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Understanding why some species thrive in captivity, while others struggle to
adjust, can suggest new ways to improve animal care. Approximately half of
all Psittaciformes, a highly threatened order, live in zoos, breeding centres
and private homes. Here, some species are prone to behavioural and repro-
ductive problems that raise conservation and ethical concerns. To identify
risk factors, we analysed data on hatching rates in breeding centres (115
species, 10255 pairs) and stereotypic behaviour (SB) in private homes
(50 species, 1378 individuals), using phylogenetic comparative methods
(PCMs). Small captive population sizes predicted low hatch rates, potentially
due to genetic bottlenecks, inbreeding and low availability of compatible
mates. Species naturally reliant on diets requiring substantial handling
were most prone to feather-damaging behaviours (e.g. self-plucking),
indicating inadequacies in the composition or presentation of feed (often
highly processed). Parrot species with relatively large brains were most
prone to oral and whole-body SB: the first empirical evidence that intelli-
gence can confer poor captive welfare. Together, results suggest that more
naturalistic diets would improve welfare, and that intelligent psittacines
need increased cognitive stimulation. These findings should help improve
captive parrot care and inspire further PCM research to understand species
differences in responses to captivity.

1. Introduction

When kept by humans, why do some species thrive, yet others struggle? This
question has been relevant since the dawn of domestication. Today, with wild
populations under increasing threat, and captive populations dominating
some taxa, it has both conservation and welfare implications. Many wild
animal species enjoy impressive lifespans and breeding success when kept in
z00s, breeding centres or people’s homes [1]. Yet others are prone to behavioural,
health and reproductive problems (e.g. [2,3]), raising ethical concerns when
indicative of stress, and conservation concerns if captive populations become
non-sustainable (e.g. [4-6]). Parrots illustrate such issues well. For this highly
threatened order, in which >40% of species are threatened or near threatened
[7], captive populations equal wild ones in size (each around 50 million;
J. Gilardi, World Parrot Trust, 2020, pers. comm.), spanning zoos (for a few thou-
sand individuals [8]), breeding centres (for tens of thousands [9]) and private
homes (for tens of millions [10]). Here, some species do well. Captive cockatiels,
Nymphicus hollandicus, for instance, typically breed well [11] and show little evi-
dence of stress [12,13]. Others, in contrast, despite living in similar conditions, are
prone to disease (e.g. [14]), apparently shortened lifespans [15] and poor
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reproduction (with yellow-faced Amazons, Amazona xanthops,
among the many showing just a fraction of their wild
reproductive outputs [8,16]). Such problems may reflect dele-
terious effects of genetic bottlenecks [17,18] and/or captivity-
induced stress [18-20]. More specific evidence of stress comes
from the abnormal, repetitive, ‘stereotypic’ behaviour [21-24]
common in some species. For example, 10-15% of pet parrots
show feather-damaging behaviour (FDB), chewing, plucking
and/or ingesting their own feathers [12,25] in ways that com-
promise flying and thermoregulation, and even cause tissue
damage[12,13,26]. FDB prevalence can be 40% in some species
(e.g. grey parrots, Psittacus erithacus), yet in similar living con-
ditions, other species (e.g. Senegal parrots, Poicephalus
senegalus) rarely display it [12,13,27-29].

Phylogenetic comparative methods (PCMs) developed
by evolutionary biologists can reveal why species show
such variation. PCMs allow multi-species datasets to be
statistically analysed to identify attributes that predispose cer-
tain taxa to problems in captivity, while controlling for
similarities arising from evolutionary relatedness (e.g. [3,5];
see electronic supplementary material, figure S1 for an
illustration). One potential such attribute is the degree of
difference or ‘mismatch’ [30,31] between typical wild and
captive environments. This determines the extent to which
captivity constrains animals’ natural behaviours, which can
cause frustration (e.g. [32,33]). A second is phenotypic plas-
ticity, which, if high, can enable animals to adjust to such
mismatches (e.g. [2,5,31]). A third is a species’s conservation
status (endangeredness), which can predict vulnerability to
both poor welfare [2,31] and problems induced by small popu-
lation sizes per se (e.g. inbreeding [34]). All three potential risk
factors make predictions that are testable in parrots.

