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healthy community-dwelling older adults, whose cor-
tical thickness was measured via MRI. HbO2 levels 
in the PFC, measured via fNIRS, were assessed dur-
ing active walking under STW and DTW conditions. 
Statistical analyses were adjusted for demographics 
and behavioral performance. Linear mixed-effects 
models revealed that the increase in HbO2 from STW 
to DTW was moderated by cortical thickness in sev-
eral regions. Specifically, thinner cortex in specific 
regions of the frontal, parietal, temporal, and occipi-
tal lobes, cingulate cortex, and insula was associated 
with greater increases in HbO2 levels from single to 
dual-task walking. In conclusion, participants with 
thinner cortex in regions implicated in higher order 
control of walking employed greater neural resources, 
as measured by increased HbO2, in the PFC during 
DTW, without demonstrating benefits to behavioral 
performance. To our knowledge, this is the first study 
to examine cortical thickness as a marker of neural 
inefficiency during active walking.

Keywords  Walking · Prefrontal cortex · Cortical 
thickness · Dual task

Introduction

Gait, a robust measure of health [1, 2], relies on higher 
order mechanisms of cognitive control and cortical 
resources [3, 4]. Dual-task designs have been used to 
examine executive control and allocation of cognitive 

Abstract  Dual tasking, a defined facet of execu-
tive control processes, is subserved, in part, by the 
prefrontal cortex (PFC). Previous functional near-
infrared spectroscopy (fNIRS) studies revealed ele-
vated PFC oxygenated hemoglobin (HbO2) under 
Dual-Task-Walk (DTW) compared to Single-Task 
Walk (STW) conditions. Based on the concept of 
neural inefficiency (i.e., greater activation coupled 
with similar or worse performance), we hypothesized 
that decreased cortical thickness across multiple 
brain regions would be associated with greater HbO2 
increases from STW to DTW. Participants were 55 
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resources to competing task demands during walk-
ing [5–10]. Executive control is adversely affected by 
aging [11] and poor dual-task-walking (DTW) perfor-
mance has been associated with falls [12], cognitive 
decline [13], frailty, disability, and mortality [14] in 
older adults. Functional near-infrared spectroscopy 
(fNIRS) [15, 16], a noninvasive technique that uti-
lizes near-infrared light to visualize brain activation 
by quantifying oxygenated (HbO2) and deoxygenated 
hemoglobin (Hb), has been used to examine brain 
activation patterns associated with executive control 
in DTW [17–19]. The prefrontal cortex is implicated 
in cortical control of attention and executive func-
tions including DTW [20], and many studies [21–23] 
including a recent meta-analysis [24] have shown 
that fNIRS-derived oxygenation levels in the PFC 
increase from single-task walking (STW) to DTW, 
due to the increased resources required in the latter 
condition. Other studies have measured whole brain 
activity during DTW [25, 26] and used other neuro-
imaging techniques including EEG to demonstrate 
the neural costs of DTW [27–29].

The examination of neural mechanisms of gait 
have been limited as typical neuroimaging methods 
are not conducive to active walking [30]. Neverthe-
less, many studies have demonstrated relationships 
between brain morphology and gait characteristics 
including pace, rhythm, and variability [31]. Spe-
cifically, reduced white matter integrity and reduced 
gray matter volume is associated with worse gait 
performance in global and specific regions includ-
ing the frontal lobes, basal ganglia, hippocampus, 
and cerebellum. Additional research has demon-
strated overlapping and distinct neural underpinnings 
of gait under STW versus DTW conditions [32, 33]. 
Atrophy of gray matter, which occurs throughout the 
brain during healthy aging and prominently in the 
prefrontal cortex [34–37], may drive, or at least be 
related to, functional changes in executive function-
ing [38] and locomotion [30, 31, 33] in older adults. 
The neural inefficiency hypothesis suggests that more 
neural resources are used when those needed for a 
task are limited [39–41]. Following this hypothesis, 
the moderation effect of structural integrity of the 
brain on activation levels during walking has been 
examined (i.e., whether task-related brain activation 
differs based on brain integrity [42, 43]). Reduced 
whole brain white matter integrity [42] and reduced 
frontal gray matter volume [43] in older adults were 

associated with greater increases in activation dur-
ing DTW compared to STW without an associated 
improvement in performance. Previous research has 
found that gray matter volume is more closely related 
to surface area than to thickness of gray matter, genet-
ically and phenotypically distinct measures [44], and 
that analyses of cortical thickness may provide a more 
sensitive measure of age-related brain changes than 
analyses of gray matter volumetrics [44, 45]. To our 
knowledge, cortical thickness has not been examined 
in relation to prefrontal cortex activation during walk-
ing in healthy older adults or in any other population.

The current study aimed to examine the moderat-
ing effect of regional cortical thickness on the change 
in HbO2 levels between STW and DTW. To capture 
neural efficiency, all analyses were adjusted for walk-
ing velocity and cognitive task performance during 
DTW. We predicted that decreased cortical thickness, 
in brain regions implicated in higher order control 
of walking, would be associated with a greater STW 
to DTW increase in the prefrontal cortex HbO2 lev-
els. Based on previous findings, we predicted that 
this would be seen especially in the prefrontal cor-
tex; however, additional regions of interest have 
been implicated in volume-based analyses, including 
parts of the parietal, temporal, and occipital lobes 
[43]. As gray matter volume and thickness are dis-
tinct, we aimed to quantify the relationship between 
cortical thickness and the STW to DTW change in 
HbO2. Considering that DTW relies on higher order 
executive control in addition to sensory and motor 
activities, we included the entire cortex to examine 
areas in which cortical thinning may be functionally 
influential.

