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Acute cognitive impairment after traumatic brain injury
predicts the occurrence of brain atrophy patterns similar
to those observed in Alzheimer’s disease
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Abstract Traumatic brain injuries (TBIs) are often
followed by persistent structural brain alterations and
by cognitive sequalae, including memory deficits, re-
duced neural processing speed, impaired social func-
tion, and decision-making difficulties. Although mild
TBI (mTBI) is a risk factor for Alzheimer’s disease
(AD), the extent to which these conditions share patterns
of macroscale neurodegeneration has not been quanti-
fied. Comparing such patterns can not only reveal how
the neurodegenerative trajectories of TBI and AD are
similar, but may also identify brain atrophy features
which can be leveraged to prognosticate AD risk after
TBI. The primary aim of this study is to systematically
map how TBI affects white matter (WM) and gray
matter (GM) properties in AD-analogous patterns. Our
findings identify substantial similarities in the regional
macroscale neurodegeneration patterns associated with
mTBI and AD. In cerebral GM, such similarities are
most extensive in brain areas involved in memory and
executive function, such as the temporal poles and
orbitofrontal cortices, respectively. Our results indicate
that the spatial pattern of cerebral WM degradation
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observed in AD is broadly similar to the pattern of
diffuse axonal injury observed in TBI, which frequently
affects WM structures like the fornix, corpus callosum,
and corona radiata. Using machine learning, we find that
the severity of AD-like brain changes observed during
the chronic stage of mTBI can be accurately prognosti-
cated based on acute assessments of post-traumatic mild
cognitive impairment. These findings suggest that acute
post-traumatic cognitive impairment predicts the mag-
nitude of AD-like brain atrophy, which is itself associ-
ated with AD risk.
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Abbreviations

ACR Anterior corona radiata

AD Alzheimer’s disease

ADNI Alzheimer’s Disease Neuroimaging
Initiative

AIC Anterior internal capsule

ApoE Apolipoprotein E

AR Amyloid beta

BCC Body of the corpus callosum
BCF Body and column of the fornix
CAA Cerebral amyloid angiopathy
CB Cingulum bundle

CC Corpus callosum

CDR Clinical dementia rating

CDR- Clinical dementia rating sum of
SB boxes
CF Crus of the fornix
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CI Confidence interval

CMB Cerebral microbleed

CP Cerebral peduncle

CST Corticospinal tract

CT Computed tomography

DAI Diffuse axonal injury

DL Deep learning

DMN Default mode network

dMRI Diffusion magnetic resonance imaging
DTI Diffusion tensor imaging

DWI Diffusion weighted imaging

EC External capsule

FA Fractional anisotropy

FLAIR  Fluid-attenuated inversion recovery
FN False negative

FP False positive

FSL FMRIB software library

FWER  Family-wise error rate

GCC Genu of the corpus callosum
GCS Glasgow Coma Scale
GLM General linear model

GM Gray matter

GRE Gradient-recalled echo

HC Healthy control

ICbP Inferior cerebellar peduncle

ICBM International Consortium of Brain Mapping
IFG Inferior frontal gyrus

IFOF Inferior fronto-occipital fasciculus

ISDA Iterative single data algorithm
JHU Johns Hopkins University

LOC Loss of consciousness

MCC Matthews’ correlation coefficient
MCI Mild cognitive impairment

ML Medial lemniscus

MMSE  Mini mental state examination

MNI Montreal Neurological Institute

MoCA  Montreal cognitive assessment

MP- Magnetization-prepared rapid acquisition
RAGE  gradient echo

MRI Magnetic resonance imaging

MRS Magnetic resonance spectroscopy

mTBI Mild traumatic brain injury
MTG Medial temporal gyrus
NFT Neurofibrillary tangle

OFC Orbitofrontal cortex

PCR Posterior corona radiata

PCT Pontine crossing tract

PET Positron emission tomography
PFC Prefrontal cortex
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PIC Posterior internal capsule

PPV Positive prediction value

PS Processing speed

PTR Posterior thalamic radiation

RIC Retrolenticular internal capsule
ROI Region of interest

SCC Splenium of the corpus callosum
SCbP Superior cerebellar peduncle
SCR Superior corona radiata

SFOF Superior fronto-occipital fasciculus
SLR Superior longitudinal fasciculus
SS Sagittal stratum

STG Superior temporal gyrus

SVM Support vector machine

SWI Susceptibility weighted imaging
TBI Traumatic brain injury

TBSS Tract-based spatial statistics
TCC Tapetum of the corpus callosum
TFCE Threshold-free cluster enhancement
TN True negative

TNR True negative rate

TOST Two one-sided ¢ test

TP True positive

TPR True positive rate

UF Uncinate fasciculus

VBM Voxel-based morphometry

vmPFC  Ventromedial prefrontal cortex
WM White matter

3D Three-dimensional
Introduction

In the United States, around 1.7 million individuals
incur traumatic brain injuries (TBIs) annually, with an
incidence rate of around 500 TBIs per 100,000 people
[1]. The Glasgow Coma Scale (GCS) is an assessment
tool often used to rate TBI severity using measures of
responsiveness like eye-opening and verbal responses
[2]. Within the GCS, TBIs can be classified as mild,
moderate, or severe based on neurological measures
which include loss of consciousness (LOC) duration.
In the United States, mild TBI (mTBI) is the most
common classification and accounts for ~80% of all
TBI cases [1]. Brain morphometry studies of TBI often
utilize magnetic resonance imaging (MRI) and comput-
ed tomography (CT) [3] to provide noninvasive in vivo
mapping, visualization, and quantification of TBI
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sequelae. Furthermore, diffusion MRI (dMRI) can be
used to quantify the fractional anisotropy (FA) and
other properties of water diffusion along white
matter (WM) fibers in the TBI-affected brain to
identify abnormalities [4].

Chronic TBI effects on cognitive function can share
similarities with those of Alzheimer’s disease (AD) [5,
6]. Such effects may be particularly severe in older
individuals, who are ~3 times more likely to sustain a
TBI than those in any other age group [7, 8]. Such
greater vulnerability is partly due to a higher risk for
physical injuries (like falls) and to a higher likelihood of
pre-existing conditions at the time of injury, resulting in
poorer clinical outcomes [7]. Repeated mTBIs are par-
ticularly associated with AD risk [9-11], and post
mortem studies of mTBI effects on brain microstructure
have identified both Amyloid 3 (A(3) plaques and neu-
rofibrillary tangles (NFTs) of 7 protein which resemble
those observed in AD [10]. At the macroscale, however,
few studies have investigated whether TBI-affected
brain structure can change along AD-analogous trajec-
tories, particularly at older ages. Furthermore, the po-
tential relationship between TBI and AD remains
underexplored despite the epidemiological significance
of both conditions. Independent investigations that used
dMRI to compare the FAs of healthy controls (HCs) to
those of AD patients and acute mTBI victims found
significantly lower FA [4, 12], which is indicative of
damage, along WM tracts projecting to the hippocampi
and to temporal regions in the brains of AD and mTBI
patients [13, 14]. Researchers have also utilized cortical
thickness as a measure of gray matter (GM) atrophy and
have independently observed similar spatial patterns of
cortical thinning in AD and mTBI patients compared to
HCs [15—-17]. Despite such similarities of findings com-
paring mTBI and AD to HCs, hardly any studies have
combined GM and WM measurements in a longitudinal
design to examine whether subacute neurodegeneration
after mTBI can occur along AD-analogous trajectories.

Previously, our laboratory showed that the acute
cognitive deficits of mTBI patients can predict AD-
like chronic alterations in brain function with high sen-
sitivity and specificity [18]. To complement these pre-
vious findings, the present study leverages MRI-based
WM analysis and GM morphometry to compare AD
and geriatric mTBI from the standpoint of their observed
differences in GM and WM structure. The hypothesis of
the study is that geriatric mTBI patients are significantly
more likely than typically aging adults to exhibit AD-

like trajectories of neurodegeneration, even as early as 6
months post injury. This study aims to illustrate our
ability to early identify mTBI patients at high risk for
AD-analogous neurodegeneration, and to suggest ave-
nues for the early estimation of AD risk after mTBI that
may carry substantial potential benefits to medical
science.

