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Abstract: Doxorubicin (DOX) is a highly effective chemotherapy agent that often causes cardiotoxicity. Despite a 
number of extensive studies, the risk for DOX cardiotoxicity remains unpredictable. The majority of the studies on 
DOX-induced cardiotoxicity have been focused on the effects on cardiomyocytes that lead to contractile dysfunc-
tion. The roles of systemic inflammation, endothelial injury and neutrophil recruitment, all induced by the DOX, are 
increasingly recognized as the mechanisms that trigger the development and progression of DOX-induced cardio-
myopathy. This review explores recent data regarding the possible mechanisms and biomarkers of early subclinical 
DOX-associated cardiotoxicity.
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Introduction

Anthracyclines, such as doxorubicin (DOX) are 
very potent chemotherapeutic drugs that have 
significantly improved cancer survival [1]. DOX 
and other anthracyclines (i.e. epirubicin, dauno-
rubicin, idarubicin) are used for treatment of 
many cancers of the breast, endometrial and 
gastric tissues, childhood solid tumors, soft tis-
sue sarcomas, and pediatric leukemia, as well 
as post-heart and bone marrow transplantation 
[2]. Although many anti-neoplastic therapies 
are cardiotoxic, anthracycline-induced cardio-
myopathy and heart failure (HF) are the most 
thoroughly studied [3]. Cardiotoxicity of anthra-
cyclines may not be detected until several ye- 
ars after the treatment and may significantly 
impact a patient’s survival and quality of life 
independently of the oncological prognosis [4]. 
Survivors of childhood cancer treated with DOX 
are at the greatest risk of cardiovascular mor-
bidity and mortality. About 60% of pediatric 
cancer patients are treated with DOX-based 
chemotherapy [5] and 10% of these patients 
develop cardiomyopathy up to 15 years after 
the end of chemotherapy [6]. The majority of 
the studies on DOX-induced cardiotoxicity are 

focused on the effects on cardiomyocytes that 
lead to contractile dysfunction. The role of the 
systemic inflammation associated with neutro-
phil recruitment and vascular endothelial injury 
has been recently recognized as a mechanism 
that triggers the development and progression 
of DOX-induced cardiomyopathy. This review di- 
scusses the available data regarding the pos-
sible mechanisms and biomarkers of the early 
subclinical DOX-associated cardiotoxicity.

Clinical aspects 

Clinically recognized DOX-induced cardiotoxici-
ty can occur at any point during and after treat-
ment with anthracyclines. Acute/subacute car-
diovascular complications can arise from the 
initiation of therapy to several weeks after 
treatment termination [7] and manifest them-
selves as chest pain, palpitation, dysplasia, 
and/or tachycardia arrhythmias, as well as a 
decline in the left ventricle ejection fraction 
(LVEF) from more than 10% to 50% [8]. Elec- 
trocardiograms reveal nonspecific ST-T chang-
es, left axis deviation, and decreased ampli-
tude of QRS complexes [9]. The mechanism of 
the acute cardiotoxicity is not quite clear, but 
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may be associated with DOX-induced myocar-
dial edema or inflammatory response, which is 
reversible and can be controlled with appropri-
ate treatment [10]. DOX-induced cardiotoxicity 
may become clinically evident after one-year 
chemotherapy completion (late-onset chronic 
cardiotoxicity), which is characterized by dilat- 
ed cardiomyopathy, including dilation of ventri-
cles, in some cases of atria, reduced LVEF and 
contractile function, diastolic dysfunction, and 
mural thrombi in some patients [11]. DOX-in- 
duced pathological alterations indicative of re- 
strictive cardiomyopathy following DOX chemo-
therapy have been reported in survivors of 
childhood cancer (i.e. reduced LV mass and dif-
fuse interstitial fibrosis) [12] and in experimen-
tal animals (i.e. decreased end-diastolic LV vol-
ume, increased posterior wall thickness and a 
ratio between the E-wave and A wave velocities 
of the mitral valve >2) [13].

Monitoring

Several different methods exist for the assess-
ment of chemotherapy-induced cardiotoxicity, 
including electrocardiography, echocardiogra-
phy, biopsy, scintigraphy, serum analysis, and 
some genomic markers [14]. Each of these has 
certain limitations, such as low sensitivity, high 
invasiveness, elevated costs, and/or relatively 
late detection of heart dysfunction. The assess-
ment of a decreased LVEF decrease radionu-
clide scintigraphy or angiocardiography or 12- 
lead electrocardiogram have been the most 
common non-invasive methods in clinical prac-
tice to monitor cardiotoxicity. However, LVEF is 
considered a fairly late manifestation of cancer 
chemotherapy-associated cardiotoxicity, refl- 
ecting the presence of irreversible myocardial 
damage and is usually insensitive to early stag-
es of subclinical injury [15]. Endomyocardial 
biopsy, traditionally considered as the “gold 
standard” test for the evaluation of DOX cardio-
myopathy is invasive and does not correlate 
with the subsequent risk of congestive HF [16]. 
Traditional blood-based cardiac biomarkers, 
such as cardiac troponins and B-type natriuret-
ic peptide (BNP), have been suggested in the 
diagnostics of HF, but several studies failed to 
detect any correlation between their blood re- 
sults and DOX-induced cardiotoxicity [17]. High-
sensitivity troponin assays have been shown  
to have better accuracy in the diagnostics of 
acute coronary syndrome and cancer patients 

treated with anthracyclines [18], but they have 
failed to predict DOX cardiotoxicity in breast 
cancer patients in a recently clinical study [19].