Methods

Participants

Recruitment

Participants were recruited from a cohort study of com-
munity-dwelling older adults, entitled “Central Control 
of Mobility in Aging (CCMA).” The procedures for 
the CCMA study have been described previously [8]. 
Adults aged 65 years or older were identified as poten-
tial participants from population lists in the Westch-
ester county area of New York, USA. These potential 
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participants were mailed a letter, and then contacted 
by telephone. Verbal consent was obtained, and initial 
eligibility was determined via telephone interviews, 
which included assessment of medical history, physi-
cal functioning, and screening for dementia [46, 47]. 
After this initial assessment, eligible individuals were 
invited to participate in two annual in-person visits, 
which included psychological, mobility, and neuropsy-
chological assessments. The mobility and dual-task 
protocol, along with cognitive and psychological data 
collection, were completed during two visits. The MRI 
was completed during a separate visit with a subset of 
the cohort study. Participants in this subset were tested 
between 2011 and 2016 and had completed the MRI 
within one year of the dual-task walking protocol. This 
study was approved by the Institutional Review Board 
of Albert Einstein College of Medicine (IRB number 
2010–224). Written informed consent was obtained 
from each participant at the beginning of the first study 
visit. Participants were compensated for each study 
visit and transportation costs were covered. The work 
described in this manuscript was carried out in accord-
ance with the Declaration of Helsinki.

Inclusion and exclusion criteria

Adults over the age of 65 were eligible for the study. 
Exclusion criteria were inability to speak English, ina-
bility to ambulate, dementia, significant impairment in 
vision or hearing, history of a neurological or psychi-
atric disorder, current medical procedures that would 
hinder ambulation, and current hemodialysis treatment. 
Dementia status was diagnosed via multidisciplinary 
consensus conference based on neuropsychological 
test scores and self-reported measures of psychological 
and physical functioning [48]. The subset of the study 
cohort who completed the MRI protocol included 73 
right-handed older adults who were not contraindicated 
for MRI. Of the 73 participants, a total of 55 who had 
complete data available for the walking measures were 
included in the current study.

Measures

Dual‑task walking protocol

The walking paradigm consisted of three task condi-
tions: a single-task walk (STW), a single-task alpha 

(STA), and a dual-task walk (DTW). The STW con-
dition consisted of walking three continuous coun-
terclockwise loops on a 4 × 20-ft electronic walkway, 
composed of six straight walks connected by five left-
handed turns at each end of the walkway. Participants 
were instructed to walk at their normal pace. Dura-
tion of the walking tasks varied between participants 
as participants completed the three loops at various 
velocities. The STA condition consisted of standing 
in place while reciting alternate letters of the alpha-
bet out loud (B, D, F, etc.). The DTW condition 
required participants to execute the two single tasks 
concomitantly. Specifically, participants were asked 
to walk the same three consecutive loops around the 
walkway while reciting alternate letters of the alpha-
bet out loud. Participants were instructed to pay equal 
attention to both tasks, to minimize effects of task 
prioritization. Order of the three tasks was counter-
balanced using a Latin square design across partici-
pants to limit order effects. These methods have been 
described and validated previously [7, 8, 22, 49].

Quantitative gait assessment

The participants’ gait was measured by an elec-
tronic walkway (Zenometrics, LLC, Peekskill, NY) 
throughout the DTW protocol. This walkway was 
connected to ProKinetics Movement Analysis Soft-
ware (PKMAS) system, which measured footfalls and 
allows for extraction of gait characteristics including 
stride velocity and total time walking [50]. Split-half 
intra-class correlations of the quantitative gait meas-
urements in both STW and DTW conditions were 
greater than 0.95 revealing excellent internal consist-
ency [22].

Functional near‑infrared spectroscopy (fNIRS)

As described and validated previously [16, 22], oxy-
genated hemoglobin levels (HbO2) were measured in 
the prefrontal cortex [51] via the fNIRS Imager 1000 
(fNIR Devices, LLC, Potomac, MD) during all tasks 
of the DTW protocol. The fNIRS device measures 
oxygenated (HbO2) and deoxygenated hemoglobin 
(Hb) through a sensor that covers the forehead and 
contains four LED light sources and ten photorecep-
tors 2.5  cm apart, resulting in 16 channels of data 
output, at a 2-Hz sampling rate. The placement of the 
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sensor was based on landmarks from the international 
10–20 system [52]. HbO2 was utilized for this study 
as the measure of neural activation in the PFC instead 
of Hb due to its better reliability and sensitivity to 
locomotion-related cerebral activity [53, 54].

Preprocessing methods and extraction of hemo-
dynamic response have been described previously 
[55]. The preprocessing of fNIRS data included vis-
ual inspection to identify and eliminate artifacts of 
saturation, dark current conditions, or extreme noise 
for all 16 channels. Each light sensor emitted peak 
wavelengths of 730, 805, and 850  nm. Removal of 
motion artifacts was applied to the 730 and 850 nm 
wavelength measurements with the Daubechies 5 
(db5) wavelet for spiky noise suppression [56]. The 
modified Beer–Lambert law was utilized to calculate 
changes in HbO2 with age and wavelength adjusted 
differential pathlength factor (DPF) and wavelength 
and chromophore dependent molar extinction coeffi-
cients (ε) by Prahl, as described previously [55, 57, 
58]. Spline filtering [59] followed by a finite impulse 
response low-pass filter with cut-off frequency at 
0.08  Hz was applied to remove baseline shifts and 
physiological artifacts.

