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Abstract

Semiparametric, multiplicative-form regression models are specified for marginal single and

double failure hazard rates for the regression analysis of multivariate failure time data. Cox-type

estimating functions are specified for single and double failure hazard ratio parameter estimation,

and corresponding Aalen–Breslow estimators are specified for baseline hazard rates.

Generalization to allow classification of failure times into a smaller set of failure types, with

failures of the same type having common baseline hazard functions, is also included. Asymptotic

distribution theory arises by generalization of the marginal single failure hazard rate estimation

results of Danyu Lin, L.J. Wei and colleagues. The Péano series representation for the bivariate

survival function in terms of corresponding marginal single and double failure hazard rates leads

to novel estimators for pairwise bivariate survival functions and pairwise dependency functions, at

specified covariate history. Related asymptotic distribution theory follows from that for the

marginal single and double failure hazard rates and the continuity, compact differentiability of the

Péano series transformation and bootstrap applicability. Simulation evaluation of the proposed

estimation procedures are presented, and an application to multiple clinical outcomes in the

Women’s Health Initiative Dietary Modification Trial is provided. Higher dimensional marginal

hazard rate regression modeling is briefly mentioned.
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1 Introduction

Sir David Cox’s landmark paper (Cox, 1972) revolutionized the methods for analyzing

censored failure time regression data. Cox regression, along with Kaplan–Meier (KM)

survival function estimators, quickly became core methods for the analysis of univariate

failure time data.

In the subsequent 45 years a considerable statistical literature has arisen proposing methods

that are built upon univariate Cox regression for the analysis of multivariate failure time

regression data. An important contribution was provided by Andersen and Gill (1982), who
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used the same semiparametric exponential model form for the counting process intensity,

which models failure rates for multivariate events on a single failure time axis conditional on

all preceding failure, censoring and covariate information. As such these methods are suited

to examining hazard ratio dependencies on covariates after allowing for the preceding failure

history for the correlated set of outcomes, but cannot be used to examine covariate effects on

hazard rates without the counting process conditioning. Frailty models (e.g., Andersen et al.,

1993; Hougaard, 2000; Aalen et al., 2010; Duchateau and Janssen, 2010; Wienke, 2011)

have also played a major role in multivariate failure time data analysis methods. These

models avoid intensity models that depend explicitly on the individual’s preceding failure

time counting process by assuming independence between the failure times given a random

effect, or frailty variable, which is typically assumed to act multiplicatively on the hazard

rates for the correlated failure times given preceding covariate histories. These modeling

methods are suited to the study of dependencies or clustering among correlated failure times

given preceding covariate histories, but are less suited to the study of hazard rate

associations with covariate histories themselves. In particular, marginal hazard rates given

covariates that are induced by frailty models typically do not reduce to the standard form of

the Cox models for marginal single failure hazard rates.

The copula model approach (e.g. Clayton, 1978; Oakes, 1986, 1989; Nan et al., 2006;

Nelsen, 2007; Bandeen-Roche and Ning, 2008; Hu et al., 2011) to multivariate failure time

modeling avoids these issues by assuming the standard Cox models for marginal single

failures hazard rates, and by bringing together corresponding marginal survival functions

(given covariates) through a copula function having a low dimensional parameter that

controls dependency. A two-stage data analysis (e.g. Shih and Louis, 1995) then retains the

usual marginal single failure hazard parameter rate estimators, while also providing

estimators of copula distribution parameters. If the assumed copula model is a good fit to the

data, this approach can provide a simple parametric description of dependencies among

failure times, given covariates. This description can allow such dependencies to depend on

baseline covariates, but the copula approach is not suited to estimating dependencies that are

functions of covariates that evolve over the study follow-up period(s).

Frailty and copula models typically embrace a limited class of dependencies among the

multivariate failure times. A semiparametric marginal regression modeling approach can add

valuable analytic flexibility. Importantly the modeling approach that is considered here

includes semiparametric regression models for both marginal single and marginal double

failure hazard rates, and has the potential to add readily interpretable information on

regression influences on failure time outcomes jointly, beyond that from Cox model analyses

of the univariate outcomes. Asymptotic distribution theory for estimators of the regression

parameters and corresponding baseline rates in the marginal single and double failure rate

models will be developed by generalizing the empirical process results of Spiekerman and

Lin (1998) for marginal single failure hazard rates and Lin et al. (2000) for recurrent event

data, to embrace both marginal single and double failure rate models. These methods are

largely complementary to well-developed semiparametric regression methods for the failure

counting process intensity that considers the regression associations with the rates that

condition on the entire preceding failure time counting process history for the correlated set

of outcomes. The methods that are presented here aim to elucidate population-averaged
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regression effects, in contrast to the subject-specific associations targeted by intensity

models.

