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Abstract
Non-small-cell lung cancer takes up the majority of lung carcinoma-caused deaths. It is reported that targeting PD-1/PD-L1, a
well-known immune evasion checkpoint, can eradicate tumor. Checkpoint inhibitors, such as monoclonal antibodies, are
actively employed in cancer treatment. Thus, this review aimed to assess the therapeutic and toxic effects of PD-1/PD-L1
inhibitors in treatment of NSCLC. So far, 6 monoclonal antibodies blocking PD-1/PD-L1 interaction are identified and used in
clinical trials and randomized controlled trials for NSCLC therapy. These antibody-based therapies for NSCLC were collected
by using search engine PubMed, and articles about the assessment of adverse events were collected by using Google search.
Route of administration and dosage are critical parameters for efficient immunotherapy. Although antibodies can improve
overall survival and are expected to be target-specific, they can cause systemic adverse effects in the host. Targeting certain
biomarkers can limit the toxicity of adverse effects of the antibody-mediated therapy. Clinical experts with knowledge of
adverse effects (AEs) of checkpoint inhibitors can help manage and reduce mortalities associated with antibody-based therapy
of NSCLC.
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Introduction

Lung cancer is the foremost reason for deaths related to

cancer in the United States. According to statistics of the

year 2019, the death toll related to cancers of respiratory

system will exceed one-tenth of a million. There are several

new treatment regimens endorsed by NCCN Clinical Prac-

tice Guidelines in Oncology (NCCN Guidelines) for the

management of non-small-cell lung cancer (NSCLC)1.

Cancer cells are identified by the immune system, especially

T-cells for control or elimination depending on receptors that

strengthen the antitumor efficacy2. Such cells take part in

multiple mechanisms to prevent this immune attack. PD-1

pathway is one mechanism for immune escape in several

mouse tumor models. Manipulating such mechanism can

allow the immune system to eliminate tumor3.

Over the past two decades, monoclonal antibodies

(mAbs) have emerged as successful therapeutic agents for

cancer in a multibillion-dollar market4,5. Recently, Relatli-

mab, Omburtamab, Etigilimab, Enoblituzumab and Tirago-

lumab are actively employed mAbs as immune checkpoint

inhibitors (ICIs) at clinical level6. Programmed cell death

protein (PD-1), a 288 amino acid, is a surface molecule often

designated as a membrane protein that is expressed on

immune cells including dendritic cells. Programmed death

ligand 1 (PD-L1), a major PD-1 ligand and 40-kDa type 1

transmembrane protein, is often expressed in several types of

malignant tumors and is related to survival and tumor pro-

gression7,8. PD-1 can interact with PD-L1 and result in the

release of signals that can regulate T-cell mediated
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immunity9. This interaction ensures that immune system is

activated at the proper timing and thereby the chances of

chronic inflammation are reduced10. Cancer cells express

proteins including PD-1 on their surface to trick the immune

cells and evade their detection, and this action can stop a

cytolytic activity11. An increase in PD-1 expression is con-

sidered as a hallmark for exhaustion of T-cells12. Notably,

according to a meta-analysis based on randomized con-

trolled trials, higher PD-L1 level in NSCLC cells is related

to better efficacy of treatment by PD-1/PD-L1 inhibitors13.

Blockade of PD-1/PD-L1 pathway can cause limited toxi-

city compared to CTLA-4 blockade14. Blockade using

monoclonal antibodies is a recently well-studied immune

checkpoint inhibition and is used as a therapy for a variety

of diseases including cancers of multiple origins15. This

blockade of PD-1 using antibodies is now applied to treat

patients with recurrence of cancer16. Although therapeutic

targeting of PD-1/PD-L1 axis using ICIs can be more effi-

cient than conventional chemotherapy, it can cause immune

system related adverse effects (irAEs) predominantly in the

digestive system, and these effects can be systemic. Drug

resistance emerged with the blockade by ICIs is considered

as a consequence of the progress of tumor neoantigens and

the increase in immune checkpoint proteins that are not

related to PD-1/PD-L1 axis17–19.

Therefore, present review focuses on therapeutic roles

and toxicity of ICIs targeting the PD-1/PD-L1 axis for clin-

ical management of NSCLC. Clinical trials and randomized

controlled trials of past decade were searched from PubMed

for therapy and toxicity of ICIs in management of NSCLC.