For parrots, major mismatches exist between captive and
wild environments in social complexity, and in the opportu-
nities available for foraging, decision-making and cognitive
problem-solving. Most parrots are naturally highly social
[35,36], and social contact is often crucial for animal welfare
[37,38], yet captive parrots frequently live with little or no
access to conspecifics [35,39,40]. If this causes stress, then
naturally highly social species should be most at risk of wel-
fare problems in captivity. Turning to foraging, wild parrots
spend 40-75% of their active time in this behaviour [41-43],
yet captive birds face spatial restrictions, dish feeding and
processed diets which constrain opportunities to search for,
select and manipulate food [40,44], a mismatch suggested
to reduce parrot welfare (e.g. resulting in FDB [13,26,45]).
This hypothesis predicts that species with naturally time-
consuming foraging will be most at risk of welfare problems.
A final major mismatch is that captivity constrains opportu-
nities to explore, make decisions and problem-solve (e.g.
[31,37,46]). This has been argued to compromise welfare in
large-brained, intelligent species (e.g. great apes, elephants
and cetaceans [31,47,48]), and in naturally generalist species
said to risk ‘boredom’ in captivity [49,50]. Parrots often
resemble primates in relative brain size (i.e. encephalization),
neuron number and cognitive abilities [51,52]. Many are
also naturally opportunistic omnivores. This third mismatch
hypothesis thus predicts that captive species with high
degrees of generalism and intelligence will be most at risk
of welfare problems.

However, intelligence and generalism could instead be
protective, because they promote behavioural plasticity. In
the wild, large-brained innovators are good at coping with

human-induced rapid environmental change, HIREC (e.g. [ 2 |

urbanization, translocation and climate change), thanks to
their behavioural flexibility [31,53-56]. Further forms of plas-
ticity are protective too: species with broad dietary or habitat
niches have proved easier to domesticate, and cope better
with HIREC than those with narrow niches [57-59]. Consist-
ent with this idea, one author proposed that ‘less specialised
animals ... settle down most easily in zoos, and exhibit less
disturbed behaviour” [60]. The hypothesis that behavioural
plasticity pre-adapts animals to adjust to captivity [31] thus
generates an alternate set of predictions about traits confer-
ring risk, with small-brained, specialist parrots being most
prone to welfare problems.

The final type of potential risk factor is an endangered
conservation status. Traits common in threatened species—
especially timidity, wide-ranging lifestyles and low behav-
ioural plasticity—may put them in ‘double jeopardy’: both
vulnerable in the wild and at risk of stress when captive
[2,31]. Furthermore, the small population sizes of rare species
can cause further issues, such as the increased expression of
deleterious alleles (e.g. [17,61]). Consistent with such poten-
tial problems, endangered bird species may be harder to
breed than their non-endangered relatives [62], and endan-
gered parrot species are also disproportionately rare in
private breeding centres [9], zoos [63] and the pet trade [7].
We therefore tested two further hypotheses: that rarity pre-
dicts breeding problems, and that threatened parrots are
most at risk of captivity stress.

To test these hypotheses, we sought high-quality data for multiple
species (required when using PCMs). For stereotypic behaviour
(SB), we looked to the largest captive sector, pet parrots [8-10],
running an online survey for pet owners for 15 months (www.
parrotsurvey.com). Following quality controls (see below and
electronic supplementary material), this generated data on 1378
individuals across 50 species. For each species, we calculated the
prevalence of FDB, other oral SBs (e.g. biting/mouthing the
cage bars) and SBs involving the head or body (e.g. route-tracing,
head-twirling). The survey also collected detailed information on
species-typical demographic and husbandry characteristics (see
below and electronic supplementary material, table S1), which
could potentially be highly influential and even act as confounds
(see ‘Statistical procedures and analyses’)

For reproductive success, pet owners could not supply
data as they seldom bred their birds. Instead, we obtained cap-
tive hatch rates from the Psittacine Captive Breeding Survey, a
1991 census of over 31 000 parrots in 1183 private breeding col-
lections by TRAFFIC USA [9]. Their contemporary relevance
was confirmed via independent ratings from a present-day
aviculturalist (see electronic supplementary material). These
records enabled us to calculate chicks hatched per breeding
pair per year for 122 species, which, after quality controls (see
electronic supplementary material), yielded values for 115
species. To control for species differences in life history
[5,58,64], data on natural fecundity were obtained for inclusion
in models (product of the median eggs per clutch and clutches
per year [16,65]; see ‘Statistical procedures and analyses’). All
species-typical values for SB pet population characteristics and
breeding output in private breeding centres are given in the
electronic supplementary material, table S2.
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(b) Potential predictors: captive-wild mismatches, traits
conferring behavioural plasticity and
endangeredness