Methods

This study was conducted with the approval of the
Institutional Review Board at the University of Southern
California and was carried out in accordance with the
Declaration of Helsinki and with the U.S. Code of
Federal Regulations (45 C.F.R. 46).

mTBI participants

mTBI participants (N = 33; 15 females; age 1 = 62.7
years, 0 = 10.6 years, range = 47-83 years) were re-
cruited with the assistance of board-certified clinicians
and/or other health professionals who had treated them
as outpatients and who had referred them for further
neurocognitive assessment, neurological treatment, and/
or neuroimaging. The team strove to minimize recruit-
ment bias by inviting all potential participants who
satisfied the study’s inclusion criteria and who could
provide written informed consent. To be included,
mTBI volunteers had to have (a) MRI recordings ac-
quired ~6 months post-injury at 3 T, (b) a TBI due to a
fall, (¢) no clinical findings on acute T;/7>-weighted
MRI, (d) no clinical findings other than cerebral
microbleeds (CMBs) on susceptibility weighted imag-
ing (SWI, an MRI sequence type yielding images on
which hemorrhages and other iron-rich brain deposits
are hypointense), (¢) an acute GCS score greater than 12
(u=14.1, 0 = 0.7) upon initial medical evaluation, (f)
LOC of fewer than 30 min (x ~ 14 min, ¢ ~ 3 min), (g)
post-traumatic amnesia of fewer than 24 h (u ~ 5.5 h, o
~ 3.2 h), and (h) a lack of clinical history involving pre-
traumatic neurological disease or disorders like demen-
tia and mild cognitive impairment (MCI), psychiatric
disorder or drug/alcohol abuse. CMBs were identified
from SWI, a gradient-echo MRI sequence that is sensi-
tive to the magnetic properties of tissues and fluids such
as blood [19]. Specifically, for mTBI subjects, CMBs
were first identified manually in each subject by eight
human experts with training in neuroimaging and in
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CMB identification from SWIs. Consensus meetings to
review CMB ratings were then held by a committee
including three of the eight experts; each CMB finding
was reviewed and discussed thoroughly during these
meetings until consensus was reached on the accuracy
of each CMB finding. TBI participants’ Montréal Cog-
nitive Assessment (MoCA) scores were acquired within
48 h post-injury and ranged between 23 and 30 (N = 33,
=26, 0=>5). Mini Mental State Examination (MMSE)
scores were also acquired within 48 h post-injury and
ranged between 23 and 30 (NV = 33, u = 25, 0 = 3).
Global Clinical Dementia Rating (CDR) sum of boxes
(CDR-SB) scores were not available for TBI partici-
pants. No Apolipoprotein E (ApoE) allele information
was available for TBI participants.

AD participants

AD patients (N = 66; 26 females; age 1 =75.6y,0=8.9
y, range = 55-92 y) were selected from the AD Neuro-
imaging Initiative (ADNI) cohort, whose eligibility
criteria are described elsewhere [20]. For AD partici-
pants, CMBs were identified by a board-certified neu-
rologist. Where available, AD patients’ cognitive as-
sessments were made within 0 to 394 days after imaging
(N=61, u=32days, 0 =62 days). AD patients’ MoCA
scores ranged from 2 to 28 (N =61, u =15, 0=15), and
all had a clinical AD diagnosis. MMSE scores were
available for most AD participants (N = 61, u =22, o
= 3; range: 11-29). AD patients had global CDR-SB
scores between 1 and 14 (N = 61, u = 5.35, 0 = 2.34).
For AD patients with ApoE genotyping (N = 60), 30%
had no 4 alleles, 50% had one, and 20% had two.

HC participants

HCs (N = 81; 59 females; age i = 68.7, o = 7.0 years,
range = 55-87 years) were selected from the ADNI
cohort, whose eligibility criteria are described elsewhere
[20]. For HC participants, CMBs were identified by a
board-certified neurologist. Most HC volunteers’ cogni-
tive scores were acquired within 0 to 302 days after
imaging (N = 72, p = 29 days, 0 = 42 days). HC
participants had been clinically evaluated as having
normal cognition; their MoCA scores ranged from 20
to 30 (N = 72, u = 26, 0 = 3). MMSE scores were
available for HCs and ranged between 22 and 30 (N =
72, u =29, 0 = 1). HCs had global CDR-SB scores
between 0 and 2 (N =72, = 0.05, 0 = 0.25). For HCs
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whose ApoE genotype had been determined (N = 68),
the number of ApoE ¢4 alleles was zero for 63% of the
sample, one for 34%, and two for 3%.

Data acquisition

HC and AD participant data used for the preparation of
this article were obtained from the ADNI database
(http://adni.loni.usc.edu). ADNI was launched in 2003
as a public—private partnership, led by Principal Inves-
tigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial MRI, positron
emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early
AD. For up-to-date information, see www.adni-info.
org. TBI imaging data were acquired at 3 T using the
Prisma MAGNETOM Trio TIM MRI scanner model
(20-channel head coil, Siemens Corporation, Erlangen,
Germany). Data included 7;- and 7,-weighted, fluid-
attenuated inversion recovery (FLAIR), gradient
recalled echo (GRE)/SWI, and dMRI volumes. T}-
weighted images were acquired using a three-
dimensional (3D), magnetization-prepared rapid acqui-
sition gradient echo (MP-RAGE) sequence [repetition
time (Tk) = 1,950 ms; echo time (7%) = 2.98 ms; inver-
sion time (7;) = 900 ms; voxel size = 1.0 mm x 1.0 mm
x 1.0 mm]. T,-weighted images were acquired using a
3D sequence (T = 2,500 ms; T = 360 ms; voxel size =
1.0 mm x 1.0 mm x 1.0 mm) [4]. Flow-compensated
GRE/SWI volumes were acquired axially (77 = 30 ms;
Tr = 20 ms; voxel size = 1.33 mm % 1.33 mm X 1.6
mm). dMRI volumes were acquired axially in 64 gradi-
ent directions (T = 8,300 ms; T = 72 ms; voxel size =
2.7 mm x 2.7 mm x 2 mm). One volume with b = 0
s/mm? and another with b = 1,000 s/mm?® were also
acquired, where b is the diffusion-weighting constant
of diffusion-weighted imaging (DWI). All acquired data
were anonymized and de-linked prior to archiving and
analysis.

Preprocessing

DWI volumes were corrected for susceptibility-induced
artifacts, subject motion, and eddy currents using soft-
ware in the FMRIB Software Library (FSL). Based on a
pair of images with opposite phase encoding directions,
susceptibility-induced artifacts were estimated [21].
Subsequently, a brain mask was created, and
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susceptibility corrections were implemented, followed
by eddy current and patient motion corrections,
resulting in output containing the artifact-corrected,
skull-stripped brain volume. Then, the B vectors of each
volume were rotated such that any inadequate rotations
caused by patient motion were accounted for. DWI
volumes were further processed in FSL by fitting ten-
sors to corrected DWI volumes to perform diffusion
tensor imaging (DTI). These latter volumes were then
used for voxel-wise FA calculation such that FA maps
could be generated for each volume. T;-weighted vol-
umes underwent intensity normalization, bias field cor-
rection, and motion correction as part of the FreeSurfer
6.0 processing workflow (http://surfer.nmr.mgh.
harvard.edu).