Risk factors

A major risk for DOX-induced cardiotoxicity is 
the total dose of the drug administered. DOX-
induced cardiotoxicity is usually cumulative 
dose-dependent, which begins with the first 
dose. There has not been established a “safe” 
dose of DOX which does not result in cardiotox-
icity [20]. Clinical HF incidences of 3%, 7%, 18% 
and 40% have been shown with cumulative 
doses of 400, 550, 600 or >650 mg/m2 
respectively, therefore doses below 450 mg/
m2 are recommended [21]. The risk of DOX-
induced cardiotoxicity increases with other 
added chemotherapy drugs, such as trastu-
zumab or cyclophosphamide, or with added 
chest or mediastinal radiation [22]. Other sus-
pected risk factors are the age at diagnosis 
[23], follow-up time, and female sex [24]. Pre- 
pubescent girls are at higher risk of DOX-in- 
duced cardiotoxicity in comparison with boys 
[25], as are women older than 65 [26]. It has 
been suggested that women with higher circu-
lating estrogen are more resistant than an  
age-matched man to DOX-induced cardiomy-
opathy [27]. The increased risk of cardiomyo- 
pathy induced by DOX in the young and older 
patients has also been attributed in part to the 
immature liver function in young children and 
declining liver activity among older adults, both 
of which slow DOX clearance and prolong expo-
sure to circulating DOX [28]. Because the liver 
is a major site of DOX clearance, any alteration 
in DOX metabolism caused by liver disease or 
concurrent medications would be expected to 
result in elevated levels of DOX and increased 
exposure to toxic concentrations of the drug 
[29]. Additionally, hypertension, diabetes, dys-
lipidemia, obesity also increase the risk of DOX-
induced cardiotoxicity [30]. 

Susceptibility to DOX cardiotoxicity is largely 
individual with some patients developing car-
diomyopathy at doses of 200-400 mg/m2, 
while others tolerating well >1000 mg/m2 [31], 
suggesting the presence of a genetic predispo-
sition. Several recent studies have addressed 
the existence of gene variants predisposing to 
DOX-induced cardiotoxicity. Candidate SNPs or 
gene panels have previously been associated 
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with the DOX metabolism and transport, oxida-
tive stress, and DNA damage [32], some of 
which are shown in Table 1. The overall repro-
ducibility of the published studies has been  
limited, due to small cohorts, failure to assess 
population ancestry, and lack of replication, 
including our study on breast cancer patients 
with or without DOX-induced cardiotoxicity  
[33]. We have identified 15 SNPs in nine genes 
in the human leukocyte antigen (HLA) region 
(NFKBIL1, TNF-alpha, ATP6V1G2, MSH5, MICA, 
LTA, BAT1, NOTCH4), and three SNPs in the  
psoriasis susceptibility region of HLA-C as po- 
tential candidates for association with DOX-
cardiotoxicity in breast cancer patients (Table 
1). The function of most of these molecules 
remains insufficiently characterized, although 
evidence suggests a role in immune and in- 
flammatory responses [34]. All of the candidate 
genes in our study are located on chromo-
somes 6p32 and 6p33. Six of the candidate 
SNPs in the BAT1-NFKBIL1-LTA region in our 
dataset have previously been reported in as- 
sociation with myocardial infarction [35] and 
autoimmune disorders [36]. SNPs within TNF-
α, NOTCH4, and C6orf10 have been associated 
with coronary artery disease, and myocardial 
infarction, while SNPs within MSH5, MICA, and 
HLA-C have been reported in autoimmune in- 
flammatory disorders (Table 1). The telomeric 
class III region of HLA bordering the class I 
region is particularly gene-dense containing at 
least 10 genes in addition to TNF alpha within 
an 82 kb interval, including BAT1, ATP6V1G2, 
NFkBIL1, LTA, TNF, LTB, LST1, NCR3, AIF-1, 
BAT3 and BAT2 [37]. Our findings are consis-
tent with reports showing the presence of sus-
ceptibility loci within the HLA-gene region for 
coronary artery disease (CAD) [38] and inflam-
matory/autoimmune disorders [39]. Autoimm- 
une features and rheumatic manifestations 
have been reported in cancer patients after 
chemotherapy [40] including rheumatism, and 
systemic lupus erythematosus (SLE) in those 
with breast cancer [41].

Cellular and molecular mechanisms and bio-
markers oxidative stress

The in vitro metabolism of DOX in cardiac and 
liver microsomal membranes has been de- 
scribed in several earlier studies. The initial 
reduction of DOX to a semiquinone free radical 
is catalyzed by NADPH-dependent cytochrome 
P450 reductase and reconversion to the qui-
none, a process involving one-electron reduc-
tion, which leads to the persistent production 
of superoxide anion radical and secondary ROS 
(e.g., O2∙, H2O2, OH·) [42, 43]. H2O2 and O2∙- may 
also generate highly reactive and toxic hydroxyl 
radicals (OH) during the iron-catalyzed Haber-
Weiss reaction, resulting in an iron cycling 
between Fe3+ and Fe2+, thus altering iron 
homeostasis [44]. The increased production of 
ROS induced by DOX leads to excessive oxida-
tive stress, strongly linked to cell damage 
involving reduced protein synthesis and redox 
modifications of proteins, lipids, and DNA [45].