The data points were extracted separately for each 
task and channel. Task-synchronized fNIRS signal 
extraction, in conjunction with PKMAS data, was 
conducted with E-Prime 2.0 software (Psychology 
Software Tools, Inc.). Task-related changes were 
compared to a baseline measure of HbO2, collected 
while the participants were instructed to stand still, 
counting silently, with a fixed gaze [21, 22]. Excel-
lent internal consistency of HbO2 for the STW and 
DTW conditions was achieved (split-half intra-class 
correlations ≥ 0.830) [22].

Magnetic resonance imaging

Magnetic resonance imaging was performed in a 
3  T Phillips scanner (Achieva TX; Philips Medi-
cal Systems, Best, The Netherlands) at the Gruss 
Magnetic Resonance Research Center of Albert 
Einstein College of Medicine (Bronx, NY). The 
scanner was equipped with a 32-channel head coil. 
Analyses were extracted from a T1-weighted image 
(MPRAGE − TE/TR/TI = 4.6/9.8/900  ms, voxel size 
1 mm isotropic, SENSE acceleration factor 2.6).

The FreeSurfer software package (http://​surfer.​
nmr.​mgh.​harva​rd.​edu/) was used to extract the 

cortical thickness measures and cortical segmen-
tation from all study participants [60]. Details 
of this process have been described previously 
[61]. Briefly, preprocessing included brain 
extraction, identification of gray and white mat-
ter boundaries, and automatic volume segmenta-
tion [62] of cortical regions based on a computed 
average space and surface-based smoothing at 
FWHM = 5  mm. FreeSurfer’s cortical parcella-
tion tools identified 68 regions, with 34 in each 
hemisphere [63]. Cortical parcellation was visu-
ally inspected for accuracy by overlaying the seg-
mentation on each subject’s T1 image in FSLeyes 
[64–66]. The cortical thickness values for each 
region were mean centered prior to input into the 
statistical model.

Covariates

The participants’ age, sex, global cognitive func-
tioning (Repeatable Battery for the Assessment of 
Neuropsychological Status; RBANS [67]), Global 
Health Score, and correct letter generation perfor-
mance and walking velocity under the DTW con-
dition were entered into the statistical models as 
covariates of interest. We adjusted for these fac-
tors as they might impact dual-task performance, 
cognition, and neuroanatomy, and for behavior to 
evaluate inefficiency. Age, sex, and Global Health 
Score were self-reported by participants. Global 
Health Score (GHS) was a summary score taken 
via interview of self-reported dichotomous rat-
ings, indicating presence or absence of ten health 
conditions: diabetes, chronic heart failure, arthri-
tis, hypertension, depression, stroke, Parkinson’s 
disease, chronic obstructive lung disease, angina, 
and myocardial infarction [48]. Global cognitive 
function was measured with the total score of the 
RBANS. To assess cognitive performance under 
the DTW condition, the rate of correct letter gen-
eration was used in order to account for the varied 
time taken by the participants to complete three 
loops on the walkway. Rate was calculated by 
dividing the total number of correct letters gener-
ated by the total time walked, extracted from the 
PKMAS system. As described earlier, stride veloc-
ity during the DTW condition was assessed via the 
PKMAS system.
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Statistical analysis

An initial linear mixed model, ignoring the effect 
of cortical thickness, was run to confirm the main 
effect of task on HbO2. This model included data 
from all 16 channels and accounted for correlations 
across repeated measures within the dual-task para-
digm. The outcome was HbO2, with channel and task 
entered as repeated measures fixed factors. While 
channels could be treated as random or fixed, we did 
not find differences in the outcome based on how the 
channel variable was treated. The analysis adjusted 
for all covariates noted above.

Sixty-eight regional linear mixed models were 
carried out across the entire cortex to examine 
the moderating effect of cortical thickness on 
the change in HbO2 from STW to DTW. In these 
models, task and channels served as fixed effects 
repeated measures, and DTW was the reference 
condition. The moderating effect of cortical thick-
ness, entered as a covariate, on the change in 
fNIRS-derived HbO2 across task condition was 
assessed via two-way interactions of regional brain 
thickness by task. These models were also adjusted 
for the covariates mentioned above. False discov-
ery rate was used to correct for multiple compari-
sons [68]. All analyses were performed utilizing 
SPSS statistical software (version 26; SPSS, Inc., 
Chicago, IL).

Results

The final study sample included a total of 55 par-
ticipants (mean age = 74.84 ± 4.97, 27 females 
(49.1%)). Participants were excluded for the fol-
lowing reasons: poor quality fNIRS data (n = 7), 
time between MRI and fNIRS data greater than 
1  year (n = 8), and outliers from data explora-
tion (n = 3; e.g., unusually high variance in HbO2 
measurements or gait velocity). Participants were 
relatively healthy, as indicated by a low dis-
ease comorbidity score (Global Health Score 
mean = 1.36 ± 1.08), and demonstrated aver-
age overall cognitive function measured by total 
RBANS score (mean = 92.71 ± 11.28). Complete 
descriptive statistics of the sample are shown in 
Table 1. Descriptive statistics of cortical thickness 

values by region derived from Freesurfer’s cortical 
parcellation tools are displayed in Table 2.

The effect of task on HbO2 was confirmed, 
showing consistency with previous reports, that 
HbO2 levels increased from single- to dual-task 
walking (estimate =  − 0.613, p < 0.001, 95% CI 
[− 0.703, − 0.523]). None of the covariates demon-
strated a significant effect on HbO2.