PD-1/PD-L1 Axis As A Target for Therapy of NSCLC:

The blockade of PD-1 and PD-L1 ligation can relieve the

dysfunction, exhaustion, and tolerance of T-cells, so it has

been proved to be a successful way to fight against cancer20.

Yet, the antibodies may or may not have similarity in their

binding sites on PD-121. Relapse in disease can occur in

patients with primary or acquired resistance to the antibody-

based monotherapy and new approaches are employed

recently to avoid or overcome the resistance to such therapy22.

Genetic polymorphisms in PD-1 loci can increase the chances

of developing several autoimmune disorders. PD-1/PD-L1

expression may vary with specific types of tumor so PD-1/

PD-L1 can act as prognostic or diagnostic markers in several

cancers. Therefore, several biomarkers such as elevated lym-

phocytes and eosinophils, low levels of circulating tumor

DNA, and lactate dehydrogenase can help predict the

responses to ICIs. Tumor mutational burden related to genes

such as Polybromo-1 can also serve the purpose23,24.

Emerging Roles of Monoclonal Antibodies
at the Nanoscale:

As is known, mAbs are roughly 10 nm in size and possess

unique properties. Dynamic light-scattering is used to

analyze antibody formulations at the nanoscale. To serve

therapeutic purposes, their affinity should be 1 nM or less

for a specific antigen. They are absorbed via lymphatic sys-

tem depending on convection and diffusion. These are plau-

sible mechanisms for the uptake of mAbs25–27. Glass and

silica microparticles can adsorb mAbs via surface layering

of 4-nm thickness28. Nanoparticles conjugated with antibo-

dies are effectively delivered to their targeted site because of

the size around 50 nm29. Administration of antibody-coated

nanoparticles through subcutaneous route at fixed and opti-

mized doses can improve targeted delivery and prevent

irAEs30,31. Supportive of the fore-mentioned information,

PD-L1 antibodies are conjugated onto copolymer nanoparti-

cular surface and loaded with chemotherapeutic drugs to

achieve targeted therapy and inhibition of PD-L1 expression

in cancer cells32. Lipids, polymers and metal-based nanopar-

ticles with an ideal size of 200 nm have been used in

specific-targeting of lung cancer cells33.

Role of Biomarker Validation

Biomarkers can improve the specific targeting of tumor

associated antigens and decrease systemic toxicity34. Tumor

mutational burden, tissue polypeptide-specific antigen, and

immunohistochemistry assays are valuable tools in biomar-

ker validation for early detection of cancer35–38. PD-L1 test-

ing based on immunohistochemical platforms such as Dako

and Ventana are used with four FDA approved antibodies for

binding with precise epitope of PD-L1. Antibodies such as

22C3, 28–8, SP263 and SP142 are used to identify patients

who can respond to immunotherapy for PD-L1 positive

NSCLC39,40. Elevated expressions of PD-L1 is optimum for

treatment using ICIs13. At a safe dose, combinatorial therapy

of mAbs with other drugs can increase the OS of patients

with NSCLC. Statuses of other oncogenes such as EGFR,

ALK, KRAS, MET, ROS1, BRAF, and NTRK are critical in

identification of specific ICIs for NSCLC41,42. Host micro-

biomes are tested and used as alternative biomarkers for

NSCLC43. Also, several biomarkers are discovered to pre-

dict or influence the toxicity of PD-1/PD-L1 inhibitor-based

therapy. For example, cytokines such as IL1Ra, IL-1a/b, IL-

2, IL12p70, IL-13, GM-CSF, G-CSF, fractalkine, and IFN-

a2 are proved as biomarkers highly expressed in patients

having severe irAEs during ICI treatment44. TIM3 is proved

to hinder anti-cancer immunity and regulate resistance to

PD-1 and PD-L1 inhibitors45. The TLR3-specific adjuvant

alleviates resistance to therapy using PD-L1 antibody with-

out toxicity46. Targeting gut microbiota is reported to

enhance efficiency and decrease toxicity of current therapy

depending on various agents including anti-PD-L147.