DOX accumulates primarily in the mitochondria 
[46], which accounts for DOX cardio-selective 
toxicity, combined with a less active antioxidant 
network in the heart compared with other tis-
sues such as the liver [47]. DOX, being a cat-
ionic drug, binds to the negatively charged 
phospholipid cardiolipin located on the inner 
mitochondrial membrane, leading to disruption 
of the activity of complexes I-IV of the electron 
transport chain, peroxidation of lipids, oxidative 
damage of proteins and mitochondrial DNA, 
loss of ATP levels and mitochondrial permeabil-
ity transition 3 one integrity [48]. The Keap1-
Nrf2 pathway is the major regulator of cytopro-
tective responses to oxidative and xenobiotic 
stress by activating antioxidants and anti-elec-
trophiles [49]. The key signaling protein within 
the pathway is the transcription factor Nrf2, 
which under the regulation of Keap-1 can pro-
tect the cells and tissues from oxidative stress 
by increasing the expression of several down-
stream cytoprotective genes, including antioxi-
dants and phase II and phase III detoxification 

Table 1. Candidate SNPs associated with sensitivity to DOX-induced cardiotoxicity
Mechanistic pathways Genes
DOX metabolism and transport SLC28A3, ABCC1, ABCC2, UGT1A6, SULT2B1, [141] 
Oxidative stress ABCC5, NOS3, [142], HAS3 [143], HFE [144] 
DNA damage RARG [145] 
Immunity and inflammation TNF-alpha [146], C6orf10 [147], MICA, NFKBIL1, LTA [148], NOTCH4 [149], HLA-C [150]
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enzymes [50]. It has been demonstrated that 
deficiency of Nrf2 amplified DOX-induced car-
diotoxicity and cardiac dysfunction [51]. We 
have examined the effect of DOX on the early 
(48 hours post-injection) gene expression of rat 
hearts and found that at this time-point there 
was significant downregulation of NRF2 gene 
(NFE2L2), cardiolipin gene (CRLS1), along with 
a widespread reduction in the expression of 
multiple genes encoding for proteins of com-
plexes I-IV, and ATP synthase [52]. We observed 
significant downregulation of mitochondrial oxi-
dative phosphorylation (OXPHOS) complexes I- 
IV and ATP synthase, including, 25 transcripts 
coding for NADH dehydrogenase in complex I, 
all four transcripts coding for succinate dehy-
drogenases in complex II, four transcripts of 
ubiquinone-cytochrome c reductase in complex 
III, 13 genes coding for several subunits of cy- 
tochrome c oxidase in complex IV, and 8 ATP 
synthases from complex V. Downregulation of 
OXPHOS complexes and the associated incre- 
ased superoxide production and 4-HNE protein 
adducts tend to predispose to hypertension, 
coronary artery disease and HF [53]. 

Along with the increased oxidative stress, DOX 
also reduces the antioxidant defense of the 
cells, for example, reducing SOD, and catalase 
content or activity, thus contributing to enhan- 
ce and prolong mitochondrial damage [54]. 
Various antioxidant supplements have shown 
some protection when combined with DOX, in- 
cluding vitamins C and E [55], glutathione and 
metallothionein [56], and glutamine [57]. Chan- 
dran et al. [58] demonstrated that co-adminis-
tration of MitoQ, a triphenylphosphonium-con-
jugated analog of coenzyme Q, to rats treated 
with DOX resulted in improved LV function. 
Because MitoQ is a mitochondria-targeted an- 
tioxidant, enrichment of mitochondrial mem-
branes with the active antioxidant is beneficial 
against DOX toxicity.

Calcium homeostasis dysregulation

Intracellular ionized Ca concentration ([Ca2+]i) 
regulates cardiomyocytes’ contractility through 
excitation-contraction coupling, a process that 
links the electric excitation of the sarcolem- 
ma surface membrane (action potential) to the 
mechanical contraction. During the cardiac 
action potential, Ca2+ enters the cell through 
the L-type calcium channel, which triggers addi-
tional Ca2+ release from the sarcoplasmic retic-

ulum (SR). The elevated [Ca2+]i concentration 
allows Ca2+ to bind to the myofilament protein 
troponin C (Tn-C), which then switches on the 
contractile machinery [59]. For relaxation to 
occur [Ca2+]i must decline and allow Ca2+ to  
dissociate from troponin, which involves SR 
Ca2+-ATPase (SERCA2a), Na+/Ca2+-exchanger 
(NCX), and plasmalemmal Ca2+-ATPase (PMCA) 
[60]. The elevated [Ca2+]I levels resulting in mi- 
tochondrial Ca2+ overload, combined with un- 
regulated ROS production, causes opening of 
the mitochondrial permeability transition pore 
(MPTP), causing permeabilization of the mito-
chondrial inner membrane to molecules of less 
than 1.5 kDa in molecular weight [61]. MPTP 
opening results in inner membrane potential 
reduction and collapse, respiratory chain un- 
coupling, halt of mitochondrial ATP synthesis, 
and eventually, mitochondrial swelling, rupture, 
and cell death, as reported in DOX cardiotoxici-
ty in the human heart [62].

DOX binds and activates sarcoplasmic reticu-
lum (SR) ryanodine receptors (RYRs) to increa- 
se cytosolic ionized Ca2+, while at the same 
time downregulating calcium transport ATPase 
(SERCA), which pumps Ca2+ back to SR, leading 
to an abnormal cytoplasmic Ca2+ and incre- 
ased generation of ROS [63, 64]. It has been 
shown that DOX directly affects RYR2 activity 
by rapid reversible activation of the channel, 
followed later by irreversible inhibition [65]. We 
have tested the effects of RYR antagonist dan-
trolene (DNT) on DOX-induced cardiotoxicity in 
a rat model of breast cancer [66]. We found 
that DNT improved DOX-induced alterations in 
the echocardiographic and histopathological 
parameters, without affecting the anti-tumor 
efficacy of DOX. Rats treated with DNT lost  
less body weight, had higher blood GSH levels 
and lower troponin I level than DOX-treated 
rats. These data indicate that DNT can provide 
protection against DOX cardiotoxicity without 
reducing its antitumor activity.