After confirming the main effect of task, full mod-
els including the main and moderating effects of 
cortical thickness were run for each cortical region. 
Sixty-eight models were run in SPSS, corresponding 
to the 68 regions extracted by FreeSurfer. After false 
discovery rate (FDR) correction, 25 models remained 
significant based on interaction estimates (p < 0.019). 
Tables 3 and 4 show the main and moderating effects 
of cortical thickness on task that remained significant. 
The regions that significantly moderated the STW 
to DTW change in HbO2 were, by the cortical lobe, 
as follows: frontal lobe—left rostral middle frontal, 
left pars orbitalis, right caudal middle frontal, right 
precentral, and right paracentral; parietal lobe—left 
inferior parietal and left precuneus; temporal lobe—
right superior temporal, right middle temporal, right 
inferior temporal, right entorhinal, right temporal 
pole, and left fusiform; occipital lobe—bilateral lat-
eral occipital, bilateral lingual, left cuneus, and bilat-
eral pericalcarine gyrus; cingulate—left posterior, 
left isthmus, right rostral anterior, and right caudal 

Table 1   Descriptive statistics of the study sample (N = 55)

GHS Global Health Score, RBANS Repeatable Battery for the 
Assessment of Neuropsychological Status, STW single-task 
walk, DTW dual-task walk
a N = 53 for stride velocity measures

Variable M SD Range

Age (years) 74.84 4.97 65–88
Sex (% female) 49.1
Education (years) 15.49 3.34 7–20
Global Health Score 1.36 1.08 0–4
Body mass index 27.50 6.40 18.40–49.90
RBANS total score 92.71 11.28 65–116
STW velocity (cm/s)a 72.46 15.43 44.18–112.38
DTW velocity (cm/s)a 62.53 13.55 36.51–88.19
Correct letter generation rate 0.59 0.19 0.02–0.98
HbO2 STW (µM) 0.29 0.94  − 4.68 to 5.24
HbO2 DTW (µM) 0.90 1.25  − 5.61 to 7.34
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anterior cingulate; insula—left insula. Estimates of 
these effects are displayed in Table 3 for the left hem-
isphere and Table 4 for the right hemisphere. These 
regions are highlighted in color in Fig. 1 for visuali-
zation purposes.

In most cortical regions, the main effect of 
thickness was negative, indicating that increased 

HbO2 levels in the prefrontal cortex were associ-
ated with less thickness. The interaction effects 
of thickness by task were mostly positive, indicat-
ing that HbO2 levels increased more from STW to 
DTW when individuals had less cortical thickness 
in those regions. A few regions, however, did not 
follow these patterns. In the models including the 

Table 2   Cortical thickness of the study sample (N = 55)

a Cortical parcellation based on the Desikan–Killiany atlas[63]

Left hemisphere Right hemisphere

Regiona M SD Range M SD Range

Banks of the superior temporal 
sulcus

2.361 0.161 2.028–2.732 2.365 0.145 1.980–2.713

Caudal anterior cingulate 2.591 0.262 2.109–3.298 2.478 0.231 2.012–3.158
Caudal middle frontal 2.328 0.142 1.982–2.588 2.327 0.138 2.003–2.574
Cuneus 1.845 0.127 1.578–2.157 1.845 0.124 1.566–2.116
Entorhinal 2.842 0.357 1.925–3.573 2.900 0.355 1.707–3.615
Frontal Pole 2.504 0.306 1.967–3.387 2.519 0.267 2.037–3.301
Fusiform 2.484 0.112 2.245–2.785 2.418 0.116 2.159–2.635
Inferior parietal 2.311 0.117 1.974–2.540 2.270 0.104 2.054–2.550
Inferior temporal 2.479 0.104 2.259–2.664 2.386 0.102 2.158–2.645
Insula 2.739 0.165 2.360–3.131 2.715 0.149 2.373–3.053
Isthmus cingulate 2.194 0.186 1.776–2.685 2.224 0.170 1.870–2.576
Lateral occipital 2.040 0.133 1.675–2.330 2.047 0.114 1.798–2.253
Lateral orbitofrontal 2.420 0.141 2.188–2.807 2.381 0.128 2.110–2.619
Lingual 1.928 0.104 1.703–2.143 1.959 0.112 1.591–2.159
Medial orbitofrontal 2.323 0.175 2.004–3.004 2.402 0.171 2.120–3.026
Middle temporal 2.597 0.133 2.281–2.996 2.560 0.133 2.289–2.835
Paracentral 2.299 0.132 2.032–2.627 2.311 0.125 2.043–2.556
Parahippocampal 2.431 0.251 1.904–2.828 2.384 0.163 2.008–2.725
Pars opercularis 2.381 0.118 2.099–2.746 2.375 0.132 2.080–2.692
Pars orbitalis 2.412 0.142 2.102–2.707 2.436 0.147 2.106–2.739
Pars triangularis 2.227 0.112 1.904–2.461 2.235 0.109 2.010–2.528
Pericalcarine 1.599 0.104 1.366–1.835 1.623 0.114 1.410–2.039
Postcentral 1.966 0.117 1.703–2.262 1.916 0.086 1.730–2.136
Posterior cingulate 2.314 0.168 1.863–2.676 2.319 0.144 2.088–2.789
Precentral 2.380 0.138 1.933–2.607 2.359 0.111 2.069–2.632
Precuneus 2.244 0.117 1.957–2.493 2.252 0.116 1.932–2.469
Rostral anterior cingulate 2.653 0.221 2.147–3.186 2.803 0.276 2.236–3.769
Rostral middle frontal 2.186 0.116 1.901–2.387 2.227 0.113 1.972–2.507
Superior frontal 2.433 0.127 2.076–2.717 2.468 0.124 2.189–2.693
Superior parietal 2.104 0.137 1.698–2.415 2.061 0.120 1.704–2.308
Superior temporal 2.502 0.147 2.185–2.789 2.483 0.135 2.197–2.788
Supramarginal 2.377 0.108 2.126–2.606 2.318 0.125 2.004–2.561
Temporal pole 3.097 0.301 2.076–3.735 3.132 0.308 2.483–3.711
Transverse temporal 2.306 0.220 1.824–2.826 2.270 0.236 1.761–2.727
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right caudal middle frontal,  right entorhinal, right 
inferior temporal, right middle temporal, and right 
temporal pole, the main effect of thickness was 
positive and the interaction of task by thickness 

was negative. These indicated that greater thick-
ness in those regions was associated  with  higher 
HbO2 levels overall and less increase in HbO2 lev-
els from STW to DTW.

