are regulated by the microbiome. For instance, T cell differentiation and
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microbial taxa or predetermined micro-
bial communities.
Immunological dark matter: term
intended to convey the existence of
latent causes underlying clinical and
epidemiological data, such as infection
rates, notification rates, recovery rates,
and fatality rates. These latent causes
are hidden or ‘dark’ in that they must be
inferred through modelling, rather than
by direct observation. Key examples
include heterogeneity in exposure,
transmission (i.e., overdispersion), and
susceptibility within a population.
Lipopolysaccharide (LPS): canonical
proinflammatory compound derived
from the outer membrane of Gram-neg-
ative bacteria.
Microbiome: total collection of
microbes, microbial genes, and micro-
bial products inhabiting a particular
environment or body site. Human-asso-
ciated microbiomes differ across popu-
lations, individuals, and body sites within
a given individual, and over time for a
given individual body site.
Microbiota: community of microbes,
including bacteria, archaea, viruses, and
eukaryotes (e.g., protists and fungi),
inhabiting a particular environment or
body site. The gastrointestinal tract is
home to the largest, densest, and most
diverse human-associated microbiota,
with the large intestine alone hosting tril-
lions of organisms.

Trends in Molecular Medicine
proliferation depend on the presence of gut microbes [15]. Gut microbes have also been shown
to play a crucial role in activating mucosal-associated invariant T (MAIT) cells [60], which were re-
cently found to be associated with COVID-19 disease severity [61,62]. Similarly, with respect to B
cells, experiments in mice indicate that B cell differentiation is promoted indirectly by the gut mi-
crobiota through upregulation of interleukin (IL) production, specifically IL-1β and IL-6 [63].

Gut microbial regulation of host inflammatory status
Some of the dominant risk factors for severe COVID-19 outcomes are inflammation-linked met-
abolic and cardiovascular comorbidities, such as diabetes and hypertension, and demographic
characteristics, such as older age (Box 1) and male biological sex (Box 2) [1,2,64]. Each of
these characteristics is associated with variations in gut microbial composition and function.

Various gut microbiome–immune interactions modulate systemic and acute inflammation in the
host. In some cases, the inflammatory landscape may in turn increase risk for virulent SARS-
CoV-2 infection, culminating in cytokine storms characterised by very high concentrations of
circulating cytokines [e.g., IL-1β, IL-6, tumour necrosis factor-α (TNF-α), monocyte
chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1α (MIP-1α/
CCL3)], hyperinflammation (measured by biomarkers such as C-reactive protein) and, frequently,
multiorgan failure and death [1]. Given the relationships between gut microbes, host immunity,
and host inflammatory status, it is conceivable that microbiome composition and function may
confer risk for, or resilience against, the immune dysregulation and excessive inflammation
characterising severe COVID-19 (Figure 1).

Murine research has confirmed a role for microbially regulated host immunity and inflammation as
a risk factor for cytokine storms [65,66]. Cohousing specific pathogen-free laboratory mice with
pathogen-harbouring pet-store mice increased quantities of circulating monocytes and neutro-
phils expressing toll-like receptor 2 (TLR2) and TLR4 in the laboratory animals. These changes af-
fected outcomes in a subsequent immune challenge involving Listeria monocytogenes, with
cohoused laboratory mice exhibiting enhanced bacterial clearance but heightened sensitivity to
cytokine storms and sepsis [65]. Similarly, exposure of laboratory mice to the microbial commu-
nities characterising wild-living mice led to elevated immune responses and increased probability
of cytokine storms relative to unexposed laboratory controls [66]. While these studies reported
immune responses to novel pathogens (and thus strong immune reactions are predicted a priori),
these results do demonstrate that differences in baseline microbial composition among hosts are
sufficient to affect the probability of cytokine storms.

The vertebrate immune system has evolved to simultaneously defend against potential patho-
gens while developing tolerance for, and actively curating (to the extent possible), beneficial
and commensal microbes colonising the host [67,68]. These contribute to the development
and training of host immunity during early life, following which molecular dialogues between
the microbiome and the host regulate immunity throughout the lifespan [15,69,70]. Indeed, a
recent study demonstrated that human gut microbes are closely associated with circulating im-
mune cells [71]. This study found strong associations between the genera Faecalibacterium,
Ruminococcus, and Akkermansia and blood concentrations of neutrophils, lymphocytes,
and monocytes. Moreover, gut microbes are implicated in the aetiopathogenesis of other
diseases that are characterised by hyperinflammation, such as the autoimmune diseases
rheumatoid arthritis and systemic lupus erythematosus. In these diseases, the gut
microbiome can trigger symptoms in genetically susceptible individuals by producing
orthologues of autoantigens, which can lead to microbiota-directed immune responses
targeting host tissues instead [72].
1118 Trends in Molecular Medicine, December 2021, Vol. 27, No. 12
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Table 1. Correlations between host-associated microbial features and SARS-CoV-2 features and outcomes

Study summary Sample characteristics Samples and microbial
analysis

Key findings Refs

Groups Sample
size

Female/male Reported age in
years

Examined sputum and
airway microbial features
of patients with
COVID-19

Patients with
COVID-19; patients
with non-COVID-19
pneumonia

62; 125 22/40;
55/70

45 (25–82)a; 48
(15–88)a

Metatranscriptome
sequencing of sputum
or nasopharyngeal
swabs

Airway microbiome in
patients with COVID-19
showed reduced
α-diversity compared
with patients with
non-COVID-19
pneumonia