Topoisomerases

Topoisomerases (Tops) catalyze the relaxation 
of DNA supercoils and unknotting of DNA heli-
ces and strands [67]. Top2 enzymes introduce 
double-strand breaks in the DNA molecule, 
passes another unbroken DNA helix through  
it, and then re-ligates the cut strands. DOX 
binds to both DNA and Top2, forming the DOX-
Top-DNA complex, which inhibits Top2 activity, 
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resulting in DNA double-strand breaks, acti- 
vating DNA damage response, and apoptosis 
[68]. Top2 isoforms, Top2α and Top2β, are dif-
ferentially regulated during the cell cycle in  
normal and neoplastic tissues, as Top2α is 
overexpressed in highly proliferative tumor 
cells and undetectable in quiescent cardio- 
myocytes [69], while Top2β is overexpressed  
in terminally differentiated quiescent cells, 
such as cardiomyocytes [70, 71]. Top2β is a 
mechanism thought to be responsible for DOX-
induced cardiotoxicity through enhancement  
of oxidative stress and impairment of mito-
chondrial biogenesis [72]. Cardiomyocyte-spe- 
cific deletion of Top2β protected the cardio- 
myocytes from DOX-induced DNA double-
strand breaks and mice from the development 
of DOX-induced HF [73]. Currently, dexrazox-
ane, a Top2 poison, an iron chelator, and free 
radical scavenger, is the only approved drug  
for the treatment of DOX-induced cardiotoxicity 
in clinical settings [74].

Heat shock proteins

DOX-induced oxidative stress and ATP deple-
tion induce high expression of heat shock pro-
teins (HSPs), which regulate the activity of mul-
tiple signaling intermediates involved in the 
execution of apoptotic signaling pathways [75]. 
For example, HSP10 and HSP60 overexpres-
sion led to an increase in the post-translational 
modification of Bcl-2 proteins induced by DOX 
[129], HSP20 reduced DOX-associated oxida-
tive stress, and cardiotoxicity via interacting 
with AKT phosphorylation [76]. A significant 
3,9-fold upregulation of the HSP90 gene 
(HSPCB) was detected in the rat hearts at 48 
hours post-DOX administration [85], a finding 
that correlated with the 16-fold HSP90 induc-
tion by cardiac ischemia [77], due to ROS accu-
mulation [78] and reduction of ATP concentra-
tion [79]. 

Cellular senescence

Many chemotherapeutic drugs, such as anthra-
cyclines, cyclophosphamide, cisplatin, mitoxan-
trone, and gamma irradiation are known to 
alter cellular states and induce senescence in 
cancer cells and the tumor microenvironment 
[80]. Cellular senescence is a potent tumor-
suppressive mechanism that arrests the gr- 
owth of cells at risk for malignant transfor- 
mation [81]. Senescence-associated secretory 

phenotype (SASP) is characterized by arrested 
cell growth, resistance to apoptosis, high 
metabolism and secretion of proinflammatory 
cytokines (e.g. IL-6, IL-1α-6, -8, 10), growth fac-
tors (e.g. IGF/IGFBP, FGF, TGF-β, IFN-γ), prote-
ases (e.g. MMP1, MMP-3). It has been demon-
strated that cell cycle inhibitors p16 and p21 
are overexpressed by senescent cells, making 
them the most well-established senescence 
markers [82]. The contribution of senescent 
cells to coronary heart diseases [83] and ath-
erosclerosis [84] have been shown in several 
studies. Studies in cancer showed that therapy-
induced senescence can stimulate immunosur-
veillance to eliminate tumor cells, but it can 
also be a source of chronic inflammation and 
drug resistance [85]. For example, treatment  
of breast cancer patients with DOX and alky- 
lating agents induced cellular senescence in  
a p16INK4a-dependent, telomere-independent 
fashion [86]. Demaria et al. [87] showed that 
DOX-induced senescence could persist and 
contributed to local and systemic inflammation 
in mice, and elimination of the senescent cells 
reduced several short- and long-term effects  
of the drugs, including bone marrow suppres-
sion, cardiac dysfunction, cancer recurrence, 
and physical activity and strength.

Inflammation, endothelial dysfunction, and 
hypercoagulability

Several inflammatory markers may be able to 
predict future cardiovascular events [88]. For 
example, IL-6 is associated with an increased 
risk of myocardial infarction and cardiovas- 
cular death [89]. Elevated pro-inflammatory 
cytokines, such as TNF, IL-6, monocyte che- 
motactic protein 1 (MCP-1), and Interferon-γ 
(INF-γ) were found in the serum of mice after 
administration of DOX [90]. Wang et al. [91] 
demonstrated that DOX-induced upregulation 
of the proinflammatory Toll-like receptor TLR4 
in macrophages was associated with DOX-
triggered leakage of endotoxin into the circula-
tion of rats. Elevated levels of CRP were as- 
sociated with decreased LVEF in patients with 
varying cardiovascular diseases ranging from 
myocardial infarction to HF [92]. We used  
multiplex assays for chemokines to examine 
plasma samples collected before and after  
the first cycle of DOX-based chemotherapy of 
breast cancer patients [19]. The results show- 
ed that the initial DOX dose-induced chemo-
kine “immune/inflammatory signature” includ-
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ing CCL23, CCL27 and MIF was able to predict 
the abnormal decrease of LVEF after chemo-
therapy. Previous studies showed the associa-
tion of CCL23 and MIF with coronary athero-
sclerosis, myocardial infarction, and CCL27 
was reported in autoimmune diseases (Table 
2), but no report correlated these chemokines 
with cardiotoxicity.