Clinical and Randomized Controlled trials for NSCLC
Therapy using ICIs Targeting the PD-1/PD-L1 Axis:

Atezolizumab, avelumab, durvalumab, cemiplimab, nivolu-

mab, and pembrolizumab are fully humanized IgG1 and IgG4
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antibodies that target the PD-1/PD-L1 axis in combinatorial

first-line treatment of NSCLC. They can elicit anti-tumor

effects through mechanisms involving adaptive and innate

immunity48–53. The search was performed in PubMed using

the filter of 2010 to 2020 for clinical trials and randomized

controlled trials in treatment of NSCLC targeting the PD-1/

PD-L1 axis. A total of 8 trials were identified as a result of

the search. We summarized the characters, applications and

toxicities of 5 antibodies from the 8 researches in Table 1.

The results indicated that the median overall survival (OS)

was improved in Phase 2 and 3 trials using atezolizumab by

more than 4 months versus docetaxel; increasing OS was

coupled with higher PD-L1 level in NSCLC patients, and

the adverse event profile for atezolizumab was more favor-

able than docetaxel 54,55. In an open-label Phase 3 trial,

avelumab improved the median OS by one month in com-

parison with docetaxel, which was insignificant; high PD-L1

expression in NSCLC patients was related to longer OS; and

the ratio of treatment-related adverse event in patients

receiving avelumab treatment was generally lower than

those receiving docetaxel56. There was no report for durva-

lumab and cemiplimab according to the search. Yet, trials at

various phases are ongoing for the treatment of NSCLC

using cemiplimab57. Nivolumab had an OS of more than

40% after one year in a Phase 2, single-arm trial in NSCLC

patients; the treatment-related immune-mediated adverse

events after nivolumab treatment were neither frequent nor

severe and the toxicity of nivolumab was weaker than toxic

chemotherapy58. In combination with other chemotherapeu-

tic interventions at Phase I level, nivolumab treatment

resulted in OS of 12.2 and 17.4 months; combined use of

other drugs did not lead to higher risk of nivolumab-related

immune-mediated adverse events and these adverse events

are generally manageable59,60. Pembrolizumab in combina-

tion with ipilimumab improved the OS compared to standard

chemotherapy61. The median OS was more than 10 months,

but the combined use of pembrolizumab and ipilimumab

may lead to a higher risk of adverse events62.

Systemic Toxicity of ICIs

The Immune-Related Adverse Events (irAEs) of ICIs

increase at higher doses63. Inhibitors of PD-1/PD-L1 axis

can cause systemic toxicities. PD-1 interacts with its alter-

nate ligand PD-L2 when its expression is elevated in certain

organs. This can result in resistance, survival or growth of

tumor cells by T-cell inactivation, leading to an increase in

toxicity (Fig. 1). The irAEs of ICIs include colitis, diarrhoea,

hormonal imbalances, hypothyroidism, diabetes, acute

injury to kidneys, pneumonitis, and myocarditis. Hepatic,

pulmonary, and dermatological reactions such as pruritus

and rashes are also evident18,64,65,66–70.

Atezolizumab can induce systemic toxicities comparable

to other PD-1 inhibitors such as avelumab and durvalumab

by interacting with PD-L1, but is different from the irAEs of

conventional chemotherapy. This can avoid interaction of

PD-1 with PD-L1. 20 mg/kg is the tolerable dose in clinical

trials involving atezolizumab and avelumab intended for

NSCLC therapy at Phase I50,71–74. Nivolumab at 3 mg/kg

was the optimum dose in combination with ipilimumab (1

mg/kg) for treatment of NSCLC75. The 2-year OS for this

antibody (5*10 mg/kg) did range between 25*62% based

on the combinatorial agent used76,77. Pembrolizumab can

cause thyroid dysfunction and even fatal pneumonitis in

NSCLC patients78,79.

Toxicity of ICIs on Different Systems of the Human
Body:

Fatigue of all grades is one of the common irAEs induced by

ICIs80. Macules and papules are skin-related irAEs of grade

1 and 2. Vitiligo-like depigmentation is related to grade 3 or

4 symptoms81. With incidence lower than 1%, AEs of ICIs

associated with cardiovascular system are myocarditis, peri-

carditis, cardiac fibrosis, cardiac arrest, arrhythmias, heart

failure, large pericardial effusion, tamponade and Takotsubo

syndrome. Electrocardiogram, troponin monitoring and

diagnosis of myocarditis are baseline tools to detect abnorm-

alities related to heart82–84. Disorders of the coagulation-

fibrinolysis system can occur85. Grade 1 to 4 diarrhoea and

colitis are lower GI-based irAEs. ICIs can induce upper GI

tract toxicity, resulting in decline of appetite and nausea86,87.