[38]

Examined lung microbial
features of patients with
COVID-19

Patients with
COVID-19; uninfected
controls

19; 23 NA NA Metatranscriptome
sequencing of
bronchoalveolar lavage
fluid samples

Pathogens (e.g.,
pneumonia-causing
Klebsiella oxytoca),
immunomodulatory taxa
(e.g., lactic acid bacteria
and Faecalibacterium
prausnitzii), and tobacco
mosaic virus were
enriched in the
COVID-19 group,
suggesting microbiota
dysbiosis. Analysis of
microbial
α- and β-diversity also
showed large differences
between patients and
controls

[39]

Examined lung microbial
features in deceased
patients with COVID-19

Deceased patients with
COVID-19

20 6/14 66 (60.75–77.0)b 16S rRNA sequencing
used to profile lung
tissue acquired via
postmortem needle
core biopsies
immediately after death

Significant enrichment
of pathogenic microbes
in lungs. Most prevalent
bacterial genera were
Acinetobacter (80.70%
of total sequences),
Chryseobacterium
(2.68%), Burkholderia
(2.00%), Brevundimonas
(1.18%), Sphingobium
(0.93%), and
Enterobacteriaceae
(0.68%), together
comprising 92.32% of
total sequences and
regularly detected in all
subjects. Biopsies also
revealed that most
patients had mixed
bacterial and fungal
infections

[40]

Examined lung microbial
features of patients with
COVID-19

Patients with
COVID-19; patients
with non-COVID-19
pneumonia; uninfected
controls

8; 25;
20

3/5; NA; NA 49.0 (±7.9)a; NA;
NA

Metatranscriptome
sequencing of
bronchoalveolar lavage
fluid samples

Relative to healthy
controls, sequenced
bronchoalveolar lavage
fluid samples from
patients with COVID-19
were similar to those
with
community-acquired
pneumonia, and were
either dominated by
pathogens or displayed
elevated levels of oral
and upper respiratory
commensal bacteria

[41]

(continued on next page)
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Table 1. (continued)

Study summary Sample characteristics Samples and microbial
analysis

Key findings Refs

Groups Sample
size

Female/male Reported age in
years

Examined gut microbial
features of hospitalised
patients with COVID-19
or H1N1

Patients with COVID-19;
patients with H1N1;
uninfected controls

30; 24;
30

13/17; 9/15;
13/17

55.0 (48.0–62.0)b;
48.5 (33.3–66.8)b;
53.5 (43.8–60.3)b

16S rRNA (V3-V4) gene
sequencing of faecal
samples

COVID-19 was
associated with
significantly reduced
bacterial α-diversity,
higher relative abundance
of opportunistic
pathogens
(e.g., Streptococcus,
Rothia, Veillonella, and
Actinomyces). Patients
with H1N1 displayed
lower diversity and differ-
ent overall microbial com-
position compared with
patients with COVID-19,
with seven microbial bio-
markers distinguishing the
two cohorts

[42]

Examined gut microbial
features of COVID-19
patients over the course
of hospitalisation

Patients with
COVID-19; patients
with non-COVID-19
pneumonia; uninfected
controls

15; 6;
15

8/7; 2/4; 6/9 55 (44–67.5)b;
50 (44–65)b;
48 (45–48)b

Shotgun metagenomic
sequencing of faecal
samples

COVID-19 was
associated with
significantly higher relative
abundance of
opportunistic pathogens
(including Clostridium
hathewayi, Actinomyces
viscosus, and
Bacteroides nordii) and
lower relative abundance
of commensal symbionts
(including Eubacterium,
Faecalibacterium
prausnitzii, Roseburia, and
Lachnospiraceae).
Changes in abundance of
of Bacteroides spp. over
the course of
hospitalisation were
inversely correlated with
SARS-CoV-2 load in
faecal samples. Several of
these bacteria (e.g.,
Bacteroides massiliensis,
Bacteroides dorei, and
Bacteroides
thetaiotaomicron) have
been linked with
downregulation of ACE2
in the murine gut, and
were inversely correlated
with SARS-CoV-2 load in
human faecal samples

[43]

Examined whether
COVID-19 alters nasal,
throat and gut microbial
features in children

Children with COVID-19;
uninfected controls

9; 14 NA; NA 7-139 months;
age-matched

16S rRNA (V4) gene
sequencing of faecal
samples, nasal swabs,
and throat swabs

Relative to healthy
controls, sustained
enrichment of
Pseudomonas veronii in
both respiratory and gut
microbiomes observed in
children with COVID-19,
with relative abundance of

[179]
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Table 1. (continued)

Study summary Sample characteristics Samples and microbial
analysis

Key findings Refs

Groups Sample
size

Female/male Reported age in
years

this taxon exceeding 20%
in most of the children
with COVID-19

Examined whether a
co-receptor of
SARS-CoV-2, heparan
sulfate, was sensitive to
modification via microbes

NA NA NA NA No direct measure of
microbial composition

In human cell cultures,
heparan sulfate was
highly sensitive to
modification by
Bacteroides species.
Specifically, Bacteroides
ovatus and Bacteroides
thetaiotaomicron could
catabolise cell-surface
heparan sulfate and block
SARS-CoV-2 from
binding to human lung
cells. Across two large
human microbiome data
sets, two of the
established risk factors for
COVID-19, older age and
male sex, were
associated with significant
reductions in microbes
capable of modifying
heparan sulfate