DOX-induced inflammation is associated with 
endothelial dysfunction, which is a complex 
process involving ROS production, pro-inflam-
matory cytokines secretion and inactivation of 
NO production, resulting in disruption of vascu-
lar contractility [93]. Dysfunctional endothelial 
cells (ECs) secrete TNF-α, IL-1β, IL-6, IL-8, which 
along with granulocyte colony-stimulating fac-
tor (G-CSF) promote mobilization of neutrophils 
from the bone marrow and their recruitment  
to the vascular endothelium [94]. Neutrophils 
adhere to the endothelium and release neutro-
phil granular peptides and proteins, such as 
myeloperoxidase (MPO), elastase, matrix metal-
loproteases (MMPs) disrupting inner endotheli-
al junction. Further damage can be induced by 
the production of neutrophil extracellular traps 
(NETs), which enhance inflammation and endo-
thelial permeability. Neutrophils activate pla- 
telets, which bind to the extracellular matrix 
(ECM) beneath the endothelial layer and create 
platelet plug to maintain hemostasis within an 
injured vessel [95]. The interactions between 
ECs, neutrophils, and platelets are influenced 
by several factors released from ECs, such as 
thrombomodulin (TM), von Willebrandt factor 
(vWF), P-selectin, which modulate platelet ac- 
tivity, coagulation, and vascular contractility, all 
of which contribute to the thrombotic forma-
tion, myocardial infarction, coronary artery dis-
ease and ischemic stroke [93]. It is known that 
cancer chemotherapy increases the risk of 
cancer-related thrombosis, which is a major 
risk factor for cardiovascular diseases [96]. We 
have found, that circulating biomarkers of in- 
flammation, hypercoagulability and endothelial 
injury before or after the initial infusion of DOX-
based chemotherapy were able to predict the 
risk of early subclinical DOX-induced cardiotox-
icity in breast cancer patients [97]. Patients 
with an abnormal decline of LVEF had signifi-
cantly elevated levels of MPO and TM both at 
baseline, and after the first dose of DOX-based 
chemotherapy relative to patients with normal 
LVEF. The first dose of DOX also induced hi- 
gher circulating levels of thrombin-anti-throm-

bin complex (TAT) complex, C-reactive protein 
(CRP), markers of NETs, vWF, and P-selectin in 
patients with cardiotoxicity in comparison with 
patients without. These findings indicate that 
the risk of DOX-induced cardiotoxicity in breast 
cancer is associated with endothelial dysfunc-
tion, inflammation, and prothrombotic state 
before and after the first dose of chemothera-
py. Furthermore, the increased circulating lev-
els of MPO and TM before and after the first 
DOX infusion in cancer patients with DOX-
induced low LVEF suggest their potential to be 
used as predictive biomarkers and the need for 
future validation studies. In addition, the circu-
lating levels of TAT, NETs, CRP, and vWF might 
also be potentially predictive for the risk of 
DOX-induced cardiotoxicity after the first che-
motherapy dose.

Cardiac microvascular ECs, being the most 
abundant cell type in adult myocardium are in 
direct contact with the adjacent cardiomyo-
cytes and fibroblasts, and actively secret many 
proteins, which can modulate cardiac contrac-
tility and remodeling [98, 99]. DOX-induced 
endothelial damage has been associated with 
the development of severe chronic vascular dis-
eases, such as the atherosclerosis [100]. A  
prospective study of 7289 childhood survivors 
showed that 10% developed coronary artery 
disease 10 years after diagnosis [101]. A re- 
cent review by Luu et al. [102] indicates that 
the initial endothelial damage could be asymp-
tomatic with a long delay between the end of 
DOX treatment and the onset of vascular disor-
der, but with time, the declining health of the 
endothelium progressively renders ECs more 
vulnerable to chronic inflammatory stressors. 
The ability of DOX to affect cardiac microvascu-
lar endothelial cell permeability in vivo has 
been reported in rat studies where cardiac per-
meability changes correlated with decreased 
LV function [103]. Wilkinson et al. [104] show- 
ed that DOX could increase cardiac microvas- 
cular endothelial cell permeability, which could 
potentially lead to cardiomyopathy. It has been 
shown that DOX reduces the expression of 
phosphorylated eNOS (Ser1177), which leads 
to a decreased bioavailability of NO and endo-
thelial dysfunction [105]. Urschel et al. [106] 
demonstrated that DOX administration en- 
hanced proinflammatory TNF-α signaling by 
activating NF-κB, which led to endothelial dys-
function characterized by increased perme- 
ability, enhanced oxidative stress, followed by 
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Table 2. Candidate circulating biomarkers for prediction of DOX-induced cardiotoxicity
Biomarker Function
CCL23 Elevated in coronary atherosclerosis [151]

Promising biomarker of injury in patients with ischemic stroke through upregulation of TNF-α 
[152] 
Elevated in autoimmune diseases (psoriasis and eczema) [153]

CCL27 Associated with diminished kidney transplant and autoimmune disease (psoriasis and eczema) 
[154] 

MIF Elevated in myocardial ischemia/reperfusion injury [155]
Upregulated during the progression of atherosclerosis [156]
Elevated in myocardial infarction and inflammatory diseases [157]

PGLYRP1 (Tag7, PGRP1) Increased gene expression and protein levels in patients with myocardial infarction [158]
Present in atherosclerotic plaques [159]
Circulating levels were independently associated with coronary and peripheral atherosclerosis 
[160, 161]
Elevated circulating levels predicted poor outcome in patients with HF [162]
Marker of coronary artery disease and HF [163]

CAMP (hCAP-18/LL-37) (Cramp in mouse) Associated with acute HF rodents [164]
Presence in human atherosclerotic plaques [165, 166]
Associated with platelet activation and induction of thrombosis [167]
Produced in atherosclerotic lesions, where it may function as an immune modulator [168]

MMP9 Involved in plaque destabilization resulting in acute coronary syndrome and stroke [169, 170]
Elevated circulating levels predicted poor outcome in acute coronary syndrome [171]
Role in remodeling atherosclerotic plaques in myocardial infarction [172]
Higher levels associated with acute coronary syndrome [173-176]