Cortical reconstruction

The segmentation of subcortical structures, cerebral
WM, and cortical GM was based on T}-weighted vol-
umes and was implemented in FreeSurfer 6.0 with de-
fault execution parameters, as described elsewhere [22,
23]. Briefly, this process includes (1) the removal of
non-cerebral voxels using a hybrid watershed/surface
deformation procedure, (2) an automated transformation
to Talairach space, (3) voxel intensity normalization, (4)
segmentation of cortical and subcortical GM, (5) tessel-
lation of the GM/WM boundary, and (6) automated
surface topology correction. The reader is referred else-
where [22, 23] for comprehensive details on each of
these steps. Each hemisphere was divided into 74 re-
gions by segmenting subcortical structures and by
parceling the cortex into gyri and sulci using the
Desikan—Killiany atlas nomenclature [24]. For each
subject, cortical thickness was estimated at each cortical
location and then resampled onto a seventh-order icosa-
hedral mesh for inter-subject comparison.

Regional labeling and atlasing

WM voxels were mapped onto WM structures in Mon-
treal Neurological Institute (MNI) MNI, 5, space using
FSL version 6.0.1 and the Johns Hopkins University
(JHU) International Consortium of Brain Mapping
(ICBM) DTIg; WM labeling scheme. First, the mean
FA skeleton mask was co-registered onto the JHU label
map, thereby creating a skeletonized version of the
latter. Images were then binarized such that voxels
corresponding to statistical significance (p < 0.05) were

set to 1, whereas remaining voxels were set to 0; these
binarized images were then projected onto the skeleton-
ized label map. The total number of significant voxels in
the volume associated with each label was divided by
the total number of voxels pertaining to that label so as
to calculate the percentage volume of voxels associated
with statistical significance and located in each struc-
ture. Results were represented graphically for visual
interpretation. For cortical thickness calculations, after
binarizing each subject’s cortical surface overlay based
on statistical significance (1 = significant; 0 = not sig-
nificant), the resulting binary map was registered onto
the average cortical surface in the Desikan—Killiany
atlas. Then, a similar procedure was used to calculate
the percentage of cortical surface area within each cor-
tical region which contained vertices associated with
statistical significance. Figure 1 illustrates a conceptual
representation of this process.

Tract-based spatial statistics (TBSS)

A TBSS approach was used for the voxel-wise statistical
analysis of mean WM FA differences between groups.
In contrast to algorithms involving regions of interest
(ROIs) or voxel-based morphometry (VBM) ap-
proaches, TBSS utilizes a nonlinear registration algo-
rithm to co-register FA maps, resulting in alignment
errors which are substantially smaller than those pro-
duced by traditional linear registration algorithms [25].
Moreover, TBSS facilitates the calculation of brain-
wide statistics such that both global and local differ-
ences in FA can be quantified. First, FA volumes had
their end slices set to zero to remove outliers which may
have been introduced by fitting diffusion tensors to DWI
volume data. After this step, nonlinear transforms to
FMRIBsg FA standard space were calculated and ap-
plied. The FMRIBsg FA space was then affinely aligned
to the MNI;s, space and the resulting transform
was applied to each subject’s FA volume such that
all volumes could be aligned to the 1 mm X 1 mm
x 1 mm MNIy5, space. FA maps were then aver-
aged across subjects to generate a mean FA vol-
ume which was skeletonized to reveal FA values
along the trajectories of major WM structures. The
mean FA skeleton was thresholded to remove
values below a default threshold of 0.2, below
which the low signal-to-noise ratio results in rela-
tively inaccurate FA measurements.

@ Springer


http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu

GeroScience (2021) 43:2015-2039

Fig.1 Conceptual representation of the process for calculating the
percentage of voxels associated with statistically significant find-
ings within each neuroanatomic structure. (a) WM label map of
the JHU atlas. (b) Mean WM skeleton mask of all subjects in the
study. (¢) Voxels where mTBI subjects exhibit mean FA values
which are significantly lower (p < 0.05) than in HCs. The voxel

Statistical testing of group differences

The statistical significance of differences in age means
between the three groups was evaluated using two-tailed
Welch’s ¢ tests. The significance of group differences in
sex composition was tested using a x test. Group differ-
ences in mean FA were calculated between (A) AD and
mTBI, (B) AD and HCs, and (C) mTBI and HCs. The null
hypothesis H,, according to which each pair of groups’
mean FA values are equal, was tested using Welch’s  test.
Using a general linear model (GLM), the confounding
effects of sex and age on FA values [26, 27] were regressed
out and a nonparametric two-sided ¢ test with 500 permu-
tations and with threshold-based free-cluster enhancement
(TFCE) was implemented. This revealed clusters of WM
voxels whose mean FA differed significantly between
groups. All p values were corrected for multiple compar-
isons using 500 nonparametric permutations with TFCE,
while controlling for the family-wise error rate (FWER)
[28, 29].

Statistical testing of group similarities

A premise of this study is that a brain feature f'which is
both (a) significantly different from HCs in both TBI
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map is overlaid on the skeletonized label map of the atlas, which is
thickened for easier visualization. All images are overlaid on the
I mm x 1 mm x 1 mm FMRIBsg FA template, which is an average
of FA maps across 58 healthy subjects. Colors encode various
WM structures (see Tables 2, 3, and 4 for abbreviations)

and AD, and (b) significantly similar across TBI and
AD, can be said to be AD-analogous. Thus, a brain
feature f observed in TBI patients can be said to be
AD-analogous if f differs from HCs in both TBI and
AD, and is also significantly similar across both TBI
and AD. If f differs significantly from HCs in both TBI
and AD, a null hypothesis of statistical equivalence can
be tested to determine whether fis AD-analogous. Thus,
for samples A and B, a null hypothesis of equivalence is
stated as p4(f) # ps(f), i.e., as the complement of the
typical null hypothesis p4(f) # pp(f). A null hypothesis
of equivalence fails to be accepted if the two means fall
within an interval (-9, +9), where § is known as the
equivalence margin of the test [30]. In a statistical sense,
equivalence implies that the values of the empirical
estimates of the features f{A) and f(B) are so close that
neither estimate can safely be considered to be greater or
smaller than the other [31]. In this study, J is assigned a
conservative value equal to 0.2 multiplied by the width
of the 95% confidence interval (CI) for the difference
wa(H) — pa(fH). Equivalence hypotheses were tested using
two one-sided ¢ tests (TOSTs) [32]. Specifically, the
TOSTs were used to quantify the statistical equivalence
of FA means between AD and mTBI cohorts. TOSTs
are commonly used to test hypotheses of statistical
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equivalence [18], which can be interpreted as a measure
of statistical similarity between groups.

To identify WM tracts whose FA means were statisti-
cally undistinguishable (i.e., statistically equivalent) across
mTBI and AD, the null hypothesis H, of equivalence was
only tested at locations where the mean FA differed sig-
nificantly from the mean FA for HCs in both the AD and
the TBI groups. This restriction was necessary to ensure
that any identified statistical equivalences between AD and
TBI were associated with deviations from normality (i.e.,
from HCs). For GM, like for WM, TOSTs were imple-
mented vertex-wise to determine whether the cortical
thickness means of the AD and mTBI groups were statis-
tically similar. As in the case of the WM analysis, testing
for the statistical equivalence of mean cortical thickness in
the AD and mTBI groups was only implemented at loca-
tions where each of these groups had been found to differ
significantly from HCs. Cortical maps of statistical equiv-
alence between AD and mTBI were generated for display
and smoothed across using five iterations of nearest-
neighbor interpolation. Equivalence testing was imple-
mented using freely available MATLAB software
(https://www.mathworks.com/matlabcentral/fileexchange/
63204).

Cognitive impairment vs. brain connectivity alterations

Two support vector machines (SVMs) were de-
signed in MATLAB using the glmfit,
fitcsvm, and predict functions with default
parameters, the iterative single data algorithm
(ISDA), a linear kernel function, and heuristic
kernel scale parameters. The SVMs were trained
and cross-validated 10-fold to distinguish TBI par-
ticipants whose AD-like mean FA deviations from
normality (i.e., equivalences across TBI and AD)
were either relatively moderate or relatively exten-
sive, respectively. Such deviations were defined as
moderate or extensive depending on whether they
belonged to the lowest or highest terciles, respec-
tively, of the TOST statistics’ empirical distribu-
tion. The number of true negatives (TNs), true
positives (TPs), false negatives (FNs), and false
positives (FPs) were computed, as were the true
positive rate (TPR, or sensitivity), true negative
rate (TNR, or specificity), positive prediction value
(PPV, or precision), and Matthews’ correlation co-
efficient (MCC) [33].