[49]

Examined whether gut
microbial features could
be predictive of blood
proteomic biomarkers of
severe COVID-19
disease

Patients with severe
COVID-19; patients
with non-severe
COVID-19; uninfected
controls

13; 18;
990

NA; NA;
668/322

NA; NA; 58.79
(±5.6)a

Quantitative proteomics
analysis of serum
samples; 16S rRNA
(V3-V4) gene sequencing
of fecal samples

Identified set of serum
proteomic inflammatory
markers capable of
predicting progression to
severe COVID-19, and
established that these
serum markers could in
turn be accurately
predicted by gut
microbiota composition.
These inflammatory
markers were positively
associated with the
genera Ruminococcus,
Blautia, and Lactobacillus,
and negatively associated
with the genera
Bacteroides and
Streptococcus and the
order Clostridiales

[47]

Investigated whether gut
microbial features are
linked to disease severity
in patients with COVID-19

Patients with
COVID-19; uninfected
controls

100; 78 47/53;
45/33

36.4 (±18.7)a;
45.5 (±13.3)a

Shotgun metagenomic
sequencing of faecal
samples

Gut microbiota
composition covaried with
disease severity and
dysfunctional immune
responses in patients with
COVID-19. Microbial
composition in recovered
patients remained altered
compared with individuals
not infected with
SARS-CoV-2

[46]

Analysed oropharyngeal
microbial features in

Patients with mild
COVID-19; patients with

36; 27;
66; 112;

24/12;
10/17;

50 (36.75–55.5)b;
57

Shotgun metagenomic
sequencing of

Significantly diminished
oropharyngeal microbial

[180]

(continued on next page)
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Table 1. (continued)

Study summary Sample characteristics Samples and microbial
analysis

Key findings Refs

Groups Sample
size

Female/male Reported age in
years

patients with mild,
moderate, and severe
COVID-19, in patients
with non-SARS-CoV-2
infections, and in healthy
controls

moderate COVID-19;
patients with severe
COVID-19; patients with
upper respiratory tract
infections; uninfected
controls

74 14/46;
75/37; 48/26

(46.25–72.75)b;
64
(53.25–72.75)b;
46 (31.0–57.0)b;
36 (29.75–53.25)b

oropharyngeal swabs diversity and high
dysbiosis in hospitalised
patients with severe
COVID-19, which was
further linked to a loss of
microbial genes and
metabolic pathways.
Random forest machine
learning revealed that
oropharyngeal microbiota
abundances of
Haemophilus or
Streptococcus spp. were
most important microbial
features for segregating
clinical outcomes in
patients hospitalised with
COVID-19

Investigated associations
between oropharyngeal
microbial features and
fatality in patients with
COVID-19

Patients with COVID-19;
uninfected controls

192; 95 78/114;
57/38

58 (49–68)b; 47
(33–61)b

Metatranscriptome
sequencing of longitudinal
oropharyngeal swabs.
Swabs were obtained on
days 1, 5, 10, 14, 21, and
28 after admission when
patient's condition
allowed

Abundance of
Streptococcus on
admission, particularly that
of Streptococcus
parasanguinis, was
identified as a strong
predictor of fatality
(39/192 cases of
COVID-19 were fatal)

[181]

Investigated changes in
gut microbial features
from acute COVID-19
through
postconvalescence

Patients with
COVID-19; uninfected
controls

30; 30 11/19;
11/19

53.5
(39.75–59)b;
53.5 (45.25–58)b

16S rRNA (V3-V4) gene
sequencing
of longitudinal faecal
samples, acquired during
acute phase of infection
(from onset of illness to
host clearing of virus),
convalescence (from
host clearing of virus to
2 weeks post discharge
from hospital), and
postconvalescence
(6 months post discharge
from hospital)

Significant differences in
gut microbial communities
between patients with
COVID-19 and uninfected
controls. Microbial
richness was lower
among patients with
COVID-19 than healthy
controls at all three time
points. Trend toward
increasing richness
following infection, but
richness remained
substantially lower even
6 months after host had
cleared the virus

[45]

Compared throat and gut
microbiomes of patients
with COVID-19 with
samples from uninfected
individuals obtained for an
earlier study; human
observations then
extended to vaccinated
and unvaccinated murine
models

Patients with
COVID-19; uninfected
controls

13; 5 7/6; NA 48 (15–85)b; NA Metagenomic and
metatranscriptomic
sequencing of throat
swabs and faecal
samples from patients
with COVID-19, and
intestinal and faecal
samples from infected
vaccinated or infected
unvaccinated mice

Gut bacterial diversity
lower in patients with
COVID-19 relative to
uninfected controls.
Relative to mild and
moderate cases of
COVID-19, severe
COVID-19 was
associated with increase
in abundance of
opportunistic pathogens
(e.g., Corynebacterium,
Enterococcus,
Campylobacter,
Citrobacter, Enterobacter)
and a loss of butyrate-

[44]
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Table 1. (continued)