Table 3   Linear-mixed-model estimates of effect of left hemisphere cortical thickness, task, and moderation effect of cortical thick-
ness-by-task on change in HbO2, adjusted, FDR-corrected significant results

Only regions in which interaction effects remained significant after FDR correction are displayed. DTW is the reference group. Effect 
of channel, age, sex, GHS, RBANS, correct letter generation rate, and DTW velocity were included in each model
STW single-task walk, DTW dual-task walk

Region Variable Estimate 95% CI t p

Left cuneus Thickness  − 1.363 [− 2.795, 0.069]  − 1.909 0.062
Task (STW vs. DTW)  − 0.613 [− 0.703, − 0.523]  − 13.384  < 0.001
Task × thickness 0.985 [0.271, 1.699] 2.706 0.007

Left fusiform Thickness  − 1.310 [− 2.909, 0.290]  − 1.642 0.106
Task (STW vs. DTW)  − 0.614 [− 0.704, − 0.525]  − 13.429  < 0.001
Task × thickness 1.277 [0.470, 2.084] 3.105 0.002

Left inferior parietal Thickness  − 1.436 [− 2.992, 0.119]  − 1.851 0.070
Task (STW vs. DTW)  − 0.615 [− 0.705, − 0.525]  − 13.431  < 0.001
Task × thickness 1.153 [0.382, 1.925] 2.931 0.003

Left isthmus cingulate Thickness  − 1.141 [− 2.095, − 0.187]  − 2.399 0.020
Task (STW vs. DTW)  − 0.614 [− 0.703, − 0.524]  − 13.421  < 0.001
Task × thickness 0.834 [0.350, 1.319] 3.381 0.001

Left lateral occipital Thickness  − 1.493 [− 2.864, − 0.122]  − 2.185 0.033
Task (STW vs. DTW)  − 0.614 [− 0.703, − 0.525]  − 13.496  < 0.001
Task × thickness 1.876 [1.202, 2.551] 5.454  < 0.001

Left lingual Thickness  − 2.705 [− 4.516, − 0.893]  − 2.994 0.004
Task (STW vs. DTW)  − 0.613 [− 0.702, − 0.523]  − 13.390  < 0.001
Task × thickness 1.425 [0.549, 2.300] 3.191 0.001

Left pars orbitalis Thickness  − 0.942 [− 2.195, 0.311]  − 1.508 0.137
Task (STW vs. DTW)  − 0.613 [− 0.703, − 0.524]  − 13.389  < 0.001
Task × thickness 0.767 [0.131, 1.404] 2.364 0.018

Left pericalcarine Thickness  − 1.092 [− 2.893, 0.709]  − 1.216 0.229
Task (STW vs. DTW)  − 0.613 [− 0.703, − 0.524]  − 13.432  < 0.001
Task × thickness 1.847 [0.968, 2.727] 4.121  < 0.001

Left posterior cingulate Thickness  − 1.242 [− 2.282, − 0.202]  − 2.395 0.020
Task (STW vs. DTW)  − 0.615 [− 0.704, − 0.525]  − 13.434  < 0.001
Task × thickness 0.891 [0.351, 1.430] 3.239 0.001

Left precuneus Thickness  − 2.306 [− 3.880, − 0.733]  − 2.940 0.005
Task (STW vs. DTW)  − 0.613 [− 0.703, − 0.523]  − 13.399  < 0.001
Task × thickness 1.196 [0.423, 1.970] 3.034 0.002

Left rostral middle frontal Thickness  − 1.617 [− 3.121, − 0.113]  − 2.155 0.036
Task (STW vs. DTW)  − 0.614 [− 0.704, − 0.524]  − 13.411  < 0.001
Task × thickness 1.186 [0.408, 1.964] 2.990 0.003

Left insula Thickness  − 0.772 [− 1.949, 0.406]  − 1.314 0.194
Task (STW vs. DTW)  − 0.614 [− 0.703, − 0.524]  − 13.416  < 0.001
Task × thickness 0.930 [0.384, 1.477] 3.337 0.001
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Table 4   Linear-mixed-model estimates of effect of right hemisphere cortical thickness, task, and moderation effect of cortical thick-
ness-by-task on change in HbO2, adjusted, FDR-corrected significant results

Only regions in which interaction effects remained significant after FDR correction are displayed. DTW is the reference group. Effect 
of channel, age, sex, GHS, RBANS, correct letter generation rate, and DTW velocity were included in each model
STW single-task walk, DTW dual-task walk

Region Variable Estimate 95% CI t p

Right caudal anterior cingulate Thickness  − 0.841 [− 1.608, − 0.075]  − 2.200 0.032
Task (STW vs. DTW)  − 0.614 [− 0.703, − 0.524]  − 13.450  < 0.001
Task × thickness 0.860 [0.469, 1.251] 4.310  < 0.001

Right caudal middle frontal Thickness  − 0.896 [− 2.164, 0.372]  − 1.417 0.162
Task (STW vs. DTW)  − 0.613 [− 0.703, − 0.523]  − 13.382  < 0.001
Task × thickness  − 0.908 [− 1.567, − 0.248]  − 2.699 0.007

