TABLE 3.
The accuracy of ResNet models for parts and regions identification based on three levels of data sets.
| Data | Code | Type | Epoch | Loss value | Accuracy |
||
| Train (%) | Test (%) | External validation (%) | |||||
| Parts | Resnet-L | Synchronous | 29 | 0.091 | 100 | 100 | 100 |
| Asynchronous | 49 | 0.102 | 100 | 64 | 100 | ||
| Asys | 49 | 0.219 | 100 | 57 | 100 | ||
| Resnet-M | Synchronous | 29 | 0.012 | 100 | 100 | 100 | |
| Asynchronous | 45 | 0.021 | 100 | 88 | 87.5 | ||
| Asys | 49 | 0.021 | 100 | 96 | 100 | ||
| Resnet-H | Synchronous | 29 | 0.009 | 100 | 100 | 100 | |
| Asynchronous | 49 | 0.027 | 100 | 89 | 90 | ||
| Asys | 49 | 0.017 | 100 | 81 | 88 | ||
| Regions | Resnet-L | Synchronous | 29 | 0.114 | 100 | 100 | 100 |
| Asynchronous | 47 | 0.248 | 100 | 50 | 25 | ||
| Asys | 69 | 0.132 | 100 | 54 | 37.5 | ||
| Resnet-M | Synchronous | 29 | 0.030 | 100 | 100 | 100 | |
| Asynchronous | 49 | 0.088 | 100 | 62 | 56.4 | ||
| Asys | 69 | 0.045 | 100 | 61 | 66.7 | ||
| Resnet-H | Synchronous | 27 | 0.009 | 100 | 100 | 100 | |
| Asynchronous | 48 | 0.011 | 100 | 63 | 62.7 | ||
| Asys | 47 | 0.020 | 100 | 55 | 64 | ||
Note: The bold value are the optimal results of models under the certain data set.