Study summary Sample characteristics Samples and microbial
analysis

Key findings Refs

Groups Sample
size

Female/male Reported age in
years

producing gut bacteria
(e.g., Eubacterium and
species such as
Faecalibacterium
prausnitzii). Relative
abundances of both
Akkermansia muciniphila
and Odoribacter higher in
both patients with
COVID-19 and infected
unvaccinated mice related
to infected vaccinated
mice, with A. muciniphila
also being more tran-
scriptionally active in
infected unvaccinated
mice, suggesting these
taxa are associated with
disease processes. As a
result of antibiotic treat-
ment in several patients,
some bacterial changes
were difficult to attribute
to effects of SARS-CoV-2
versus concomitant
antibiotic exposure

Abbreviations: NA, not available
aAge presented as mean (±S.D.).
bAge presented as median (interquartile range).
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Impaired gut barrier functionmay also exacerbate inflammation in both autoimmune diseases [72]
and COVID-19 [73]. While the gut microbiome in most healthy individuals facilitates immune
homeostasis, compositional imbalances induced by host-driven or environmental factors can
affect the integrity and selective permeability of the intestinal barrier, with implications for inflam-
mation [74] and cytokine storms [75]. Elevated intestinal barrier permeability can permit translo-
cation of commensal and pathogenic microbes and their products into systemic circulation,
which may in turn trigger heightened systemic inflammatory reactions, increased tissue damage,
and ultimately chronic inflammation [76]. Unlike acute inflammatory responses, chronic inflamma-
tion is characterised by a dense infiltration of primary immune cells (e.g., lymphocytes and
macrophages) in tissues. These cells produce proinflammatory cytokines, growth factors, and
enzymes (e.g., nitric oxide synthase and matrix metalloproteinase), which lead to sustained
Box 1. The gut microbiome and host age

Greater age is an important risk factor for outcome severity in SARS-CoV-2 infection [2,113–117]. Ageing also affects gut
microbial structure and function, an association thought to be connected to senescence of the host immune system
[118–120]. Covariation between host age, immunity, and microbial composition likely exerts joint effects on inflammatory
status and risk of disease. Although much human variation remains to be characterised, ageing appears to result in
generally lower α-diversity coupled with increased relative abundance of pathobionts [120–123]. A recent study investi-
gated the causal role of gut microbes in regulating ageing-related inflammation and immunopathology by transplanting
microbes from young or aged mice into young, germ-free recipients [124]. The germ-free recipients of microbial trans-
plants from aged mice displayed a range of immunological changes relative to recipients with young donors, including el-
evated inflammation and increased gut barrier permeability, as evidenced by increased translocation of microbial products
(e.g., lipopolysaccharide) into systemic circulation [124]. Taken together, these general patterns suggest that the
microbiome may contribute to elevated inflammation in older individuals, which may then act as a risk factor for more se-
vere outcomes upon SARS-CoV-2 infection.
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Box 2. The gut microbiome and host biological sex

Researchers have found sex differences in immune responses to SARS-CoV-2 [125]. Biological males are at increased risk
of experiencing more virulent SARS-CoV-2 infection and greater rates of mortality [126,187]. However, biological females
appear more likely to display persistent, post-infection symptoms, including fatigue, anosmia, dyspnoea, and cognitive
dysfunction [127–129]. These findings suggest that female sex does not confer general protection, but rather that biolog-
ical sex confers differential risks and protection for different SARS-CoV-2 infection courses. Furthermore, males and females
respond differently to vaccines [130], including vaccines against SARS-CoV-2. For instance, recent human findings suggest
that vaccination triggers greater levels of immunoglobulin G (IgG) in females relative to males [131].

Potential mechanisms

The X chromosome is enriched in genes regulating host immunity [132], and this chromosomal difference may be one of
the causes underlying sex differences in host responses to SARS-CoV-2 [126]. Another mechanism underlying observed
sex differences in COVID-19 outcomes may be the action of sex steroids. Sex steroids regulate the availability of both
ACE2 and TMPRSS2, the cell surface molecular features exploited by SARS-CoV-2 virions. For instance, it appears that
androgens (predominant in males) upregulate both ACE2 and TMPRSS2 [133–137], whereas oestrogens (predominant in
females) appear to downregulate these molecular targets [138–140]. Notably, castration of mice or androgen deprivation
in mouse and human cells reduced ACE2 and TMPRSS2 expression and protein levels, and androgen deprivation or anti-
androgen treatment diminished entry of SARS-CoV-2 into lung cells [133]. Correspondingly, human males undergoing
androgen-deprivation treatment for prostate cancer experience less severe COVID-19 outcomes [134], and blocking
androgenic signalling is associated with reduced ACE2 levels and reduced risk of severe COVID-19 outcomes [135].

Moreover, sex hormones also regulate host inflammatory tone. Intriguingly, androgens have been reported to exert mostly
anti-inflammatory effects [141], despite their association with more severe COVID-19 outcomes. By contrast, oestrogens
may exert either anti-inflammatory or proinflammatory effects, depending on the receptor [141]. In general, hormone levels
vary across individuals of a given biological sex. This variation may influence the extent to which host inflammation is a risk
factor, and may dampen associations between biological sex and COVID-19 outcomes, potentially explaining some
variation in susceptibility among individuals of a given biological sex.