Right entorhinal Thickness 0.325 [− 0.173, 0.822] 1.308 0.196
Task (STW vs. DTW)  − 0.613 [− 0.703, − 0.523]  − 13.381  < 0.001
Task × thickness  − 0.348 [− 0.608, − 0.088]  − 2.623 0.009

Right inferior temporal Thickness 0.832 [− 1.012, 2.676] 0.905 0.370
Task (STW vs. DTW)  − 0.613 [− 0.703, − 0.523]  − 13.415  < 0.001
Task × thickness  − 1.727 [− 2.609, − 0.845]  − 3.841  < 0.001

Right lateral occipital Thickness  − 2.068 [− 3.660, − 0.476]  − 2.604 0.012
Task (STW vs. DTW)  − 0.613 [− 0.703, − 0.524]  − 13.416  < 0.001
Task × thickness 1.472 [0.678, 2.267] 3.634  < 0.001

Right lingual Thickness  − 1.512 [− 3.127, 0.102]  − 1.878 0.066
Task (STW vs. DTW)  − 0.614 [− 0.703, − 0.524]  − 13.393  < 0.001
Task × thickness 0.998 [0.190, 1.806] 2.421 0.016

Right middle temporal Thickness 0.031 [− 1.392, 1.454] 0.044 0.965
Task (STW vs. DTW)  − 0.613 [− 0.702, − 0.523]  − 13.376  < 0.001
Task × thickness  − 0.918 [− 1.597, − 0.239]  − 2.652 0.008

Right paracentral Thickness  − 2.077 [− 3.556, − 0.597]  − 2.815 0.007
Task (STW vs. DTW)  − 0.614 [− 0.704, − 0.524]  − 13.448  < 0.001
Task × thickness 1.521 [0.799, 2.243] 4.131  < 0.001

Right pericalcarine Thickness  − 1.619 [− 3.311, 0.072]  − 1.920 0.060
Task (STW vs. DTW)  − 0.613 [− 0.703, − 0.523]  − 13.416  < 0.001
Task × thickness 1.547 [0.747, 2.347] 3.791  < 0.001

Right precentral Thickness  − 1.299 [− 3.061, 0.462]  − 1.479    0.145
Task (STW vs. DTW)  − 0.614 [− 0.704, − 0.524]  − 13.411  < 0.001
Task × thickness 1.046 [0.222, 1.869] 2.491    0.013

Right rostral anterior cingulate Thickness  − 0.321 [− 0.968, 0.325]  − 0.996    0.324
Task (STW vs. DTW)  − 0.615 [− 0.705, − 0.525]  − 13.431  < 0.001
Task × thickness 0.470 [0.140, 0.799] 2.796    0.005

Right superior temporal Thickness  − 1.847 [− 3.329, − 0.364]  − 2.498 0.016
Task (STW vs. DTW)  − 0.614 [− 0.704, − 0.524]  − 13.409  < 0.001
Task × thickness 0.924 [0.250, 1.597] 2.690    0.007

Right temporal pole Thickness 0.691 [0.125, 1.258] 2.446    0.018
Task (STW vs. DTW)  − 0.611 [− 0.700, − 0.521]  − 13.378  < 0.001
Task × thickness  − 0.644 [− 0.938, − 0.349]  − 4.281  < 0.001
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Discussion

The current study examined the moderating effect of 
regional cortical thickness on prefrontal cortex activation 
during DTW in older adults. The study sample was rela-
tively healthy and demonstrated cognitive ability within 
the normal range as determined by neuropsychological 
tests. Results supported the neural inefficiency hypoth-
esis: participants with thinner cortex employed greater 
neural resources in the PFC during DTW without achiev-
ing better behavioral performance. This effect was found 
in multiple regions, many of which are implicated in 
higher order control of walking, widespread throughout 
the cortex. Results suggest that when resources are lim-
ited (i.e., thinner cortex) in areas involved in DTW per-
formance, the prefrontal cortex is over-recruited.

The regionally widespread significance of the results 
is consistent with literature, suggesting that dual-task 
walking is a complex process, and the regional results 
may add to our understanding of the relationship 
between neural structure and function in locomotion. 
Regions in which the cortical thickness significantly 
moderated the change in PFC activation from STW to 
DTW were found in the frontal, parietal, temporal, and 
occipital lobe, cingulate cortex, and insula.

Cortical regions that moderated the STW‑to‑DTW 
change in HbO2

Twenty-five cortical regions showed significant mod-
eration effects on the change in HbO2 from STW to 
DTW. The following paragraphs summarize the liter-
ature that provides theoretical and empirical support 
for the regional findings and their relation to higher 
order control of DTW.

Frontal lobe

Consistent with a study examining the modera-
tion effects of gray matter in the PFC on the change 
in PFC activation in DTW [43], PFC thickness was 
a significant moderator in the current study in two 
regions. The left rostral middle frontal gyrus was a 
significant moderator, indicating that less thickness 
here led to greater activation during DTW. This pro-
vided evidence for the directly measured effects of 
neural inefficiency. These results are distinct from and 
less widespread than those for gray matter volume, 
implying that there may be cellular differences in pro-
cessing that differentiate functional impacts of gray 
matter surface area and cortical thickness [70].

Fig. 1   Regions in which 
cortical thickness signifi-
cantly moderated the task 
effect on change in HbO2. 
FDR-corrected significant 
regions are highlighted in 
color. Values of interac-
tion effect estimates are 
indicated in the color bar. 
Drawings generated using 
BrainPainter [69]
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The current study aimed to expand upon previ-
ous work that focused on the PFC, as DTW relies on 
processes throughout the brain. Some of the cortical 
regions which showed significant moderation effect 
of cortical thickness were novel but not unexpected, 
such as the right precentral gyrus which contains the 
right primary motor cortex. Thickness of the right 
paracentral lobule, which controls motor functioning 
in the lower limbs [71], was also a significant mod-
erator. Reduced structural integrity in these right 
hemisphere regions was related to increased PFC 
involvement. As the current study controlled for gait 
and cognitive performance, the moderation of PFC 
activation by cortical thickness in right hemisphere 
regions that are involved in locomotion points toward 
compensatory over-activation of the PFC.