We collated data on sociality in the wild (maximum group size
when foraging; use of communal roosting when sleeping); reliance
on extensive foraging in the wild (inferred from the percentage of
the natural diet requiring prolonged food search or handling); and
indicators of behavioural plasticity (habitat and diet niche breadths;
feeding innovation rate; relative brain size [encephalization], a
marker of intelligence). Our two measures of endangeredness
were threat level according to IUCN Red List categories and ex
situ rarity: captive population sizes in private breeding centres.
Descriptions of each are provided in table 1 (plus sources used);
species-typical values are given in the electronic supplementary
material, table S3 (with fuller details available via links provided
in the electronic supplementary material).

(c) Statistical procedures and analyses

(i) Data analysis: general methods

All analyses were performed in R [88], with alpha set at 0.05.
To control for species non-independence (e.g. [89-91]), we used
phylogenetic generalized least-squared (PGLS) regressions in
‘caper’ [92] for continuous outcomes and phylogenetic logis-
tic regressions in ‘phylolm’ [93] for binomial outcomes. Before
hypothesis-testing, we constructed a consensus phylogenetic
tree (electronic supplementary material, figure S2) from 1000
BirdLife parrot trees (Hackett backbone) [94,95] in ‘phytools’
[96]. We first used this to run PGLS models for our 50 pet species
assessing potential confounds between predictor variables and
key captive population characteristics that could influence SB
(e.g. lack of enrichment, being housed alone; see electronic sup-
plementary material, table S1). Along with a treeblock, it was
then used in hypothesis-testing models as described next.

(i) Hypothesis testing
Each predictor was regressed against our outcome variables
(table 1 for details). Following [97], any captive population
characteristic emerging as significantly confounded with a pre-
dictor variable (see electronic supplementary material, table 54)
was included in the relevant hypothesis-testing model for SB
(see below). In all breeding centre hatch rate models, natural
fecundity was included to control for species differences in life--
history traits [5].

To check that any findings were robust, we then added three
further steps:

(i) We investigated relationships between the predictor vari-
ables used to test different hypotheses (see electronic
supplementary material, table S5), then assessed whether
any collinearity detected could artefactually account for
or obscure any initial findings.

(i) To account for phylogenetic uncertainty [98], analyses
were repeated over a ‘tree block” of the 1000 parrot phylo-
genetic trees. This improved parameter estimation and
generated 95% confidence intervals (CIs) (e.g. [94,98]).

(iii) To assess whether any significant findings merely reflected
outliers, we used a custom version of the influ_phylm
function within the ‘sensiPhy’ package [99]. This performs
‘leave-one-out’ deletion analyses (removing each species
in turn and recalculating the intercept, slope and corre-
sponding p-value for each parameter), a species being
deemed ‘influential” if its removal yielded a standardized
difference > 2. This revealed whether any results critically
relied on the influence of just one or two particular
data points.

3. Results

Different species varied greatly in the prevalence of SB and
how their captive hatch rates compared to wild fecundity
(see electronic supplementary material, table S2); some
hypothesized predictors explained this variance. Summar-
ized results of all final hypothesis-testing models are shown
in table 2 (with full model outputs presented in electronic
supplementary material, table S6, and further details in
electronic supplementary material, table S7). Tests of our
‘mismatch’ hypotheses yielded the following. Constraints
on natural social interaction did not seem to predict problems
in captivity: naturally more social species were not more at
risk of more SB or poorer captive hatch rates. Restricting natu-
ral foraging behaviours, in contrast, emerged as important for
abnormal behaviour: species naturally reliant on diets requir-
ing extensive handling had a higher FDB prevalence (partial
R2=0.16; table 2 and figure 1), a result that ‘leave-one-out’
analyses showed was robust (electronic supplementary
material, table S7). Furthermore, there was evidence that
one type of behavioural plasticity is an additional risk
factor: species with relatively large brains had higher preva-
lences of both whole-body and oral SB (partial R*=0.19
and 0.26 respectively; figure 2 and table 2). ‘Leave-one-out’
analyses showed that both these effects were also extremely
robust (see electronic supplementary material, table S7).