Potential microbial involvement

There is some evidence of sex differences in the mammalian gut microbiome [118–120,142–148]. Crucially, the gut
microbiome regulates the bioavailability of sex steroids [107,144,149]. For example, germ-freemalemice showmarkedly lower
testosterone concentrations relative to typically colonised controls, suggesting that the presence of microbial populations in-
creases the quantity of testosterone in males [144]. Moreover, transferring gut microbes from adult males into preadolescent
female mice increases testosterone concentrations in recipients [144], adding inductive support to the causal role of the
microbiome in androgen regulation. Gut microbes also regulate oestradiol bioavailability. For instance, numerous gut bacterial
taxa secreteβ-glucuronidase, which deconjugates oestradiol that has undergone conjugation by the liver and excretion into the
gut lumen via bile. Deconjugation returns luminal oestradiol to its active form and enables re-entry into host circulation, thus in-
creasing the bioavailable oestrogen in the host [150–152]. Correspondingly, antibiotic administration increased quantities of
conjugated oestrogens excreted in host faeces in both males and females [153–155]. Moreover, gut microbes can increase
oestrogen activity via biotransformation of diet-derived phytoestrogens [156,157]. Overall, therefore, gut microbes play impor-
tant roles in sex steroid bioavailability, and sex steroids in turn regulate inflammation and the availability of the cell surface fea-
tures exploited by SARS-CoV-2.

Trends in Molecular Medicine
inflammation and persistent cycles of tissue damage and repair [77,78]. Chronic low-grade
inflammation may increase the risk of harmful hyperinflammation in COVID-19 [1], suggesting
links between gut microbiota-mediated changes in gut barrier integrity and the risk of cytokine
storms.

Microbial translocation into peripheral circulation, which occurs when gut barrier integrity is
compromised, has been described as a characteristic feature of systemic inflammation among
children with SARS-CoV-2 complicated by multisystem inflammatory syndrome (MIS-C) [79].
Compared with children with acute COVID-19 and either seropositive children or controls, pa-
tients with MIS-C displayed elevated serum lipopolysaccharide (LPS) [79]. Similarly, children
with acute COVID-19 showed higher serum LPS levels compared with seropositive individuals,
and seropositive individuals showed higher serum LPS levels compared with controls,
suggesting that the quantity of LPS entering circulation due to enhanced gut permeability is
correlated with the severity of COVID-19 infection [79]. These correlations could be driven, in
1124 Trends in Molecular Medicine, December 2021, Vol. 27, No. 12
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Clinician’s corner
Working to characterise the gut
microbiome in infected and non-
infected cohorts, and longitudinally in
individuals before, during, and after in-
fection, could shed light on the immuno-
logical dark matter underlying differential
susceptibility to SARS-CoV-2 infection
and COVID-19 outcomes. Obtaining
faecal samples from patients with
COVID-19 for downstream analysis of
gut microbial structure and function
is technically straightforward, non-
invasive, and relatively easy to add on
to current patient care and monitoring.
Analysis of these samples in conjunction
with patient records could help us
understand how the gut microbiome
contributes to individual and population-
level risk and resilience.

COVID-19 is primarily investigated as a
disease of the respiratory tract. How-
ever, given the widespread systemic
effects of the virus, it may be fruitful
for gastroenterologists to be further in-
volved in researching and treating
SARS-CoV-2 infection.

During treatment, clinicians could seek to
obtain information about ongoing and
previous antibiotic use by patients with
COVID-19. This will enable inferences
about the patient’s baseline level of gut
dysbiosis, and will help to contextualise
the results of any microbial profiling
studies carried out.

A recent meta-analysis suggests that
physicians prescribe antibiotics to pa-
tients with COVID-19 at rates substan-
tially higher than estimated rates of
bacterial co-infection in COVID-19
cases, suggesting some degree of
antibiotic overuse [176]. If antibiotics
are used to treat bacterial infections
associated with COVID-19, clinicians
should consider whether it may be
appropriate to replenish beneficial and
commensal microbes via the use of

Trends in Molecular Medicine
part, by interactions between LPS and the SARS-CoV-2 spike protein. The SARS-CoV-2 spike
protein has been shown to bind directly with LPS, affect the function of LPS-binding protein,
andmodulate the aggregation state of LPS, thereby boosting proinflammatory activity [80]. Com-
binations of LPS and the SARS-CoV-2 spike protein increased TLR4-mediated cytokine re-
sponses in human blood and peripheral blood mononuclear cells, an effect that was also
confirmed in vivo using NF-κB reporter mice [80]. Cytokine storms typically result in intestinal
damage [81,82], suggesting that impaired barrier function could anchor a vicious cycle of esca-
lating inflammation.

Apart from altering probabilities of hyperinflammation, variation in the baseline gutmicrobial profile and
the resilience of the gut microbiota in response to SARS-CoV-2 infection may also modulate inflam-
mation associated with metabolic diseases now known to increase the risk of severe COVID-19 out-
comes, including diabetes mellitus [1]. For instance, several studies found that antibiotic
administration reduced inflammation and insulin resistance in high-fat diet-fed mice or mice
genetically susceptible to metabolic disease [83,84]. Moreover, germ-free mice receiving microbial
transfers from insulin-resistant mice exhibited more inflammation than counterparts receiving micro-
bial transfers from controls [84]. These results demonstrate a causal role for gut microbes in the gen-
eration of an inflammatory phenotype that could then serve as a risk factor in SARS-CoV-2 infection.