Results
Participants

Demographics are summarized in Table 1. No signifi-
cant group differences of sex composition were identi-
fied [x* = 2.22, degrees of freedom (df) = 1, p = 0.136].
Welch’s ¢ test found significant differences in mean age
between AD and mTBI (Welch’s 1 = 6.38, df =97, p =
6.31 x 10_4), AD and HCs (Welch’s t=5.28, df=145,p
= 4.57 x 1077, and mTBI and HCs (Welch’s ¢ =
—3.52, df = 112, p = 6.03 x 10°). CMB counts were
found to range from 0 to 2 (4 £ 0 =0.27 £0.65) in HCs,
from 0 to 7 (1 + 0 = 2.52 + 1.91) in mTBI volunteers,
and from 0 to 25 (£ o = 1.66 = 4.49) in AD patients.
Significant differences in MMSE scores were found
between HC and mTBI participants (Welch’s ¢ =
—7.49, df ~ 35, p = 4.53 x 10"?), between HC and AD
participants (Welch’s t=17.01, df ~ 131, p < 0.001) but
not between mTBI participants and AD patients
(Welch’s t = 4.69, df = 64, p = 0.99). Significant differ-
ences in MoCA scores were found between HC and AD
participants (Welch’s ¢t = 17.26, df ~ 131, p = 9.33 x
107%), between acute mTBI participants and AD pa-
tients (Welch’s £ = 10.65, df ~ 59, p = 1.04 x 10~'%), but
not between HC and acute TBI participants (Welch’s ¢ =
—0.29, df ~ 42, p = 0.39).

WM comparison between HC and mTBI

Figure 2(a) depicts regions where mTBI subjects had
significantly lower mean FA than HCs (p < 0.05). In the
mTBI group, these regions include the genu and body of
the corpus callosum (GCC and BCC, respectively),
body and column of the fornix (BCF), as well as crura
of the fornix (CF). Table 2 lists WM structures in the
descending order of the percentage of voxels within
each structure where mean FA is significantly lower in
mTBI participants than in HCs. In other words, the
percentage of voxels quantifies the proportion of each
structure’s volume which exhibits significant mean FA
differences between the two groups. For example, the
first row of Table 2 lists the tapeta of the CC (TCC) and
the number 100 in the middle, halfway below the head-
ings labeled “left” and “right.” This should be
interpreted as indicating that 100% of the TCC spans
voxels with statistically significant findings (i.e., the
mTBI cohort has significantly lower mean FA values
than the HC group across 100% of the TCC). In the
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Table 1 Summary of cohort demographics and cognitive assess-
ment data. Dashes indicate data unavailability. Stated are sample
sizes (N), mean (p), standard deviation (o), minimum value (min),
and maximum value (max). Abbreviations: Alzheimer’s disease

(AD), Clinical Dementia Rating Sum-of-Boxes (CDR-SB), cere-
bral microbleed (CMB), healthy control (HC), Montreal Cognitive
Assessment (MoCA), Mini Mental State Examination (MMSE),
traumatic brain injury (TBI), years (yr)

Age (yr) MoCA MMSE CDR-SB CMBs

HC TBI AD HC TBI AD HC TBI AD HC TBI AD HC TBI AD

81 33 66 72 33 61 72 33 61 72 — 61 81 32 66
i 69 63 76 26 26 22 29 25 22 0.05 — 5.35 0.27 1.72 1.66
o 7 11 9 3 5 3 1 3 3 0.25 — 2.34 0.65 1.67 4.49
min 55 47 55 20 23 2 22 23 11 0 — 1 0 0 0
max 87 83 92 30 30 28 30 30 29 2 — 14 2 7 25

mTBI cohort, the structures whose volumes’ mean FAs
differ most between groups are the TCC, the uncinate
fasciculi (UF), the anterior and posterior internal cap-
sules (AICs and PICs, respectively), the external cap-
sules (ECs), cingulum bundle (CB), superior cerebellar
peduncles (SCbPs), BCF, GCC, and BCC. WM struc-
tures which (A) are more affected by mTBI in the right
hemisphere and which (B) differ to the greatest extent in
mTBI compared to HCs include, in descending order,
the AIC, SCbP, sagittal stratum (SS), cerebral peduncle
(CP), posterior corona radiata (PCR), medial lemniscus
(ML), and corticospinal tract (CST). Structures which
are more affected in the left hemisphere are the EC, UF,
CB, PIC, CF, inferior cerebellar peduncle (ICbP), supe-
rior longitudinal fasciculus (SLF), retrolenticular inter-
nal capsule (RIC), posterior thalamic radiation (PTR),
anterior corona radiata (ACR), superior fronto-occipital
fasciculus (SFOF), and superior corona radiata (SCR).
No WM fascicles in the mTBI cohort were found to
have significantly higher mean FA than in HCs.

WM comparison between HC and AD

Figure 2(b) depicts significant differences in mean FA
between the HC and AD cohorts. In AD, mean FA
values were significantly lower along commissural fi-
bers like the (A) splenium of the corpus callosum
(SCC), the BCC, GCC, BCF, and CF. Table 3 lists
WM structures in the descending order of the percentage
of each structure’s voxels where mean FA is significant-
ly lower in AD participants than in HCs. For example,
row 8 of Table 3 lists the SS as well as the numbers 94
and 100 under the “Left” and “Right” headings, respec-
tively. This should be interpreted as indicating that 94%
of'the left SS and 100% of the right SS span voxels with

@ Springer

statistically significant findings (i.e., compared to HCs,
the AD cohort has a significantly lower mean FA value
in 94% of the left SS and in 100% of the right SS). Thus,
compared to HCs, AD patients’ mean FAs differ from
those of HCs most extensively in the BCC, BCF, CF,
UF, CB, GCC, TCC, EC, SS, and SFOF. In descending
order according to the same criterion, fasciculi which are
more affected in the right hemisphere and which differ
most in AD compared to HCs are the CB, TCC, EC, SS,
ACR, CP, ML, and PCR. For the left hemisphere, these
are the SFOF, PTR, SCbP, AIC, SLF, ICbP, RIC, PIC,
SCR, and CST. No WM structures in the AD cohort
were found to have significantly greater mean FA than
the HC group.

WM comparison between AD and mTBI

No significant differences in mean FA were revealed
between the mTBI and AD groups. Equivalence testing
comparing mTBI to AD revealed significant statistical
similarities of mean FA throughout the brain. Table 4
lists the WM structures in the descending order of the
percentage of each structure’s voxels for which mean
FAs are statistically similar in AD and mTBI partici-
pants. For example, the third row in Table 4 lists the
pontine crossing tract (PCT) and, halfivay between the
columns labeled “Left” and “Right,” the number 69 is
listed. The fact that only one number is listed is due to
the fact that there is only one PCT, rather than a “left
PCT” or a “right PCT.” The numerical entry “69” indi-
cates that 69% of the voxels spanned by the PCT are
associated with statistically significant findings (i.e., the
AD and mTBI cohorts have significantly similar mean
FA values throughout 69% of the PCT). In descending
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Fig.2 Statistically significant differences in mean FA between (a)
HCs and mTBI patients, and between (b) HCs and AD patients.
Color encodes —log;o p, ranging from 2 (red) to 5 (yellow),
corresponding to p-values between 0.05 (red) and ~0.0005 (yel-
low). p values are for ¢ tests using a significance threshold o =

order according to the same criterion, these structures
included the SFOF, CF, PCT, ACR, BCF, and SCR.