Finally, turning to endangeredness (rarity and threat
level), these did not significantly predict SB (table 2; elec-
tronic supplementary material, table S6). However, the
number of breeding pairs present within each species’s avi-
culture population did predict captive hatch rates, small
populations having significantly poorer reproductive outputs
(table 2; electronic supplementary material, table S6). This
result was extremely robust to species’ removal (electronic
supplementary material, table S7). IUCN Red List category
also appeared to predict captive breeding success, with
more endangered species having lower hatch rates, if the con-
found of foraging group size was statistically controlled for
(table 2; partial R?=0.06). However, this result was vulner-
able to species’ removal, reliant on the influence of just two
key species; it was thus not robust.

4. Discussion

Our results confirmed that PCMs can test otherwise intractable
hypotheses about causes of poor welfare, so yielding new
insights for improving wild animal care and captive breeding.
The strongest effect in our data was that psittacines with rela-
tively large brains were most prone to two categories of SB.
Encephalization, our marker of intelligence, thus explained
over 25% of the variance in oral SBs not directed at feathers
(e.g. repetitive biting at cage bars), and nearly 20% of the
variance in whole-body forms like route-tracing (the most
common SB, affecting 45 of our 50 pet species and 23.2% of
individuals). A larger relative brain size reflects a larger pal-
lium, which is associated with general cognition [84] (and
homologous with the neocortex, critical for general intelligence
in primates [81]). It predicts greater behavioural flexibility in
the wild (e.g. [53]) and thence improved establishment success,
even invasiveness, in bird populations translocated to novel
wild environments [53,54]. Being placed in a novel captive
environment clearly poses a very different challenge for
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Figure 1. Species reliant on wild diets needing extensive handling have more prevalent FDB. Each data point is a species; the model contained other predictor
terms (table 2; electronic supplementary material, table S6), and so predicted rather than raw values of FDB are shown; the shaded area shows the 95% CIs of

the slope.

parrots: one where intelligence is a harm rather than a benefit.
Species particularly prone to these SBs thus included monk
parakeets, Myiopsitta monachus, highly successful invaders in
the wild [100-102], and blue-and-yellow macaws, Ara ararauna,
whose forebrains are more neuron-rich than those of rhesus
monkeys, Macaca mulatta [51].

Despite strongly predicting SB in birds kept as pets, ence-
phalization did not predict poor reproduction in breeding
centres. We suspect this reflects the differential sensitivity
and specificity of these two welfare indicators. SBs have
very good specificity, reliably indicating sub-optimal rearing
(e.g. [103]), aversive current treatments [85,104] and recurrent
stressors over the lifespan (e.g. [85]). However, SBs have poor
sensitivity: their absence does not always indicate good wel-
fare, because inactivity is an alternative response in some
genotypes (e.g. [105,106]). Our results could thus reflect
that larger- and smaller-brained species do not differ in
their degrees of stress, but instead in how they display it,
with smaller brained species expressing poor welfare hypo-
actively (e.g. with apathy) instead of hyper-actively via SB.
Alternatively, however, that relatively large brains did not
predict poor reproduction could well be a false negative
result. This seems likely because, while reproductive pro-
blems can reflect stress [20,107], they have poor specificity
as stress indicators, being affected by multiple other factors
(including genetic bottlenecks [17,61], a lack of appropriate
imprinting opportunities and artificial incubation (e.g. [117]),
all factors that would add noise to our analyses which we
could not parse out (so increasing chances of Type II error).
Furthermore, recent evidence suggests that parrot species
which commonly breed in captivity tend not to be invasive
if released [102], consistent with them being smaller brained,
and that birds become less encephalized with domestication
(e.g. [108]), consistent with large brains being selected
against in captivity. We therefore suspect that the lower SB
of smaller-brained species does indicate that they adjust
better to captivity than do larger-brained species.