Esophagitis, gastritis, duodenitis, and jejunitis are other

upper GI tract-associated irAEs88. Thyroid dysfunction and

hypophysitis are the major toxicities associated with the

endocrine system, although the effects can be systemic89.

Pneumonitis is a late grade irAE in NSCLC patients90. Other

pulmonary events such as dyspnoea, hypoxia and lung opa-

cities were also observed91. Polyneuropathy, myasthenia

gravis, Bell’s palsy and encephalopathy are neurological

irAEs92. Loss of skeletal muscle mass and proteinuria are

other irAEs of ICIs for NSCLC (Fig. 2). These irAEs are

enlisted in Table 2.

The toxicities associated with immunotherapy may be

autoimmune (on target, off-tumor toxicity) or cytokine-

associated. The mechanisms related to such toxicities may

vary from the reactions similar to immune system-related

allergies to the auto-immune reactions, such as reactions

observed in chemotherapy or the entry of T-cells into central

nervous system. There are several tests that individually

identify the irAEs specific for each organ by detecting the

specific antigens on toxicity-induced organs using specific

antibodies. Steroids and other immunosuppressive agents are

used for management of such irAEs93,94.

Challenges and Future Directions for Therapy
of NSCLC using Checkpoint Inhibitors:

Resistance of NSCLC cells to available drugs can limit the

therapeutic potential of a drug and therefore requires proper

management to control progression95. Immune escape and

evasion in NSCLC patients play a critical role in cancer

Chen et al 3



Table 1. Characters, application and toxicities of antibodies against PD-1/PD-L1 summarized based on 8 clinical trials.

Antibodies Descriptions

Atezolizumab Characters Humanized IgG1 monoclonal anti-PD-L1
Blocks the interaction of PD-L1/PD-1 and PD-L1/B7.1 and leads to anti-tumor T-cell activity restoration and

strengthened T-cell priming.
Application Patients: n ¼ 142 (Phase 2 trial); n ¼ 609 (Phase 3 trial)

Dose: 1200 mg fixed dose every 3 weeks on day 1 of each 3-week cycle
Toxicity Phase 2 trial:

Median OS: 12,6 months
Patients with AEs: 96%
Common AEs:
Pneumonia, increased aspartate aminotransferase, increased aspartate aminotransferase, increased alanine

aminotransferase, pneumonitis, colitis and hepatitis.
Phase 3 trial:
Median OS: 18.9 months
Patients with AEs: 94%
Common AEs:
Fatigue, nausea, decreased appetite, and asthenia.

Avelumab Characters Human anti-PD-L1 IgG1 antibody
Tolerable safety profile and durable anti-tumor activity.

Application Patients: n ¼ 396
Dose: 10 mg/kg for intravenous injection over 1 h every 2 weeks a time

Toxicity Median OS: 11.4 months
Patients with treatment-related AEs: 64%
Common AEs:
Infusion-related reaction, decreased appetite, increased lipase.

Cemiplimab Characters Human monoclonal antibody to PD-1
Exhibits antitumor activity with safety in phase 1 trial of malignancies at advanced stage, including NSCLC.

Application Patients: n ¼ 230
Dose: unclear dose for Q3 W (up to 108 weeks)

Toxicity No report yet.
Nivolumab Characters Fully human, IgG4 immune checkpoint inhibitor antibody

Binds to PD-1 on the activated immune cells and leads to disruption of PD-1/PD-L1/2 interaction, so as to
attenuate inhibitory signals and enhance the host anti-tumor response.

Application Patients: n ¼ 117
Dose: 3 mg/kg via intravenous infusion 2 weeks a time (1 cycle until the occurrence of unacceptable toxic

effects or disease progression)
Patients: n ¼ 292
Dose: 3 mg/kg every 2 weeks
Patients: n ¼ 21
Dose: from 3 mg/kg to a flat 240 mg

Toxicity Median OS: 8�2 months (n ¼ 117)
Patients with grade 3–4 treatment-related AEs: 17%
Common AEs: Fatigue, pneumonitis, and diarrhoea.
Median OS: 12.2 months (n ¼ 292)
Common AEs: Cough, decreased appetite, constipation, pruritis, fatigue, and musculoskeletal pain.
Median OS: 17.4 months (n ¼ 21)
Common AEs: Injection-site reactions, flu-like symptoms, fever, fatigue, chills, nausea, and pain.