Animal models to investigate microbial associations with SARS-CoV-2 outcomes
Associations between the microbiome and risk factors for COVID-19 such as host age and
biological sex (see Boxes 1 and 2, respectively) can be investigated experimentally using animal
models. Although mice are most commonly used in studies of both immune function and the
microbiome, the existing SARS-CoV-2 virus now in circulation does not readily infect mice due to
inefficient interactions with the mouse orthologue of ACE2 [85]. This limitation could be overcome
through the use of ACE2 transgenic mice [86,87], mice transduced with adenoviruses encoding
human ACE2 [88,89], or alternatively, by exposing common murine strains such as C57BL/6 or
Swiss Webster to the recently developed mouse-adapted SARS-CoV-2 MA virus [90]. Such tech-
niques have already delivered interesting results pertaining to interactions between the host
microbiome and SARS-CoV-2 infection. For instance, researchers have recently examined the
actions of SARS-CoV-2 in vaccinated and unvaccinated ACE2 transgenicmice [44]. Infected unvac-
cinated mice showed reduced gut bacterial diversity relative to vaccinated mice exposed to SARS-
CoV-2. Similar to changes previously observed in humanswith COVID-19 relative to healthy controls
(see Table 1), infected unvaccinated mice showed elevations in Odoribacter and A. muciniphila, as
well as reductions in Lactobacillus reuteri and Bacteroides uniformis, relative to vaccinated animals.

Primatemodels that are susceptible to SARS-CoV-2 infection, such asmacaques [91], will doubtless
also prove useful, given their closer phylogenetic relatedness and physiological similarity to humans.
For instance, investigators have recently examined themicrobial effects of SARS-CoV-2 infection in
rhesus macaques and cynomolgus macaques [91]. SARS-CoV-2 infection triggered changes and
Figure 1. Microbiome-associated inflammation profiles and potential reactions to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The
microbiome influences host inflammation through the regulation of host immunological processes (proinflammatory effects are indicated by the orange arrow, and anti-
inflammatory effects by the blue arrow). These include the production of host pro- and anti-inflammatory mediators, and the migration of bacteria or bacterial products,
such as lipopolysaccharide, through the gut lining. (A) A microbiome that contributes to a balanced or low-inflammation state (low-inflammation properties are indicated
by the blue systemic background and the pale-pink microbial background) with a relatively higher level of anti-inflammatory cytokines. (B) A microbiome that
contributes to a proinflammatory state (high-inflammation properties are indicated by the pale-orange systemic background and the darker-pink gut background), with
a relatively higher number of proinflammatory mediators, and potential translocation of bacterial products into systemic circulation (the proinflammatory state is
indicated by the relatively larger orange arrow). The bottom two images show the putative reactions of these systems to SARS-CoV-2 infection, denoted by the
presence of virions. (C) A relatively muted proinflammatory response to viral infection, represented by the pink systemic background behind the immune cells. (D) A
strong proinflammatory response to viral infection, represented by the red systemic background behind the immune cells.
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prebiotics or probiotics. In addition, if
the circumstances permit, it may be fea-
sible to use narrow-spectrum antibi-
otics, which could help to preserve
broader gut microbial integrity.

During treatment, clinicians could
consider assessing circulating markers
of compromised gut barrier function,
such as serum LPS. This will help
researchers understand the extent to
which gut permeability is increased in
COVID-19 and perhaps whether gut
permeability predicts disease severity.

Given that many therapeutic drugs
are chemically modified by the gut
microbiome and that such activities
can profoundly alter their effectiveness
[177,178], it would be valuable to
assess the relationships between the
gut microbiome and patient outcomes
in the context of current COVID-19 treat-
ments. Advancing such knowledge
could ultimately enable clinicians to one
day use the microbiome as a diagnostic
tool to contribute to decisions about the
best course of treatment.
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ecological perturbations in the host gut microbiome that persisted over the course of the infection.
The abundances of several bacterial taxa were found to be correlated with infection-related param-
eters, including nasal and rectal viral loads, C-reactive protein levels, and circulating levels of several
proinflammatory cytokines. The concentrations of several SCFAs were observed to decline in
faeces during infection, although it remains unclear whether this reduction was attributable to
reduced bacterially mediated SCFA production or increased SCFA utilisation by host cells [91].

Animal models can similarly be used to examine microbial associations with host differential
susceptibility to SARS-CoV-2. For instance, consider the possibility that an aged microbiome
confers increased risk for severe infection. This could be tested via experimental colonisation
studies in gnotobiotic mice susceptible to SARS-CoV-2 or treated with the mouse-adapted
SARS-CoV-2 MA virus [90]. Germ-free animals could be colonised with faecal microbial commu-
nities from young and old mice, or young and old humans, and then be exposed to the virus. If
harbouring an agedmicrobiome is a risk factor for COVID-19, then wemight expect faecal micro-
biota transplantation to trigger more severe symptoms in recipients of microbiotas from older
individuals, relative to recipients with younger donors. In general, this type of research demon-
strates that animal models may be able to generate useful and fine-grained information that
can inform our understanding of the role of the microbiome in COVID-19.