Further work is now required, but these findings still
provide the first empirical evidence that intelligent species
can have unmet welfare needs in captivity. That captive

conditions can be predictable, monotonous and unchallen-
ging is often argued to reduce well-being in intelligent
mammals (e.g. [31,47,48]), and intelligent species often attract
special welfare protection e.g. those afforded to primates over
other mammals (e.g. [109] when used in research). Our
results suggest such concerns are well-placed and should
now extend to large-brained birds, with parrots (perhaps
also corvids [110]) being given care better tailored for intelli-
gent species. As for precisely what large-brained species lack
in captivity, opportunities for exploration, learning and
agency are all possibilities. Their absence could cause the
diverse array of SBs shown by large-brained parrots by com-
promising normal brain development [21], by promoting
boredom (aversive states caused by monotony [37,111]) and
resulting attempts to self-stimulate [104,106]), and/or by
enhancing birds’ motivations to escape (as underlie some
mammalian SBs [21]; a concerning possibility given these
larger-brained parrots’ invasiveness). Opportunities for cog-
nitive stimulation must therefore urgently be investigated,
to identify the most effective ways to improve these parrots’
well-being (e.g. [46,112]).

FDB, which affected 20.8% of our population, was instead
predicted by naturally relying on food items in the wild that
need extensive handling (inferred from diet type, since cross-
species data on handling time budgets were unavailable).
This metric explained 16% of the variance in FDB prevalence.
One likely explanation is that parrots remain motivated to
perform food handling even when captive diets do not
require it, then redirecting these movements to their own
feathers [21,26,113]. Alternatively, captive diets may lack the
nutrients or cellulose/chitin present in nuts, tree seeds and
invertebrates (potentially then altering the gut microbiome),
parrots then ingesting feathers in attempts to rectify these
deficits (cf. such effects in hens, Gallus gallus domesticus:
[114,115]). More research is now needed to identify the pre-
cise mechanisms underlying FDB, but for now this finding
highlights the likely importance of less processed, more
naturalistic diets for parrot welfare; helps explain why fora-
ging enrichment seems one of the more effective strategies
for tackling parrot FDB [116]; and echoes experimental
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Figure 2. (a) Species with large brains (relative to body mass) have more prevalent whole-body SB. (b) Relatively large-brained species also have more prevalent

oral SB. See figure 1 legend for explanation.

work in hens showing that feather-pecking involves the fixed
action patterns used in feeding [113].

Turning to reproduction, we found no evidence that breed-
ing success is affected by the degree to which captivity restricts
natural behaviours. Further research is needed to determine
whether this is a true negative, or (as we suspect) a false one
caused by the multiplicity of other influences on captive repro-
duction. Nevertheless, we did find cautious support for an
untested hypothesis raised three decades ago. Derrickson &
Snyder [62] suggested that endangered species are harder
to breed in captivity than their non-endangered relatives
(their examples including whooping cranes, Grus americana,
being harder to breed than their common relatives, greater
sandhill cranes, Antigone canadensis tabida). Their hypothesis
was plausible in part because small captive populations are
so vulnerable to genetic drift and inbreeding [17,18,61], and
to shortages of compatible mates and other management
issues [117]. Consistent with this, our one robust finding related
to population size: species represented by only a few pairs in
captivity had the poorest reproductive rates relative to natural
fecundity. How and why rarity and poor captive breeding are
linked requires further study—ideally in present-day breeding
centres, and incorporating data on the various management
practices that could obscure underlying stress effects.

In sum, we successfully used PCMs to test hypotheses
about the risks to captive psittacines posed by key discrepan-
cies between natural and captive environments, degrees of
behavioural plasticity, and aspects of rarity. As a highly threa-
tened order, in which half of all individuals live in captivity,
ensuring good captive welfare is a conservation imperative.
In private homes (a sink of tens of millions of non-breeding
individuals), a large proportion of birds show SBs indicative
of poor welfare. To prevent these, our results suggest that
care should improve to supply these wild animals with natur-
alistic food items and cognitive stimulation. If redressing
these deficits is impossible, then perhaps the keeping of
(potentially invasive) intelligent species with naturally

handling-intensive diets should cease. Further, the significant
impact of encephalization indicates for the first time that in
this taxon, intelligence, which is so protective in the wild, is
the opposite in captivity. Whether similar effects operate
across captive primates and cetaceans should now be investi-
gated: topics ideal for future PCMs. Further work is also
needed to understand why small captive population sizes
predict low hatching rates, and what else explains the sub-
stantial variation in captive reproductive success across
parrots. This is highly urgent because, even today, avian cap-
tive breeding centres often ‘suffer notably high levels of
hatching failure’ [117]. More broadly, we recommend that
PCMs—with their abilities to interrogate multi-species data-
sets and address hypotheses that would otherwise be
challenging to test—are increasingly used to understand
why it is that some species thrive, yet others struggle, when
kept in human care.
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