Pembrolizumab Characters Humanized monoclonal antibody against PD-1.
Blocks the PD-1/PD-L1/2 interaction and leads to antitumor immune response reactivation.

Application Patients: n ¼ 30
Dose: a fixed dose of 200 mg three weeks a time ((Q3 W), 21days) for 2 cycles
Patients: n ¼ 51
Dose: 10 mg/kg (n ¼ 6) or 2mg/kg (n ¼ 45) three weeks a time (Q3 W) for up to 2 years

Toxicity Median OS: 10.9 months (n ¼ 51)
Treatment-related AEs: 64%
Immune-mediated AEs and infusion reactions: 42%
Common AEs: Fatigue, hypothyroidism, decreased appetite, diarrhea, and pruritus.

References: 54-61.
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progression96. Amplification of tumor-infiltrating lympho-

cytes after collection from the patient, growth at laboratory

scale and giving back can boost the immune system97,98.

Clinicians are aware that the management of irAEs of ICIs

can follow guidelines for cancer care and the challenges

imposed99. Early detection is critical to the management of

increase in systemic toxicity and mortality100.

Peptide antagonists for PD-1 and its ligand PD-L1 are

emerging alternatives for cancer therapy and a few examples

have been elucidated101,102. A novel peptide RK-10

identified from RCSB protein data bank has been known

to detect PD-L1 in several circulating and tumor cells and

tissues of patients suffering from various cancers103. T-cell

therapy allowing the same cells to secrete certain peptide

fragments may improve both safety and anti-tumor efficacy

as such peptides can stay localized to tumor cells104. Non-

blocking antibodies for PD-1 possess anti-tumor effect

similar to that of anti-PD-1 monotherapy using blocking

antibodies105. An interesting study suggests that on-target

lifespan of anti-PD-1 antibodies is much shorter than usually

Figure 1. Pictorial representation of resistance, survival or growth among tumor cells as a result of T-cell inactivation leading to irAEs.
Left: Blocking PD-1/PD-L1 by PD-1 or PD-L1 mAbs caused T-cell activation and suppressed tumor cell growth or survival; blocking
PD-1/PD-L2 by PD-L2 mAbs repressed tumor cell drug resistance. Right: PD-1 on T-cell bound to PD-L1 on tumor cell to suppress
T-cell activation and facilitate tumor cell growth or survival; PD-1 on T-cell bound to PD-L2 on tumor cell to facilitate tumor drug
resistance.

Figure 2. Systemic toxicity of Immune-Related Adverse Events (irAEs). Toxicity to multiple human organ systems caused by
inhibitors for PD-1 block are presented and several of them are reported to be the toxicity of mAbs reviewed in this article.

Chen et al 5



expected on the tumor-infiltrating T-cells. According to the

authors, second generation antibodies can be a fascinating

approach for they have much more specific Fc regions that

possess extended binding to such T-cells106.

Analyzing the composition of gut microbiota is a key

point in determining the therapeutic efficacy of antibodies

against PD-1/PD-L1. Fecal microbiome could improve sen-

sitivity of anti-PD-L1 therapy which differs between mela-

noma patients who respond to therapy and who do not. Such

patients had unique microbiome, and enhanced immunity

was observed in mice transplanted with fecus of patients who

responded to checkpoint blockade immunotherapy107.

Therefore, novel therapeutic regimens with specific tar-

geting capacity are mandatory for prolonging the survival

among NSCLC patients108.

Conclusions:

NSCLC can be treated efficiently by targeting the PD-1/PD-

L1 axis using checkpoint inhibitors such as monoclonal anti-

bodies. Atezolizumab, avelumab, durvalumab, cemiplimab,

nivolumab, and pembrolizumab are fully humanized antibo-

dies used in clinical trials and randomized controlled trials

for NSCLC therapy. Treatment modalities are critical para-

meters in targeted therapy. Identification of biomarkers and

targeted therapy can help in limiting the toxicity of adverse

effects of antibody-mediated therapy. Further research in

identifying checkpoint inhibitors can help eradicate cancers

of various origins.
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