Impacts of differential susceptibility to SARS-CoV-2 on pandemic modelling
It has become increasingly apparent that the enormous heterogeneity of exposure, susceptibility,
virulence, transmission, and vaccination status play key roles in shaping the time course of the
pandemic and variations between individuals, groups, communities, and countries [6,7,92–94].
Accounting for this heterogeneity suggests that the requisite levels of herd immunity may be
lower than assumed under conventional models, which often do not consider heterogeneity
and differential susceptibility in detail. Differential susceptibility, although biologically realistic, is
often difficult to incorporate into epidemiological models. To explain quantitative dissociations be-
tween the incidence of infection, time-varying infection:fatality ratios, and fluctuations in seroprev-
alence, it is necessary to model populations as mixtures of individuals who are: (i) more or less
exposed to the virus, due to vaccination status, geospatial factors, population density,
population-level behavioural factors (such as mask-wearing, hand washing, self-isolation, time
spent outdoors, and vaccination), and cultural factors (such as the value placed on personal
space); (ii) differentially capable of transmitting the virus, due to differences in vaccination status
Box 3. The microbiome, host genetics, and COVID-19

Immunogenetic variation has been associated with variation in COVID-19 susceptibility and outcomes [158–160]. Host genes
also contribute to variation in gut microbial composition, as evidenced by twin studies [161–164], genome-wide asso-
ciation studies in humans [165–169], and large-scale, long-term studies in nonhuman primates [170]. Although global genetic
factors explain less variation than do environmental factors [171], specific gene variants have been shown to meaningfully affect
gut microbial community composition, including LCT, VDR, NOD2, ABO, and FUT2 [161,165,169,172]. Researchers have also
been interested in the interactions between host genes and the gut microbiome in the context of disease [161]. Although asso-
ciations are generally small andmanymechanisms remain unclear, genome–microbiome–disease interactions raise the possibility
that, in addition to modulating COVID-19 resistance and susceptibility through the immune system, host genes may also affect
disease resistance and susceptibility through effects on the gut microbiome.

A further interesting immunogenetic connection of potential relevance to COVID-19 outcomes is the blood group of the
host. Importantly, natural blood group antibodies can recognise members of the gut microbiome [173] and also shape
gut microbial composition and ecology [172,174]. These associations have been studied in the context of inflammatory
conditions, such as inflammatory bowel disease [172], but have not yet been extended to COVID-19. This connection
is particularly relevant because blood groups have also been associated with COVID-19 outcomes, with O and Rh– blood
groups appearing to confer protective effects in the context of SARS-CoV-2 infection [175]. These findings provide a
further potential link between the gut microbiota and COVID-19 outcomes.
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or viral shedding [95–97]; and (iii) more or less susceptible to virulent infection, due to vaccination
status, potential cross-reactive immunity with other β-coronaviruses, individual differences in the
expression of ACE2 or TMPRSS2 [7,98–100], or other host factors that may constitute immuno-
logical dark matter.

In this context of differential susceptibility, the gut microbiome is a host factor that varies within
and between individuals and, as described here, is broadly related to several major risk factors
for severe COVID-19. Furthermore, variations in host genetics may also contribute to
microbiome-associated differential susceptibility and protection, although these immunogenetic
relationships await further study (Box 3). Our suggestion is not that the microbiome is
responsible for most of the variance associated with SARS-CoV-2 infection, but rather that the
microbiome, being meaningfully correlated with several host factors relating to host immunity,
may shed light on some of the immunological dark matter underlying differential susceptibility.
Key Figure

Microbial contributions to differential susceptibility and immunological dark matter
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Figure 2. Viral transmission in a population in which individuals are infected (red silhouettes), susceptible (grey silhouettes), or resistant (blue silhouettes) to severe acute
respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. While differential susceptibility may be mediated by many factors, this figure emphasises hypothetical effects of
the gut microbiome. The microbiome may enhance susceptibility (red microbiomes) or resilience (blue microbiomes), or may be unrelated to risk or resilience (yellow
microbiomes). Thus, grey individuals with red microbiomes represent the subpopulation for which the microbiome is a hypothetical source of risk for SARS-CoV-2 infection.
Grey individuals with yellow microbiomes are susceptible to SARS-CoV-2 for reasons unrelated to the microbiome. Blue individuals with blue microbiomes represent the
subpopulation for which the microbiome is the hypothetical source of resistance to SARS-CoV-2. Blue individuals with yellow microbiomes represent the subpopulation that
resists or is less susceptible to SARS-CoV-2 for reasons unrelated to the microbiome. Infected individuals (red silhouettes) have microbiomes that carry a signature of the
infection (black microbiomes). Differential susceptibility increases the variability in the propensity of individuals to spread the virus, a phenomenon known as ‘overdispersion’ in
epidemiological modelling (put simply: ‘the few infect the many’). Overdispersion can exert profound effects on viral spread at the population level, making it a potentially
important source of immunological dark matter. Such dynamics are an important explanation for why an epidemic does not unfold as expected, under often implausible
assumptions of homogenous and well-mixed populations.
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Outstanding questions
To what extent does baseline gut
microbiome profile modulate the risks of
SARS-CoV-2 infection and COVID-19
severity given infection?

Given abundant virus × bacteria
interactions within the gut microbiome
[182], do SARS-CoV-2 virions interact
directly with host microbes? If so,
how do these interactions influence
local microbial ecology and disease
severity?

Researchers across biological and
medical science have raised concerns
about the overuse of antibiotics and the
rise of antibiotic resistance. Notably, a
recent meta-analysis suggests that
patients with COVID-19 are prescribed
antibiotics at rates much higher than
warranted for bacterial co-infection
[176]. Could the overuse of antibiotics
be affecting gut microbial composition
in ways that affect host immune function
and the response to SARS-CoV-2
virions?

Are the observed increases in gut
permeability with worsening COVID-19
causes or outcomes of symptom
exacerbation?