GM comparison between HC and mTBI

Figure 3(a) displays significant differences in cortical
thickness between the HC and mTBI cohorts. In the
latter, significantly thinner cortex (blue) is observed in
the lateral superior portion of the left temporal lobe, in
parietal and in frontal regions. Significantly lower cor-
tical thickness in the HC group (red) is observed dif-
fusely across the cortex. Such cortical thickening after
TBI is relatively ubiquitous and has been hypothesized
to be associated with chronic inflammation of the GM
[17,34-36].

GM comparison between HC and AD

Figure 3(b) displays significant differences in cortical
thickness between the HC and AD cohorts. In the latter,
significantly thinner cortex (blue) is found in the lateral
and medial parts of the temporal and frontal lobes. In the
HC group, significantly thinner cortex (red) is observed
at very few locations on the medial surface of the brain,
particularly in the cingulate gyri.

GM comparison between mTBI and AD

Figure 3(c) displays regions where cortical thinning was
statistically indistinguishable between (i.e., significantly

0.05, subject to multiple comparison correction. Smaller p values
are associated with higher values of —log;q p and with greater
differences in mean FA between the groups compared. Images are
displayed in radiologic convention. The z coordinate of each slice
in MNI; 5, atlas space is provided

similar across) mTBI and AD cohorts. Extensive areas
of statistical similarity are observed in frontotemporal
and frontoparietal regions and, more sparsely, in occip-
ital areas. Table 5 lists gyri and sulci in descending order
of each structure’s percentage (i.e., proportion) of corti-
cal area exhibiting an amount of cortical thinning which
was statistically indistinguishable between mTBI and
AD. The parcels whose cortical thinning was most
statistically similar across mTBI and AD include the
superior part of the precentral sulcus, the short insular
gyri, the horizontal ramus of the anterior lateral sulcus,
the marginal cingulate sulcus, and the orbital gyri. There
are few regions whose statistical similarities were large-
ly restricted to a single hemisphere across the AD and
mTBI cohorts, including lateral occipital regions, the
supramarginal gyri, anterior transverse marginal gyri,
inferior parietal lobules, and superior temporal gyri
(STG).

Cognitive impairment vs. brain connectivity alterations

Across 100 scenarios, the SVM trained to identify TBI
patients whose WM similarities to AD were relatively
modest (bottom tercile of equivalence statistic distribu-
tion) achieved the following means and standard devia-
tions: TN =20.0+1.1; TP=10.0£0.8; FN=1.6 £0.3;
FP=1.4+0.2; TPR =0.87 £0.09; TNR = 0.93 = 0.09;
PPV =0.88+0.2; MCC =0.80 £0.2. The SVM trained
to predict which TBI patients’ similarities to AD were
relatively extensive (top tercile of equivalence statistic
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Table 2 WM structures listed, in descending numerical order,
according to the percentage of voxels associated with FA averages
which are significantly lower (p < 0.05), for each structure, in the
mTBI cohort compared to HCs. Values are reported for the left and

right hemispheres, except for structures which straddle both; in this
latter case, only one value is reported between the left and right
hemisphere columns

Abbreviation Structure Part %o

Left Right
TCC Corpus callosum Tapetum 100 100
EC External capsule — 100 99
UF Uncinate fasciculus — 100 99
BCC Corpus callosum Body 98
GCC Corpus callosum Genu 97
CB Cingulum bundle — 97 96
AIC Internal capsule Anterior 94 97
BCF Fornix Body 95
SCbP Cerebellar peduncle Superior 91 95
PIC Internal capsule Posterior 91 90
SS Sagittal stratum — 85 94
CP Cerebral peduncle — 87 90
CF Fornix Cres 90 87
ICbP Cerebellar peduncle Inferior 87 86
SCC Corpus callosum Splenium 84
SLF Longitudinal fasciculus Superior 83 82
RIC Internal capsule Retrolenticular 92 72
PTR Thalamic radiation Posterior 90 74
ACR Corona radiata Anterior 83 73
MCbP Cerebellar peduncle Middle 78
SFOF Fronto-occipital fasciculus Superior 85 64
PCR Corona radiata Posterior 68 79
ML Medial lemniscus — 56 68
SCR Corona radiata Superior 60 48
CST Corticospinal tract — 18 23
PCT Pontine crossing tract — 9

distribution) yielded the following results: TN = 19.2 +
0.5, TP=9.1+£0.9;FN=1.1£0.3; FP=1.9+0.9; TPR =
0.83 +£0.6; TNR = 0.95 £ 0.5; PPV = 0.83 £ 0.3; MCC =
0.79 £0.4.

Discussion

This study investigated cortical thickness and FA chang-
es associated with geriatric mTBI and compared these
changes to those observed in AD. The analysis demon-
strated (i) broad, significant similarities in cortical thin-
ning between mTBI and AD, primarily in the frontal and
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temporal regions but also in the occipital lobe; (ii)
bilateral patterns of significant similarities in mean FA
across mTBI and AD; and (ii7) significantly lower mean
FA and thinner cortex in both mTBI and AD compared
to HC:s.

Translational significance

The high prevalence of geriatric mTBI and its subse-
quent risk for AD underscore the need to predict the
latter. Studies have identified significant correlations
between certain cognitive measures—like CDR-SB
scores—and neural tissue integrity metrics, in that
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Table 3 Like Table 2, comparing AD patients to HCs
Abbreviation Structure Part %

Left Right
BCC Corpus callosum Body 100
BCF Fornix Body 100
CF Fornix Cres 100 100
UF Uncinate fasciculus — 100 100
CB Cingulum bundle — 99 100
GCC Corpus callosum Genu 99
TCC Corpus callosum Tapetum 97 100
SS Sagittal stratum — 94 100
EC External capsule — 96 97
SFOF Fronto-occipital fasciculus Superior 98 95
PTR Thalamic radiation Posterior 99 88
ACR Corona radiata Anterior 85 91
SCbP Cerebellar peduncle Superior 90 82
Scc Corpus callosum Splenium 85
AlC Internal capsule Anterior 93 77
SLF Longitudinal fasciculus Superior 88 80
ICbP Cerebellar peduncle Inferior 84 79
MCbP Cerebellar peduncle Middle 78
RIC Internal capsule Retrolenticular 88 62
CP Cerebral peduncle — 73 75
ML Medial lemniscus — 72 73
PCR Corona radiata Posterior 63 66
PCT Pontine crossing tract — 63
PIC Internal capsule Posterior 69 43
SCR Corona radiata Superior 54 47
CST Corticospinal tract — 15 6

higher CDR-SB scores are indicative of lower integrity
[37-39]. Our findings of significant similarities between
AD and mTBI pertaining to cortical thickness, mean
FA, and cognitive test scores provide clinical insight to
identify individuals at high AD risk. Such information
can be combined with cognitive test scores (e.g., CDR-
SB scores), demographics, biological age prediction
[40], and ApoE genotype information to predict the
extent and pattern of cortical degeneration experienced
by geriatric mTBI patients. Thus, our study may be
useful for the stratification of geriatric mTBI patients
in terms of their AD risk. Adding to our ability to make
such prognostications is the fact that our SVM classifi-
cation results suggest that the severity of acute cognitive
deficits observed in TBI patients can be leveraged

acutely to predict, with high sensitivities and specific-
ities, the future extent and breadth of their AD-like brain
atrophy patterns. Such information can also comple-
ment information acquired using other functional mea-
sures like electroencephalography (EEG) and magnetic
resonance spectroscopy (MRS) [41, 42] to gain insights
into post-traumatic neuropathophysiology [43—46], in-
cluding adverse effects of brain injury upon peripheral
systems [47—49].