MMP8 Circulating levels correlate with acute coronary syndrome [177]
Baseline serum is a significant predictor of LV remodeling and cardiovascular outcome after 
myocardial infarction [178]
Serum levels associated with subclinical atherosclerosis [179]

MPO Circulating levels correlate with acute coronary syndrome [180, 181]
Marker of ischemic heart disease and acute coronary syndrome [182]
Associated with a risk of coronary artery disease [183]
Serum levels predict acute coronary syndrome [184]
Circulating levels appeared as a strong independent marker of coronary artery disease [185]
Potential biomarker of the risk for a subsequent cardiac dysfunction in cancer patients [186]

DEFA 1-4, human neutrophil peptidases (HNPs) Exert pro-atherosclerotic properties by promoting monocyte adhesion, platelet activation, and 
foam cell formation [187]
Significantly increased in acute coronary syndrome and sepsis [187]

CEACAM8 (CD66b) (Ly6G in mice) Upregulation in granulocytes polymorphonuclear leukocytes was a risk factor for atherothrom-
bosis [188]
Mice treated with anti-LY6G to deplete neutrophils were protected against CD8+ T-cell-depen-
dent myocarditis [189]

TM Facilitates the thrombin-mediated activation of protein C and plays role in coagulation, fibrinoly-
sis and inflammation [190] 
Marker of generalized endothelial injury [191]
Elevated circulating levels in intravascular coagulation and venous thrombosis [192] 
Circulating levels predict the risk of coronary heart disease [193, 194]

OLR1 (LOX-1) Marker of atherosclerosis and vasculopathy [195]

Marker of coronary artery disease, stroke, and acute aortic dissection [196]

Correlate with acute coronary syndrome [197]
Elevated in hypertensive rats [198]

Upregulated during myocardial ischemia-reperfusion [199]

Expressed in atherosclerotic lesions [200]

Markers of NETs Elevated circulating levels independently associated with severe coronary atherosclerosis and a 
prothrombotic state [201]
Presence in human coronary and ischemic stroke thrombi [202]
Biomarker of STEMI myocardial infarction [203, 204]
Biomarker of acute ischemic stroke, coronary and peripheral artery disease [205]
Markers of acute myocardial infarction [206]
Activate ECs and platelets, resulting in endothelial dysfunction, proinflammatory immune 
response, and thrombotic lesions [207, 208]
Presence in atherosclerotic lesions [209]
Increase with age [210]

TAT complex Diagnosis of hypercoagulability [211]
Diagnosis and assessment of treatment-induced intravascular coagulation, deep vein thrombo-
sis, and pulmonary thromboembolism [212, 213]
Elevated circulating levels associated with coronary artery disease [214]
Increased plasma levels associated with atrial fibrillation [215]
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adhesion of leukocytes to the activated endo-
thelium. Clayton et al. [107] showed that DOX-
induced aortic stiffness through TNFα-mediat- 
ed endothelial inflammation, which was associ-
ated with adverse structural changes, includ- 
ing collagen deposition (fibrosis), elastin frag-
mentation, and formation of AGEs (advanced 
glycation end-products). AGEs, also known as 
glycotoxins are highly oxidant compounds with 
pathogenic significance in many degenerative 
diseases, such as atherosclerosis, Alzheimer’s 
disease, diabetes, and chronic kidney disease 
[108, 109]. Chow et al. [110] assessed endo-
thelial-dependent vasodilatation in anthracy-
cline-treated patients and impairment of endo-
thelial-dependent arterial vasodilatation, which 
was sustained for months to years, suggesting 
its important role in the progression of coro-
nary disease. These findings correlate with  
several clinical studies showing that chemo-
therapy with DOX induces damage to the coro-
nary microcirculation, which might contribute  
to the adverse cardiovascular outcomes in can-
cer survivors, including those who did not de- 
velop symptomatic cardiotoxicity [111].

Gene expression of circulating blood cells

The effect of DOX on gene expression of easily 
obtainable tissue such as the blood is an oppor-
tunity to identify non-invasive biomarkers for 
the prediction and identification of DOX-induc- 
ed cardiotoxicity. McCaffrey et al. [112] demon-
strated that breast cancer patients with low 
LVEF after DOX chemotherapy had significantly 
altered transcripts in comparison with patients 
with normal LVEF, including genes associated 
with apoptosis, immunity, detoxification, and 

drug transport, in comparison with patients 
who maintained normal LVEF. Two of the de- 
creased genes were suggested as potential 
biomarkers of DOX-induced cardiotoxicity, T 
Cell Leukemia/Lymphoma protein 1A (TCL1A), 
major pro-survival factor for cardiomyocytes, 
and ABCB1, which codes for the multidrug re- 
sistance protein 1 (MDR1), an efflux pump for 
DOX, potentially leading to higher cardiac levels 
of the drug. Doroshow et al. [113] showed that 
patients exposed to continuous DOX infusions 
have increased DNA-base oxidation within their 
blood cells compared to pre-treatment. 