Occipital and temporal lobes

Many regions involved in visual processing were 
highlighted in the results, as thickness of the left and 
right lateral occipital gyrus, bilateral lingual gyrus, 
left cuneus, left fusiform, and bilateral pericalcar-
ine cortex were significant moderators of the change 
in fNIRS-derived HbO2 from STW to DTW. These 
regions are involved in primary visual processing 
(pericalcarine cortex) [72], object processing (lateral 
occipital gyrus, lingual gyrus and cuneus) [73–75], 
and visual processing of letters (left fusiform gyrus) 
[76]. These gyri span the entire occipital lobe except 
for the right cuneus and right fusiform gyrus. While 
visual processing is not typically discussed in the cor-
tical control of gait, similar to implications of motor 
processing, it is consistent with the neural ineffi-
ciency hypothesis that reduced ability to process the 
visual field would lead to more difficulty in DTW 
[77]. It is also possible that the cognitive task’s use 
of the alphabet drove some associations of visual 
object processing regions, particularly the left fusi-
form gyrus which is implicated in letter processing 
and reading in right-handed individuals [78]. Thinner 
auditory association cortex in the right superior tem-
poral gyrus was also a significant moderator of PFC 
activation. The auditory association cortex may be 
related to activity during DTW due to the nature of 
internal feedback during the cognitive portion (alpha) 
of the task [79]. The alpha task requires that partici-
pants recite alternate letters of the alphabet out loud, 
during which participants hear themselves produce 

the letters, process this information, and use it to pro-
duce the next letter.

Insula

The results for the left insula, implicated in speech 
and language processing [80], showed that reduced 
thickness was related to increased PFC activation in 
DTW compared to STW conditions. The pars orbit-
alis is involved in semantic processing and is func-
tionally connected to the PFC [81]. Only thickness 
of the left pars orbitalis was a significant moderator, 
which is consistent with current concept of hemi-
spheric specialization wherein the left hemisphere is 
largely implicated in language processing in right-
handed people. As noted earlier, only right-handed 
people were included in this study.

Parietal lobe and cingulate cortex

The moderation effects in regions implicated in atten-
tional processes and sensory integration are con-
sistent with the underlying theory of the cognitive 
control required for DTW [9]. Thickness of the left 
inferior parietal lobule and left precuneus were both 
significant moderators of change in PFC activation 
from STW to DTW. The inferior parietal lobule is 
implicated in the preparation of movement and sen-
sory integration required to perform complex move-
ment [82]. The precuneus is functionally connected to 
the frontal and parietal cortex and subcortical areas 
and is involved in spatially guided behavior includ-
ing movement in space and attention shifting [83]. 
In addition, widespread regions of the cingulate cor-
tex were implicated in the current study results. The 
cingulate cortex is involved in functional networks 
required for attention, motor control, and cognitive 
control [84, 85]. Each subregion of the cingulate cor-
tex was significant in the current analysis; however, 
different moderating results are likely operational in 
the left and right cingulate. Thickness of the cortices 
of the right rostral anterior, right caudal anterior, left 
posterior, and left isthmus cingulate were significant 
moderators of task-related changes in oxygenation 
levels. The asymmetrical results here may be due to 
functional connections to other ipsilateral regions 
involved in DTW control; however, functional impli-
cations of subregions of the cingulate cortex are still 
being actively studied [86].

1968 GeroScience (2021) 43:1959–1974



1 3

Thickness in regions related to attenuated activations

Neural inefficiency and compensatory overactiva-
tion in the PFC may explain the positive interaction 
estimates found in 20 of the significant regions; how-
ever, in five regions, cortical thickness significantly 
moderated the change in PFC activation from STW 
to DTW in the opposite direction. In the right entorhi-
nal cortex, right inferior temporal gyrus, right middle 
temporal gyrus, right temporal pole, and right caudal 
middle frontal gyrus, reduced thickness was associ-
ated with an attenuated increase in PFC activation 
from STW to DTW. We hypothesize that this may 
be attributed to capacity limitations [87]. It is nota-
ble that all of these regions, with the exception of the 
right middle frontal gyrus, are located in the right 
temporal lobe, which is implicated in visual and ver-
bal processing of objects. Both functions are neces-
sary to recite alternate letters of the alphabet out loud 
while walking. The entorhinal cortex is involved in 
spatial processing [88], the inferior temporal gyrus is 
linked to attention-dependent visual processing [89], 
the middle temporal gyrus is implicated in seman-
tic processing as well as sensorimotor feedback [90, 
91], and the right temporal pole is operational in top-
down processing of multisensory information [92]. 
The right caudal middle frontal gyrus is involved in 
attentional processes [93]. It is not immediately clear 
why thinner cortex in these regions is associated 
with limited neural capacity and results in attenuated 
increases in PFC activation from STW to DTW con-
ditions, compared to the other regions in which neu-
ral inefficiency leads to PFC overactivation. However, 
statistical analyses assume independence of cortical 
regions, whereas this is not the case. It is possible 
that the thickness in these regions is related to PFC 
activation by another functional process that was not 
determinable in the present study. It is not uncommon 
for regional morphology to provide differential effects 
on outcomes of neural functioning, especially consid-
ering the complex networks involved in task-related 
activation [94].