Cognitive testing
Our study features MoCA score ranges of 23-30, 2-28,

and 20-30 for mTBI, AD, and HC participants, respec-
tively. MMSE scores range from 23 to 30, 11-29, and
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Table 4 WM structures listed, in descending numerical order,
according to the percentage of voxels associated with mean FA
values which are statistically similar (»p < 0.05), across mTBI and
AD cohorts. Values are reported for the left and right hemispheres,

except for structures which straddle both; in this latter case, only
one value is reported between the right and left hemisphere
columns

Abbreviation Structure Part %o

Left Right
SFOF Fronto-occipital fasciculus Superior 91 95
CF Fornix Cres 65 80
PCT Pontine crossing tract — 69
ACR Corona radiata Anterior 58 53
BCF Fornix Body 49
SCR Corona radiata Superior 45 52
PTR Thalamic radiation Posterior 59 38
PCR Corona radiata Posterior 46 45
MCbP Cerebellar peduncle Middle 44
CST Corticospinal tract — 36 35
BCC Corpus callosum Body 35
ICbP Cerebellar peduncle Inferior 33 33
SLF Longitudinal fasciculus Superior 33 27
RIC Internal capsule Retrolenticular 28 31
TCC Corpus callosum Tapetum 9 43
ML Medial lemniscus — 22 30
GCC Corpus callosum Genu 23
CB Cingulum bundle — 29 15
SS Sagittal stratum — 19 23
SCbP Cerebellar peduncle Superior 19 21
PIC Internal capsule Posterior 16 23
SCcC Corpus callosum Splenium 16
CP Cerebral peduncle — 11 13
AlC Internal capsule Anterior 13 9
EC External capsule — 4 12
UF Uncinate fasciculus — 0 7

20-30 for mTBI, AD, and HC subjects, respectively.
Typical clinical diagnostic cutoffs for MCI are scores
between 18 and 25 for MoCA, and scores between 20
and 25 for MMSE. Although TBI subjects were
screened for MCI, it is possible that a minority of
subjects had undiagnosed, subclinical MCI prior to
injury because of MCI prevalence in older individuals
[50] and because studying older TBI patients increases
the likelihood of including subclinical MCI patients
unintentionally [51]. Because both MCI and mTBI are
associated with poorer cognition [52], the possibility of
including TBI participants with subclinical, premorbid
MCI suggests that the sample studied here may have
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been affected by this condition to a limited extent and
that the lower cognitive test scores of some participants
could be attributable to both MCI and mTBI.

Structural neurodegeneration in TBI vs. AD

Table 2 lists WM structures with significantly lower
average FA values in mTBI patients compared to HCs.
The structures with the greatest differences in mean FA
include the TCC, EC, UF, BCC, and GCC. Diffuse
axonal injury (DAI) accompanies TBI often and com-
monly affects large WM structures (like the corpus
callosum (CC)) as well as fasciculi innervating temporal
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Fig. 3 Statistically significant differences in cortical thickness
between (a) mTBI and HCs, (b) AD and HCs, and (¢) mTBI and
AD patients. Color encodes —log;( ¢, where ¢ is a p value adjusted
for the false discovery rate (FDR). Cortical overlays were
smoothed using a Gaussian kernel with a full width at half max-
imum (FWHM) of 5 mm. In (a) and (b), blue regions represent

or frontal regions, like the UF [53-55]. Our findings
agree with these previous studies because the UF—
which projects to the temporal lobe—is found here to
exhibit extensive lower mean FA in mTBI subjects.

areas where mTBI and AD subjects, respectively, have signifi-
cantly thinner cortex compared to HCs. Regions colored in red
represent areas where HCs have significantly thinner cortex. In (¢),
areas colored in green represent regions whose mean cortical
thickness is statistically indistinguishable across mTBI and AD
participants

Structures listed in Table 2 exhibit similar extents of
damage across hemispheres; this may be partly attribut-
able to contrecoup injuries that can cause contusions and
edema, which affect FA [56]. Thus, the listing of WM
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Table 5 GM structures listed, in descending numerical order,
according to the percentage of cortical mesh vertices associated
with cortical thickness means which are statistically similar (p <
0.05), across the mTBI and AD cohorts

Structure Part/segment %o

Left Right
Part of the precentral sulcus Superior 91 100
Of the lateral sulcus Horizontal/anterior 75 86
Short insular gyri — 71 83
Orbital gyri — 76 74
Cingulate sulcus Marginal branch 78 71
Frontomarginal gyrus & sulcus — 66 79
Insular long gyrus & central — 76 64

sulcus
Of the lateral sulcus

Straight gyrus
Inferior frontal gyrus
Inferior frontal gyrus
Olfactory sulcus
Inferior frontal gyrus
Cingulate gyrus

Transverse frontopolar gyri &
sulci
Subcentral gyrus & sulci

Superior frontal gyrus
Cuneus

Cingulate gyrus & sulcus
Cingulate gyrus & sulcus
Lateral orbital sulcus
Cingulate gyrus & sulcus
Circular sulcus of the insula
Inferior temporal gyrus
Paracentral lobule & sulcus
Precentral gyrus
Parieto-occipital sulcus
Inferior frontal sulcus
Lingual gyrus

Middle frontal gyrus
Calcarine sulcus
Subcallosal area & gyrus
Cingulate gyrus

Heschl's gyrus

Collateral & lingual sulci
Temporal pole

Central sulcus

Circular sulcus of the insula
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Vertical anterior 72 65

— 74 55
Triangular 63 65
Opercular 59 67
— 57 68
Orbital 55 67
Posterior/ventral 56 65
— 52 69
— 65 53
— 54 62
— 53 63
Anterior 62 50
Middle/anterior 47 64
— 40 69
Middle/posterior 45 62
Superior 53 49
— 55 47
— 58 39
— 34 61
— 47 47
— 28 66
— 46 47
— 35 58
— 47 44
— 55 35
Posterior/dorsal 35 54
— 54 33
— 31 55
— 49 36
— 27 57
Inferior 44 39

Table 5 (continued)

Structure Part/segment %
Left Right
Posterior transverse collateral ~— 38 38
sulcus
Occipital pole — 37 38
Precuneus — 35 38
Suborbital sulcus — 33 37
Superior occipital gyrus — 39 29
Precentral sulcus Inferior 32 35
Postcentral gyrus — 32 32
Supramarginal gyrus — 36 25
Fusiform gyrus — 28 32
Inferior occipital gyrus & — 31 29
sulcus
Anterior occipital sulcus — 23 34
Parahippocampal gyrus — 28 27
Postcentral sulcus — 25 29
Middle temporal gyrus — 24 27
Superior temporal gyrus Lateral 13 35
Middle frontal sulcus — 18 29
Anterior transverse collateral ~— — 6 39
sulcus
Superior parietal lobule — 15 29
Superior & transverse occipital — 34 9
sulci
Superior temporal gyrus Polar plane 32 11
Circular sulcus of the insula Anterior 23 19
Orbital sulci — 17 24
Subparietal sulcus — 16 20
Middle occipital gyrus — 19 16
Lateral sulcus Posterior 16 16
Pericallosal sulcus — 17 13
Lateral occipito-temporal — 18 12
sulcus
Jensen’s sulcus — 12 13
Superior temporal gyrus Temporal plane 13 12
Inferior temporal sulcus — 13 8
Angular gyrus — 14 1
Superior temporal sulcus — 0 14
Superior frontal sulcus — 13 1
Middle occipital & lunati sulci — 4
Intraparietal & transverse — 7

parietal sulci

structures in Table 2 is consistent with the set of WM
fiber bundles that are commonly reported as being af-

fected by TBI-related DAL
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Table 3 lists the BCC, BCF, CF, UF, and CB as
exhibiting significantly lower mean FAs in AD subjects.
Two prominent scenarios for AD-related WM degenera-
tion involve Wallerian degeneration and retrogenesis. In
Wallerian degeneration, AD-related damage initiated in
the GM extends to WM tracts connected to these
degenerating GM areas [57]. By contrast, retrogenesis
postulates that WM fibers undergoing myelogenesis lat-
est during development are the first to degenerate [58].
Many researchers conceptualize AD neurodegeneration
as being due to several competing mechanisms and, thus,
as being the product of both phenomena. In Table 3, the
structure with the fewest voxels exhibiting lower mean
FA in AD is the CST. This agrees with the retrogenesis
model, since the CST consists of long, motor-projecting
fibers which are among the first to myelinate (and thus
among the last to degrade, according to the retrogenesis
model). Importantly, our findings of significantly lower
mean FA in AD subjects in the BCC, BCF, CF, UF, and
CB agree with studies suggesting that frontally- and
temporally-projecting fibers are more susceptible to AD
neurodegeneration [59—62].