We have found a high similarity between the 
gene expression profiles of peripheral blood 
cells (PBCs) and cardiac tissue in rats with DOX-
induced cardiotoxicity [114]. Of the ~4,000 dif-
ferentially regulated genes in each heart tissue 
and PBCs of rats, at 48 hours after DOX admin-
istration, 2400 genes were similarly differen-
tially regulated. Therefore, in the subsequent 
clinical study, we have examined the potential 
of PBMC transcriptome profile after the first 
dose of DOX chemotherapy to predict DOX-
induced cardiomyopathy in breast cancer pa- 
tients [115]. The results showed that signifi-
cantly altered transcripts coding for proteins  
of neutrophils, macrophages, and monocytes 
were able to predict the risk for DOX-induced 
cardiotoxicity. The top upregulated DOX-induc- 
ed transcripts associated with abnormal LVEF 
decline include neutrophilic anti-microbial pro-
teins such as alpha-defensins (DEFA1-4); cat-
helicidin (CAMP); MPO; peptidoglycan recogni-
tion protein1 (PGLYRP1); matrix metalloprote- 
ases (MMP) 8 and 9); carcinoembryonic anti-

CRP A well-known marker of inflammation [216] and endothelial dysfunction [217, 218]
Marker of coronary artery disease [219]
Serum levels correlate with severity of coronary artery lesions [220]
Associated with atherothrombosis [221]
Predict cardiovascular disease [222]
Marker of early vascular aging [223]

vWF Elevated plasma levels associated with myocardial infarction [224], coronary artery disease 
[225] and ischemic stroke [226]

P-selectin Promotes acute myocardial infarction [227]
Associated with atherothrombosis [228]

hsa-mir-1 Downregulated in cardiac hypertrophy [229]

Has-mir-16-5p Aggravates myocardial infarction injury by targeting IRS1 [230]

hsa-mir133a Downregulated in cardiac hypertrophy [231]

hsa-miR-92 Upregulated in dilated cardiomyopathy [232]

hsa-mir-34a Upregulation in myocardial infarction [233]

Has-mir-15a Upregulated in myocardial ischemia [234]

hsa-mir-30 Downregulated in dilated cardiomyopathy [235]
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gen-related cell adhesion mo- 
lecule 8 (CEACAM8, known as 
CD66b), glycosyl-phosphatidy- 
linositol glycoprotein (CD177). 
These findings are in agree-
ment with the reported role of 
neutrophils in cardiovascular 
diseases by Frangogiannis et 
al. [116]. Some of the neutro-
phil transcripts (CAMP, MMP9, 
PGLYRP1, MMP8) in our clini-
cal study were similarly dysreg-
ulated in the rat blood cells  
in our previous study [52]. We 
have recently found significant 
elevation of the plasma pro-
teins coded by CAMP, MMP9, 
PGLYRP1, CEACAM8, ELANE, 
and MPO, suggesting that the- 
se molecules carry the poten-
tial for an early prediction of 
the risk for LVEF decrease. 
Another significantly upregulat- 
ed transcript in the group of 
patients with low LVEF in our 
study is also OLR1 (oxidized 
low-density lipoprotein recep-
tor 1), which codes for lectin-
type oxidized LDL receptor 1 
(LOX-1) protein. LOX-1 is sug-
gested as a marker of athero-
sclerosis and induces vascular 
endothelial cell activation, and 
dysfunction, resulting in pro-
inflammatory responses, pro-
oxidative conditions, and ap- 
optosis [117]. Recent studies 
showed that OLR1 was high- 
ly expressed in polymorphonu-
clear myeloid-derived suppres-
sor cells (PMN-MDSC) cells of 
cancer patients [118] and in 
low-density granulocytes of pa- 
tients with lupus who are at 
high risk of cardiovascular dis-
eases [119], but no data are 
available on its role in DOX-
induced cardiotoxicity. Neutro- 
phil granular proteins are kn- 
own to be involved in the in- 
flammation and progression  
of cardiovascular diseases in- 
cluding atherosclerosis, throm-
bosis, and acute coronary syn-
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Figure 1. Analysis of six of the top upregulated genes in the blood of breast 
cancer patients with subclinical DOX-induced cardiotoxicity [115] using 
HeartBioportal database: (A) MPO; (B) MMP9; (C) CEACAM8; (D) CAMP; (E) 
PGLYRP1; (F) ELANE. The elevated expression of the six genes after the 
initial DOX dose in patients with abnormally decline LVEF correlate with up-
regulation in cardiovascular diseases.

drome [120, 121]. The elevation of neutrophil 
granular proteins, including MPO, MMP9, CA- 
MP, PGLYRP1, MMP8, CEACAM8 and DEFA1 
has been predictive of atherosclerosis, coro-
nary artery disease, and myocardial infarction 
(Table 2). We have analyzed the published tran-
scriptional data related to the gene expression 
of the top upregulated transcripts for cardio-
vascular diseases through the genetics data-
base for cardiovascular diseases HeartBioPortal 
(https://www.heartbioportal.com/) [122]. The 
analysis showed that elevation of several of 
these genes, including DEFA4, CAMP, PGLY- 
RP1, MMP9, MPO, CEACAM9, ELANE, OLR1 
was associated with myocardial infarction (Fi- 
gure 1). This finding confirms our hypothesis 
that the early subclinical toxicity of chemother-
apy with DOX might in part, be mediated by 
neutrophil granular proteins through enhanc- 
ing cardiovascular inflammation, coronary ar- 
tery disorder, and atherosclerosis, which pre-
dispose to myocardial infarction (Figure 2). 
Therefore, peripheral blood transcriptome and 
proteome biomarkers, such as MPO, CAMP, 
PGLYRP1, MMP8, MMP9, CEACAM8, DEFA1-4, 
OLR-1, ARG-1, ELANE could provide early indi-
cations about DOX-induced cardiomyopathy.

