Skip to main content
. 2021 Sep 21;9(9):e30223. doi: 10.2196/30223

Table 5.

Experimental results from different NLP models. The test results are macroaverage classification values.

Methods (model name) and models Precision (%) Recall (%) F1 score (%)
Convolution neural network (CNN)



CNN-randoma 89.33 90.67 89.91

CNN-fixed-Word2Vecb 88.01 93.12 90.43

CNN-Word2Vecc 92.01 92.87 92.33
Long short-term memory



Unidirectional long short-term memory 87.23 93.89 90.32

Bidirectional long short-term memory 87.97 92.48 90.09
Transformer encoder



Bidirectional encoder representations from transformers 86.44 89.69 87.99

ELECTRAd-version 1 87.73 92.12 89.82

ELECTRA-version 2 91.03 92.33 91.60
Data trimming



CNN-Word2Vec (trimmede) 90.59 93.56 91.98

Unidirectional long short-term memory (trimmed) 84.77 93.30 88.61

ELECTRA-v2 (trimmed) 89.63 94.47 91.92
Ensemble combination



CNN-Word2Vec + Uni-LSTM 89.53 94.24 91.76

SCENTf-v1: CNN-Word2Vec + ELECTRA-v2 (trimmed) 91.10 94.18 92.56

Unidirectional long short-term memory + ELECTRA-v2 (trimmed) 89.53 94.24 91.76

CNN-Word2Vec + unidirectional long short-term memory + ELECTRA-v2 (trimmed) 91.02 94.19 92.52
Hierarchical ensemble



CNN-Word2Vec and unidirectional long short-term memory + ELECTRA-v2 (trimmed) 91.30 92.86 91.92

Unidirectional long short-term memory and CNN-Word2Vec + ELECTRA-v2 (trimmed) 86.83 93.88 90.09

SCENT-v2: ELECTRA-v2 (trimmed) and CNN-Word2Vec + unidirectional long short-term memory 89.04 94.44 91.58

aRandom: randomly initialized embedding.

bFixed-Word2Vec: nontrainable pretrained Word2Vec embedding.

cWord2Vec: trainable pretrained Word2Vec embedding.

dELECTRA: efficiently learning an encoder that classifies token replacements accurately.

eTrimmed: data sets are trimmed based on the keyword “thyroid” in the comprehensive medical examination text part.

fSCENT: static and contextualized ensemble NLP network.