Figures 3(a) and 3(b) depict cortical thinning in
the temporal lobes of both mTBI and AD subjects,
respectively. Previous studies suggest that such thin-
ning is characteristic of AD and that it precedes the
Wallerian degeneration of fibers projecting to these
regions. Our study agrees with these findings be-
cause Tables 1 and 2 show both mTBI and AD
victims as exhibiting significantly lower mean FA
than HCs in temporally-projecting fibers like the CB,
BCF, and CF. Thus, our findings agree with previous
studies of AD-related WM neurodegeneration and
may reflect the competing effects of several neuro-
degenerative mechanisms.

Table 4 illustrates how mTBI and AD are similar
from the standpoint of mean FA decreases within
major WM fasciculi. Studies have identified WM
fibers proximal to the brain stem as being commonly
affected by DAI following TBI [55, 63—66]; howev-
er, fibers like the PCT and CST are listed here as
being relatively spared by both mTBI (Table 2) and
AD (Table 3). Instead of appearing to be affected by
TBI, these tracts exhibit damage resembling that ob-
served in AD (Table 4). This may reflect similar
neurodegeneration mechanisms following TBI and
AD [67], and is consistent with the retrogenesis mod-
el as these structures are among the first to be mye-
linated during development [68—70].

Functional neurodegeneration in TBI vs. AD

At the microscale, parallels between TBI and AD have
been identified by neuropathology studies [10, 71, 72].
Similarly, in neuropsychological and cognitive studies,
neural correlates of cognitive deficits observed after TBI
and AD have been found to share commonalities [6, 73].
Nevertheless, few studies have compared the effects of
TBI and AD upon brain architecture at the macroscale,
partly due to the challenges of MRI morphometry in
TBI [74]. The present study found significant similari-
ties between mTBI and AD subjects pertaining to the
cortical thinning in the ACC, PCC, and temporal poles
(Table 5). Our findings are consistent with those of
previous studies [4, 75-78], which independently ex-
amined neurodegeneration after the two conditions.
Such comparisons of cognitive symptoms across TBI
and AD have identified similar deficits in processing
speed, cognitive flexibility, attention, and memory [79].
The ACC and PCC are part of the default mode net-
work, which may be hypoactive after mTBI, resulting in
deficits of divided attention [80]. Similarly, AD studies
of attention suggest that the ACC is involved in
divided attention deficits [81]. Simultaneously,
TBI-related damage to the ACC and temporal
lobes has been implicated in poor self-awareness
due to bilateral hyperactivity within these regions.
Other studies have found strong involvement of
the ACC and temporal poles in functional deficits
pertaining to memory and perceptual ability [82,
83]. In what follows, we discuss potential relation-
ships between deficits within specific cognitive
domains and both AD- and TBI-related neurode-
generation patterns.

Social function deficits

Social function has been studied in the context of con-
cepts like the social brain and the multi-faceted social
network, which includes the orbitofrontal cortex (OFC),
superior aspect of the lateral temporal lobe, the medial
prefrontal cortex (PFC), ACC, and the amygdala [84].
The amount of cortical thinning identified by our inves-
tigation in the OFC was found to be statistically indis-
tinguishable across the mTBI and AD cohorts (Table 5),
which is consistent with studies identifying the OFC as
modulating social function. Specifically, in TBI, the
OFC has been cited as involved in social function
(e.g., emotion recognition), and prominent mTBI-
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related deficits pertain to social function [85-87]. This
type of deficit has also been identified in AD, where
social withdrawal and dysfunction are typical manifes-
tations of the disease [84, 88, 89]. Thus, our findings
suggest that TBI and AD share social function deficits
which may be due to similar spatial neurodegeneration
patterns.

Decision-making deficits

This study found that damage to the PIC, UF, orbital
gyri, and orbital sulci is common in both mTBI and AD
(Tables 3 and 4). Typically, decision-making after TBI
is significantly poorer than in HCs, a phenomenon
which often persists up to 5 years post injury [90]. There
are, however, conflicting findings on how lesion loca-
tion impacts decision-making. In mice, for example,
spatially non-specific associations have been found be-
tween unilateral parietal and bilateral frontal lesions, on
the one hand, and riskier decision-making and increased
impulsivity, on the other hand [91, 92]. By contrast,
however, human studies indicate that decision-making
deficits are not limited to cases involving frontal lesions
[93]. Thus, dMRI studies of patients with mild-to-
moderate blast TBIs have revealed that the compro-
mised integrities of the right UF, right inferior fronto-
occipital fasciculus (IFOF), and right PIC are associated
with decision-making deficits [94]. Aside from TBI,
such deficits are also observed in AD, where structural
changes within ventromedial PFC (vimPFC) are corre-
lated with measurable deficits [95]. Thus, our findings
are consistent with those of prior studies on decision-
making and identify commonalities between decision
making deficits and the neurodegenerative patterns of
TBI and AD.

PS deficits

This study identified similar patterns of WM degrada-
tion across mTBI and AD in the left AIC, UF, CB, ACR,
and GCC (Table 4). Such findings are consistent with
those of previous dMRI studies that revealed correla-
tions between reduced WM integrity in these areas and
relatively low PS [96-99]. In mTBI, lower PS has been
reported as early as 1-month post-injury and has been
documented to persist for up to 6 years post-injury
[100-103]. Commonly, lower PS is coexistent with
other mTBI-related symptoms like fatigue, anxiety,
and attention deficits. In particular, reports of fatigue
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following mTBI are exceedingly common and may be
explained by the coping hypothesis, which states that
compensatory recruitment of areas increases cognitive
load, resulting in fatigue which lowers PS [104-107].
Similar PS reductions have been observed in AD, as
quantified by pause and reaction times [108, 109]. Thus,
our findings agree with those of previous studies which
identified neuroanatomic structure correlates of PS def-
icits in TBI and AD.

Verbal fluency deficits

Our study reports similarities between mTBI and AD
pertaining to global reductions in cortical thickness
(Table 5). Some of these affected structures and regions
(e.g., the left ascending fibers in the CC, the frontal
lobes, the left inferior frontal gyrus (IFG), the left middle
temporal gyrus (MTG), and the left STG have been
identified as being responsible for reduced verbal fluen-
cy [110-112]. Verbal fluency can be broadly classified
as phonemic or semantic, and deficits in both are fre-
quent after TBI, with estimated prevalences of ~70%
and ~87%, respectively, and with comparable magni-
tudes for each [113, 114]. Whereas other deficits fol-
lowing TBI can recover relatively well, verbal fluency
deficits have been suggested to recover relatively poorly
and slowly, since they persist for more than 6 weeks
post-injury [115, 116]. In AD, deficits in both phonemic
and semantic fluency have been observed. Importantly,
the latter is reported as being significantly more im-
paired than the former [117]. Such differences in sever-
ity have been proposed to reflect the increased suscep-
tibility of temporal regions—which have a role in se-
mantic memory—to neurodegeneration following AD
[118, 119]. Figure 2b displays reduced cortical thickness
in the temporal regions of AD subjects, in agreement
with previous studies [16, 120]. Thus, the degradation of
brain regions reported here is consistent with the find-
ings of previous studies reporting relatively slow recov-
ery of verbal fluency after TBI. Together, our findings
indicate that TBI and AD share neuroanatomic patterns
of brain degradation which underlie verbal fluency
deficits.