2 Bivariate Failure Time Regression Modeling and Estimation

2.1 Marginal single and double failure rate regression

Consider bivariate failure times T1 > 0 and T2 > 0 that are subject to right censoring by C1 ≥

0 and C2 ≥ 0, respectively, with the usual convention that failures precede censorings in the

event of tied times. Also suppose that the pair (T1, T2) is accompanied by a bivariate

covariate that may stochastically evolve over the study follow-up period. Let z(t1, t2) denote

a vector of measured covariates at follow-up times (t1, t2) and let

Z t1, t2 = z(0, 0) ∨ {z(s1, s2); s1 < t1, s2 < t2} the covariate history prior to (t1, t2), where ‘∨’

denotes composition. One can define the marginal single failure hazard rate processes,

Λ10 ⋅ , 0; Z( ⋅ , 0)  and Λ01 0, ⋅ ; Z(0, ⋅ )  by

Λ10 dt1, 0; Z t1, 0 = P T1 ∈ t1, t1 + dt1 ; T1 ≥ t1, Z t1, 0 for t1 ≥ 0, and
Λ01 0, dt2; Z 0, t2 = P T2 ∈ t2, t2 + dt2 ; T2 ≥ t2, Z 0, t2 , for t2 ≥ 0,

and marginal double failure hazard rate process Λ11 ⋅ , ⋅ ; Z( ⋅ , ⋅ )  by

Λ11 dt1, dt2; Z t1, t2 = P T1 ∈ t1, t1 + dt1 , T2 ∈ t2, t2 + dt2 ; T1 ≥ t1, T2 ≥ t2, Z t1, t2 ,

for all t1 ≥ 0 and t2 ≥ 0. An independent censoring assumption (given Z) for estimation of

parameters in these hazard rate processes requires that lack of censoring in [0, t1), in [0, t2),

and in [0, t1) × [0, t2) can be added, respectively, to the conditioning events in these

expressions without altering the failure rates, for any (t1, t2).

Though a variety of regression models could be entertained for these marginal single and

double failure hazard rates, we will focus on Cox-type semiparametric models, and write

Λ10{dt1, 0; Z(t1, 0)} = Λ10(dt1, 0)exp{X(t1, 0)β10}, (1)

Λ01{0, dt2; Z(0, t2)} = Λ01(0, dt2)exp{X(0, t2)β01}, and (2)

Λ11{dt1, dt2; Z(t1, t2)} = Λ11(dt1, dt2)exp{X(t1, t2)β11} . (3)

Here Λ10( ⋅ , 0), Λ01(0, ⋅ ), and Λ11( ⋅ , ⋅ ) are unspecified ‘baseline’ hazard functions at zero

values for the corresponding regression variables

X(t1, 0) = {X1(t1, 0), X2(t1, 0), …}, X(0, t2) = {X1(0, t2), X2(0, t2), …}, and X(t1, t2) = {X1(t1, t2),

X2(t1, t2),...}. These regression variables, with sample paths that are continuous from the left

with limits from the right, are each fixed length vectors (i.e., same length vectors for all
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study subjects at all times) formed from {t1, Z(t1, 0)}, {t2, Z(0, t2)} and {t1, t2; Z(t1, t2)}

respectively. Also, β10, β01 and β11 are corresponding (column vector) regression

parameters to be estimated. The hazard ratio factors on the right side of (1)–(3) aim to

quantify the dependence of these failure rates on the pertinent preceding covariate history.

Consider a random sample

S1i = T1i ∧ C1i, δ1i = I T1i = S1i , S2i = T2i ∧ C2i, δ2i = I T2i =S2i , Z S1i, S2i , for i = 1, …, n

from a study cohort, where ∧ denotes minimum and I[·] is an indicator function. These

observations define corresponding counting processes N1i, N2i and ‘at risk’ processes Y1i,

Y2i via

N1i dt1 =
1 if S1i = t1 and δ1i = 1

0 otherwise
; N2i dt2 =

1 if S2i = t2 and δ2i = 1,

0 otherwise

Y1i t1 =
1 if S1i ≥ t1
0 otherwise

; and Y2i t2 =
1 if S2i ≥ t2
0 otherwise

,

for i = 1,...,n. From the above expressions one can define processes

L10i( ⋅ , 0; β10), L01i(0, ⋅ ; β01) and L11i( ⋅ , ⋅ ; β11) that have zero means under (1)–(3)

respectively, by

L10i dt1, 0; β10 = N1i dt1 − Y1i t1 Λ10 dt1, 0 exp Xi t1, 0 β10 ,
L01i 0, dt2; β01 = N2i dt2 − Y2i t2 Λ01 0, dt2 exp Xi 0, t2 β01 , and
L11i dt1, dt2; β11 = N1i dt1 N2i dt2 − Y1i t1 Y2i t2 Λ11 dt1, dt2 exp Xi t1, t2 β11 .