Can prebiotics or probiotics be used as
complementary or adjuvant methods in
the treatment of COVID-19? Notably,
the endogenous populations of at least
some probiotic candidates have been
associated with poorer COVID-19 out-
comes. For instance, A. muciniphila, a
probiotic under investigation for its met-
abolic benefits [184,185], has also been
found to be elevated in SARS-CoV-2 in-
fection in human and rodent studies
[44]. As such, the use of probiotics
should be carefully considered
against evidence of microbial changes
occuring in COVID-19.

How can the human challenge
studies for COVID-19 that are now
being initiated be used to elucidate
gut microbiome-mediated risk and
resilience? For example, patient moni-
toring in these trials could be modified
to include assessment of gut microbial
composition before, during, and after
the period of infection.

Trends in Molecular Medicine
Including information about the gut microbiome, and its impact on host immunity, into quantitative
assessments of variations in risk and resilience, as summarised in Figure 2 (Key figure), could contrib-
ute nuance to the development of public health interventions and messaging. For example, the iden-
tification of specific bacterial taxa associatedwith host susceptibility, combinedwith the application of
rapid and low-cost methods for profiling gut microbiomes, such as taxon-specific quantitative
polymerase chain reaction (qPCR) targeting the 16S rRNA gene, could enable pre-emptive
population surveys or individual tests capable of estimating relative risk. These efforts could be
furthered through large-scale prospective studies to assess relationships betweenmicrobiome com-
position and infection outcomes. In addition to collectingmicrobiome data, prospective studies could
leverage data pertaining to host inflammatory status, sex, age, and metabolic and cardiovascular
health, each of which is known to interact with the microbiome. Notably, because gut microbial
interactions with inflammation and host factors such as age and sex may influence susceptibility
and outcomes with respect to multiple viral pathogens, these efforts may yield insights
relevant to SARS-CoV-2, other circulating viruses, and viruses that may become problematic
in the future.

It is also generally thought that differential susceptibility and transmission reduce effective herd
immunity thresholds [7,101]. Differential susceptibility to SARS-CoV-2 may arise from diverse
sources. For example, there is interest in the role of variations in vitamin D levels in COVID-19
risk [102]. If differences in the gut microbiome also contribute to differential susceptibility, then
consistent population-level differences in the gut microbiome (such as those seen between
industrialised and non-industrialised populations and across lifestyle gradients [103–105])
may meaningfully contribute to modelling population-level disease risks and herd
immunity thresholds.

Of course, these situations are highly simplified. There is no single ‘resilient’microbiome. There is
also no strictly ‘neutral’ microbiome. Furthermore, the sources of differential susceptibility
(e.g., vaccination status, prior immunity, comorbidities, age, sex, and microbial composition) do
not confer their effects in isolation. Rather, they interact with one another to generate complex
profiles of risk and resilience. Moreover, individual resilience and symptom severity are dynamic
and continuous, as opposed to categorical, and are known to depend on the extent and duration
of exposure to the virus (i.e., contact rates and mean periods of infectiousness). Accordingly,
susceptible individuals may avoid infection, and resistant or less-susceptible individuals may
still contract the virus, although the latter would be expected to suffer fewer symptoms, recover
more quickly, and be less infectious due to faster recovery, lower viral loads, or lower viral shed-
ding rates.

Concluding remarks
We have highlighted how explicit considerations of the gut microbiome may elucidate aspects of
COVID-19 risk and resilience. To our knowledge, the microbiome is not presently systematically
considered in COVID-19 research, despite its potential to affect infection response and supple-
ment diseasemanagement. In this vein, there remain numerous important issues in need of inves-
tigation (see Outstanding questions). There are several areas in which research can readily be
conducted. For example, faecal samples can be acquired easily and non-invasively and used
to assess interactions between the gut microbiome, COVID-19 risk factors, therapeutic interven-
tions, and disease outcomes. Moreover, as discussed earlier, there are now several animal
models being used to study COVID-19 [86–91,106], and these too provide ready sources of
microbial data if researchers choose to collect faecal samples and profile the associatedmicrobial
communities through sequencing or targeted qPCR. Experiments with gnotobiotic animal
models may prove especially useful because these offer unique opportunities to isolate causal
Trends in Molecular Medicine, December 2021, Vol. 27, No. 12 1129
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effects of the gut microbiome on host phenotypes. There are also several areas in which clinicians
may benefit and to which they could contribute (see Clinician’s corner).

We note that many inconsistencies and contradictions exist across studies reporting interactions
between the gut microbiome and human health [108,109,183,186]. Part of the difficulty arises
from day-to-day gut microbial plasticity in response to variable environmental factors such as diet
[110,111], and the high degree of interindividual gut microbial dissimilarity across humans, which
often necessitates longitudinal sampling or very large data sets to derive reliable patterns [112].
The COVID-19 pandemic provides precisely such an opportunity on a global scale. Accordingly,
we recommend routine collection and analysis of faecal samples alongside standard patient data.
We also emphasise the need for prospective approaches characterising longitudinal microbiome
change as individuals progress from healthy to infected to recovered, aswell as before and after vac-
cination. Overall, investigating the microbiome in the context of COVID-19 could deepen our under-
standing of the current pandemic, facilitate responses to future outbreaks, and advance our basic
appreciation of the microbiome as a fundamental component, and regulator, of host immunity.
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