Executive function (EF) deficits
EF is greatly impacted by both mTBI and AD

[121-124]. Here we identified relatively low mean FA
in the ACCs, GCCs, SCCs, and PICs of both mTBI and
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AD patients compared to HCs (Tables 1 and 2). Re-
duced integrity in these WM structures is correlated with
impaired planning abilities [81, 125], although such
findings are not unanimous across studies [126]. This
may suggest that planning deficits are modulated by
injury severity, particularly since some authors [127]
did not identify planning deficits associated with WM
damage. By contrast, AD patients’ planning deficits
have been documented extensively and there is substan-
tial consensus on their profiles [81, 128—130]. Thus, our
findings of similarly reduced WM integrity in the CCs
of mTBI and AD subjects are consistent with previous
studies tying these areas to EF deficits [131, 132].

Cognitive flexibility deficits

Reductions in cognitive flexibility are often noted
after mTBI and have been documented both acute-
ly and up to 2 months after injury. Our study
revealed reduced WM integrity throughout the
CCs of mTBI and AD patients, in agreement with
investigations of these areas’ involvement in EF.
Inflexibility affects multiple facets of cognition,
including the ability to integrate new information,
to adapt one’s behavior in response to stimuli, and
to switch attention fluidly. Cognitive flexibility is
intimately related to EF, which recruits frontal
cortex and frontally-projecting fibers [122]. Be-
cause of this, similar methods like task switching
have been used to reveal that reduced GM
integrity—particularly in the superior frontal gyrus
(SFG), PFC, precuneus, ACC, and in the fusiform
gyrus—affects cognitive flexibility [133, 134]. In
our mTBI and AD cohorts, reduced cortical thick-
ness was observed in the superior FG, in the PFC,
precuneus, ACC, and in the fusiform gyrus
(Table 5). Thus, our findings support the hypoth-
esis according to which AD and TBI patients share
a previously documented neuroanatomic substrate
of cognitive inflexibility.

Limitations

Although the results of this study support an association
between mTBI and AD, it is imperative that they be
interpreted cautiously because they do not establish a
causal relationship between TBI and AD. Specifically,
because the associations reported here pertaining to the
relationship between mTBI and brain structure are of a

statistical nature, it is important to keep in mind that
these statistical relationships may not be causally linked
solely to TBI. Rather, our findings support the hypoth-
esis that, to some extent, mTBI and AD share some
commonality of trajectories. Furthermore, because the
participant follow-up period is limited to the first ~6
months post-injury, our findings do not reflect the entire
range of TBI progression, nor do they establish whether
and when neurodegeneration trajectories diverge across
the two conditions. To establish such cause—effect rela-
tionships between mTBI and AD, more definitive and
larger prospective studies should evaluate, within a
broader longitudinal design, the cerebral structure of
geriatric mTBI victims. Thus, the possibility that our
findings may in part be due to conditions other than TBI
cannot be discarded and is, in fact, plausible. For exam-
ple, it is important to acknowledge that comorbidities
may influence the structural findings reported here. For
example, in one UK study of geriatric TBI involving
hospital admissions [135], 11% of patients had pre-
existing dementia, 22% had pre-existing hypertension,
and 99% had at least one pre-existing medical condition.
Similarly, Mosenthal et al. [136] report that 73% of
older TBI patients have a medical condition before
injury, compared with only 28% of younger adults.
Third, 80% of all adults aged 65 years and older have
at least one chronic condition and 50% have at least two
[137]. Thus, typically, older TBI patients suffer from at
least one cardiovascular comorbidity, like hypertension.
Pre-existing hypertension is common in geriatric TBI
patients [138] and its association with lower FA com-
pared to normotensive patients [139] may be due to the
adverse effects of hypertension upon the
neurovasculature. CMBs—whose presence can result
in mean FA decreases [140]—are common in geriatric
TBI and can significantly affect peri-hemorrhagic WM
[4]. CMBs are also frequent in cases of cerebral amyloid
angiopathy (CAA), which is a risk factor for AD [141,
142]. Thus, due to the high prevalence of CMB-positive
TBI comorbidities in older adults, it is possible that our
findings of structural similarities between mTBIl and AD
are partially due to pre-existing neurovascular condi-
tions. Thus, ideally, the structural effects of AD and
mTBI should be compared in the absence of CMBs,
which may confound findings. However, this may be
challenging due to the high prevalence of vascular dis-
ease in older adults; furthermore, findings from such
normotensive older TBI patients who are free of vascu-
lar disease may be of somewhat limited applicability to
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most clinical settings because only a relatively modest
cross-section of older individuals lack either symptoms
or post-mortem pathology indicative of vascular dis-
case. Finally, it should be noted that CMB counts,
although reported here, were not included in our analy-
sis of WM degradation because accounting for local
CMB effects is challenging and outside the scope of
this study. The reader is referred to our previous re-
search for findings on this topic [4].

The possibility of unintentional sampling bias is an-
other study limitation that should be acknowledged.
Thus, although random sampling from the entire TBI
population—or at least from the local TBI population—
would have been preferable, such sampling was logisti-
cally unfeasible for us as no comprehensive directory of
geriatric TBI victims was available to us at the time of
the study. Instead, our most viable option was reaching
out to potential volunteers based on referrals from
clinicians.

One technical limitation of this study is that the
JHU WM atlas includes only 25 WM structures and
omits some functionally prominent fascicles. For ex-
ample, superficial WM streamlines—described as typ-
ically short cortical association fibers near the surface
of the cortex [143]—are excluded here. Such connec-
tions are more difficult to segment and more poorly
documented than larger WM structures, and since the
JHU WM atlas does not include them, neither does
our study. Future studies should use atlases that map
more WM structures; in our case, this was beyond the
scope of the study as our primary interest was in the
largest and best-mapped WM structures in the brain.
Another limitation is the fact that MRI data used in
the study were acquired at distinct sites using different
scanners. This is known to confound measurements of
both cortical thickness and WM properties [144, 145],
such that harmonization protocols like ComBat can be
useful [144-146]. Nevertheless, because our MRI ac-
quisition protocol parameters were very similar across
sites and scanners, such confounds may not be sub-
stantial in this study.

Although age-related effects were regressed out in
our statistical analyses, the groups included here did
exhibit significant mean differences of age. These dif-
ferences are partly due to our selection of subjects from
retrospective samples of convenience, such that age
matching across groups was possible to a very limited
extent. Furthermore, because this is a longitudinal study
involving both structural MRI and dMRI of individuals
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with very specific eligibility criteria, only a relatively
small subsample of the ADNI cohort was useful for our
purposes. This also limited our ability to match subjects
by age. Finally, AD occurs relatively rarely before the
age of 65, whereas TBIs can occur at any age. This
implies that comparing AD patients to TBI victims can
be problematic if the latter are relatively young com-
pared to the former. Thus, to some extent, the confound
of age in studies like ours is unavoidable if young or
middle-aged TBI patients are to be compared to AD
patients. Nevertheless, because TBI patients younger
than 65 may still be vulnerable to AD-analogous neu-
rodegeneration (as suggested, in fact, by our study), the
inability to match TBI and AD patients by age may be
unavoidable in studies like ours, particularly if relatively
young TBI patients are studied.

Conclusion

Upon comparing AD patients to mTBI participants
imaged ~6 months post injury, this study identified
statistical similarities between these groups pertaining
to both WM and GM neurodegeneration, as evidenced
by both mean FA and cortical thickness measurements.
Whereas other studies explored the effects of TBI and
AD on the brain without reference to one another, we
directly compare such effects. Furthermore, this study
focuses on chronic mTBI findings rather than on acute
mTBI, thereby providing insight into the medium-to-
long-term effects of mTBI upon macroscale brain
structure. Our findings agree with those of previous
studies of functional and structural correlates in these
conditions, and additionally reveal AD-analogous pat-
terns of neurodegeneration after mTBI, which may be
proportional to AD risk. Thus, our findings are relevant
to ongoing efforts to identify mTBI patients at high
risk for AD. Future studies should quantitatively com-
pare the neurological and neuropsychological conse-
quences of mTBI and AD to further elucidate their
relationship.
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