Circulating microRNAs

The involvement of miRNAs in cardiovascular 
biology and pathology, and their potential as 
biomarkers has been demonstrated in several 
studies on cardiovascular diseases [123, 124]. 
In a clinical study, we have examined the po- 
tential of circulating miRNAs to predict the risk 

in myocardial infarction, downregulation of miR-
15b in myocardial infarction and downregula-
tion of miR-30 in dilated cardiomyopathy (Table 
2). Elevated miR-23b suppressed IL-17-, TNF-α- 
and IL-1β-induced NF-κB activation, which cor-
related with its downregulation in inflammatory 
disorders, such as SLE and rheumatoid arthri-
tis [126]. Several of DemiRs have been associ-
ated with inflammatory and autoimmune dis-
eases such as elevated miR-16, miR-486, miR 
92, miR-532, miR-140 [127-129]. None of the- 
se miRNAs have been reported as potential 
candidate biomarkers for the prediction of DOX-
induced cardiotoxicity. The analysis of the tar-
gets of DEmiRs in the group of patients with low 
LVEF showed their association with several of 
the differentially regulated mRNA in the same 
patients. 

DNA methylation of peripheral blood cells

In our recent study, we have determined the 
whole-genome DNA methylation of blood cells 
from breast cancer patients treated with DOX-
based chemotherapy [130]. The results show- 
ed that 379 differentially methylated CpGs at 
baseline and 136 CpGs after the first chemo-
therapy dose significantly correlated with LVEF 
status. Pathway enrichment analysis using GO, 
Reactome, KEGG showed that the most signifi-
cantly positively enriched pathway was “RNA 
splicing” (included RBM17, DHX9, EIF4A3, 
CACS3, DHX15, HNRNPH1, HNRNPR, HNRNPU, 
SF1, SNRPN) and the most significantly nega-
tively enriched pathway was IFN-γ signaling (in- 
cluded IRF6, HLA-DRB1, TRIM14, HLA-A, and 

of DOX-induced cardiotoxici- 
ty in breast cancer patients 
[125]. We have identified 32 
differentially regulated microR-
NAs (DEmiRs) in patients with 
an abnormal decline of LVEF 
>10% in comparison with pa- 
tients who maintained normal 
LVEF. Several of the DEmiRs  
in patients with an abnormal 
decline of LVEF EF have been 
reported previously in pati- 
ents with cardiovascular dis-
eases, including downregula-
tion miR-1 and miR-133 in car-
diac hypertrophy, upregulation 
of miR-92 in dilated hypertro-
phy, upregulation of miR-34a 
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HLA-F). Overexpression of DHX15 and EIF4A3 
splicing factors have been implicated in the 
contractile function of cardiomyocytes [131, 
132] and in cancer [133]. IRF6, a member of 
the IFN family of transcription factors is one of 
the significantly hypomethylated genes before 
the start of chemotherapy that predicted the 
risk of DOX-induced cardiotoxicity in our study. 
These findings correlate with previous reports 
showing that IRF6 has a protective role in the 
response to endotoxic shock [134] which is  
one of the suggested mechanisms of DOX-
induced inflammation and multiorgan toxicity 
[135]. Downregulation of IRF6 has been dem-
onstrated in several cancers, including breast 
cancer [136]. Further analysis with IPA soft-
ware showed upregulation of estrogen receptor 
(ER) signaling, ErbB signaling, and Thrombin 
signaling. ErbB receptor tyrosine kinases, epi-
dermal growth factor receptor (EGFR), and 
ErbB2 (neu, HER2) are often overexpressed, 
amplified, or mutated in many forms of cancer, 
including breast cancer, making them impor-
tant therapeutic targets and predictors of the 
therapeutic response to DOX [137]. At the sa- 
me time, ERB2 overexpression in the heart 
leads to hypertrophy [138]. It is well known that 
ER signaling plays an important role in breast 
cancer progression and the majority of human 
breast cancers start as estrogen-dependent 
[139]. The activation of the coagulation cas-
cade in which thrombin plays a key role is  
closely related to inflammation, development  
of cardiovascular diseases, and HF prognosis 

[140]. Accordingly, our previous study demon-
strated that elevated markers of inflammati- 
on, hypercoagulability, and endothelial function 
(i.e. thrombomodulin, myeloperoxidase, throm-
bin-anti-thrombin complex) before and after the 
first dose of DOX chemotherapy were able to 
predict the early subclinical DOX-induced car-
diotoxicity in patients with breast cancer [97].

Conclusions

DOX is a powerful chemotherapy agent that has 
improved substantially the cure rate and survi-
vorship of patients with various types of cancer. 
Unfortunately, the cardiotoxicity of DOX remains 
an important health concern. Despite the years 
of substantial research, there is still insufficient 
understanding of the mechanisms governing 
cardiac toxicity and no efficient treatment or 
means for early prediction. DOX-induced car-
diotoxicity begins asymptomatically with the 
initial dose and develops into asymptomatic 
cardiac dysfunction, and subsequent HF. Our 
studies have demonstrated that the initial dose 
of chemotherapy with DOX in cancer patients 
induced neutrophil activation that could be det-
rimental to the vascular integrity, as the release 
of the harmful cargo of their granules could 
compromise vascular integrity or induce a pro-
thrombotic state. We propose that neutrophil 
degranulation and NETosis during the early 
stages of vascular inflammation are key mech-
anisms of DOX-associated cardiovascular toxic-
ity. Neutrophil granular proteins and NETs could 

Figure 2. DOX-induced cardiomyocytes damage is preceded by vascular endothelial injury associated with neutro-
phil degranulation and NET formation. DOX induces ROS generation, inactivation of NO production, endothelial dys-
function and recruitment of neutrophils. Pro-inflammatory cytokines secreted by monocytes, lymphocytes and ECs 
activate neutrophil degranulation. Neutrophil granule proteins participate in the disruption of EC structure, leading 
to endothelial inflammation, neutrophil transmigration and apoptosis. NETs provide scaffold for platelet activation 
and deposition, thus promoting thrombosis formation.
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potentially act as predictive biomarkers, as well 
as novel therapeutic targets for DOX-induced 
cardiotoxicity.
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