Study limitations and future directions

The participants were healthy community-dwelling 
older adults who were dementia-free. This provides 
good evidence that the implications of cortical thick-
ness in dual-task walking may be generalized to other 

healthy older adult populations. However, as is com-
mon with neuroimaging studies, the sample size was 
only moderate, and supportive findings from a larger 
cohort sample would increase confidence in the gen-
eralizability of the findings. While mean walking 
speeds were relatively slow, this was due to entering 
and exiting the turns within the walking loops [50].

The regions that significantly moderated the 
change in PFC activation from STW and DTW in 
this study are implicated in cognitive, sensory, and 
motor processing. While thinner cortex in these 
regions may be leading to functional neural differ-
ences in these processes during DTW, we only meas-
ured neural activity in the PFC. We are thus unable 
to conclusively determine whether low thickness is 
associated with different neural activation patterns 
in areas other than the PFC. Future studies are war-
ranted to examine ways in which structural changes in 
the brain functionally impact DTW through advanced 
functional imaging of the entire brain. Future studies 
may be required to examine the relationship between 
brain structure and function in the context of walk-
ing conditions that manipulate cognitive demands 
in age-related diseases that impact cognition and 
locomotion.

Another limitation exists regarding the time 
interval between fNIRS data acquisition during the 
DTW paradigm and cortical thickness measurement 
obtained via MRI. While appointments were aimed to 
be scheduled as close together as possible, the time 
window ranged from zero days to 1 year; however, 47 
out of 55 participants had both visits within 6 months. 
It is possible that cortical thickness may have changed 
within the larger intervals; however, the range of 
intervals and majority of shorter intervals, coupled 
with strong significance of results, suggest that the 
relationships found between cortical thickness and 
brain activity are meaningful. In a study examining 
the impact of white-matter integrity on PFC activa-
tion during DTW, sensitivity analyses of the acquisi-
tion time interval showed that results were strength-
ened, not reduced, when accounting for larger time 
intervals [42]. Further, changes in cortical thickness 
within less than a year have not been reported, and 
studies of cortical thinning during aging estimate less 
than 1% change in cortical thickness per year [95].

The fNIRS device measures oxygenated and deox-
ygenated hemoglobin during active walking. While 
this allows for obtaining useful indicators of walking 
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performance as opposed to standard neuroimaging 
that is limited to imagined walking or step machines 
[30], it is also accompanied by additional artifacts. 
Recently described processing methods [55] were 
applied to the fNIRS-derived data in this study, which 
maximized the signal-to-noise ratio through use of 
multiple artifact-removal algorithms. These stringent 
processing methods add confidence to our measure-
ments of brain activity during DTW. In addition, the 
current fNIRS device does not for allow direct meas-
urement of skin blood flow, which may influence the 
signal recorded during locomotion [96, 97]. Despite 
this limitation, the current study examined the mod-
eration effect of cortical thickness on task-related 
changes in fNIRS signal. Given the counter-balanced 
tasks with the same walking environment and physi-
cal conditions, such potential confounders should not 
impact the moderating effects of cortical thickness on 
task-related changes as reported herein.

While either regional or vertex-wise analyses 
could be used to address our research questions, there 
was previous evidence of cortical regions in which 
volume was implicated in the change in PFC activa-
tion from STW to DTW [43]. Examining cortical 
thickness on a regional scale allows for comparisons 
between the two properties of brain morphology and 
has allowed us to uncover differences between vol-
ume and thickness in relation to PFC activation in 
DTW. Regional analyses also limit the number of 
comparisons in our statistical design and allowed us 
to further correct the type I errors.

Without evidence of neurological disease, we have 
assumed that thin cortex in these participants is likely 
due to normal variability and age-related atrophy. 
However, as we have only measured brain morphol-
ogy at cross-section, it is unclear whether the thin 
cortex that moderates PFC activation is indicative 
of pathological brain atrophy or normal variability 
in cortical thickness. Longitudinal analysis examin-
ing the relationship between gray-matter changes and 
neural activity during DTW may shed additional light 
on the impact of aging on these neural mechanisms. 
Previous research has found that PFC activation 
under DTW decreased and behavioral performance 
improved after within-session, repeated learning tri-
als [98]. It would be interesting to examine whether 
these practice effects will vary due to the structural 
integrity of the brain, notably cortical thickness, at 
health and disease. Determining whether older adults 

with reduced brain integrity can benefit from learning 
is of clinical significance.

As neurological conditions, including multiple 
sclerosis and stroke, have been associated with greater 
increases in PFC activation from STW to DTW [99, 
100], it would be of interest to examine whether 
the neural inefficiency patterns in conjunction with 
reduced brain integrity may be potentially good bio-
markers of neurocognitive or motor outcomes such as 
cognitive decline, falls, or mobility disability. While 
this study focused on functional brain measures only 
in the PFC, utilization of fNIRS and MRI together 
adds temporal and spatial information which are use-
ful for understanding physiological mechanisms of 
DTW. It has been suggested that multimodal imag-
ing approaches are useful in understanding neural 
mechanisms of healthy and diseased aging and may 
be applied as clinically meaningful biomarkers [101].

Conclusions

This study has provided evidence that thinner cortex in 
multiple brain regions was related to greater increases 
in fNIRS-derived activations in dual-task-walking com-
pared to single-task-walking. This supports our hypoth-
esis that low cortical thickness would be related to poor 
efficiency of the PFC during DTW. The widespread 
regions that moderated the change in activation patterns 
across walking conditions that manipulated attention 
demands provide further evidence for the complicated 
nature of the cognitive control of DTW. This further 
suggests that the regions involved in sensory process-
ing, motor control, and cognitive functioning are likely 
to be operational in the central control of locomotion.
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