An estimating equation for the hazard ratio parameter β = (β10′ , β01′ , β11′ )′ over a follow-up

region [0, τ1] × [0, τ2] can be written as

U β; τ1, τ2 =

U10 β10; τ1

U01 β01; τ2
U11 β11; τ1, τ2

= 0, (4)

where

U10 β10; t1 = ∑
i = 1

n ∫0

t1
Xi s1, 0 − X s1, 0; β10 ′N1i ds1 ,

U01 β01; t2 = ∑
i = 1

n ∫0

t2
Xi 0, s2 − X 0, s2; β01 ′N2i ds2 ,

and

U11 β11; t1, t2 = ∑
i = 1

n ∫0

t1∫0

t2
Xi s1, s2 − X s1, s2; β11 ′N1i ds1 N2i ds2 ,
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and where

X s1, 0; β10 = ∑
i = 1

n
Y1i s1 Xi s1, 0 exp Xi s1, 0 β10 / ∑

i = 1

n
Y1i s1 exp Xi s1, 0 β10 ,

X 0, s2; β01 = ∑
i = 1

n
Y2i s2 Xi 0, s2 exp Xi 0, s2 β01 / ∑

i = 1

n
Y2i s2 exp Xi 0, s2 β01 , and

X s1, s2; β11 = ∑
i = 1

n
Y1i s1 Y2i s2 Xi s1, s2 exp Xi s1, s2 β11 / ∑

i = 1

n
Y1i s1 Y2i s2 exp Xi s1, s2 β11 .

Note that the solution β = (β10′ , β01′ , β11′ )′ to (4) provides an estimator of β under (1)–(3) as

derives from the fact that N1i(ds1) in U10 can be replaced by L10i(ds1, 0; β10), N2i(ds2) in

U01 can be replaced by L10i(ds1, 0; β10), N2i(ds2) and N1i(ds1)N2i(ds2) in U11 can be replaced

by L11i(ds1, ds2; β11) while retaining equality to zero, as follows from some simple algebra.

Hence U(β; τ1, τ2) is composed of stochastic integrals of functions of the data with respect to

a zero mean process at the ‘true’ β-value.

The distribution theory for β is complicated due to the dependence of the ‘centering’

processes X ⋅ , 0; β10 , X 0, ⋅ ; β01  and X ⋅ , ⋅ ; β11  on data from all sampled individuals.

However, under independent and identically distributed (i.i.d.) conditions and some

regularity conditions these processes converge almost surely to the ratio of the expectations

of numerator and denominator terms, denoted here by x ⋅ , 0; β10 , x 0, ⋅ ; β01  and x ⋅ , ⋅ ; β11
respectively. In fact, the convergence is at a sufficiently rapid rate as n ∞ that the

centering processes can be replaced by these limits without altering the asymptotic

distribution of n−1/2U β; τ1, τ2 . The central limit theorem can therefore be applied to

n−1/2U β; t1, t2 , for all t1, t2 ∈ 0, τ1 × 0, τ2 , to show weak convergence to a zero mean

Gaussian process with covariance function

Σ β; t1, t2 = E

∫0

t1
X s1, 0 − x s1, 0; β10 ′L10 ds1, 0; β10

∫0

t2
X 0, s2 − x 0, s2; β01 ′L01 0, ds2, 0; β01

∫0

t1∫0

t2
X s1, s2 − x s1, s2; β11 ′L11 ds1, ds2; β11

⊗ 2

,

where E denotes expectation, and a ⊗ 2 = aa′ for column vector a. For these developments

τ1, τ2  is required to be in the support of the observed follow-up times {(S1i, S2i), i = 1, …, n} .

A Taylor series expansion of U(β; τ1, τ2) about the ‘true’ β value then leads under regularity

conditions to a mean zero asymptotic Gaussian distribution for n1/2(β − β) with analytic

variance estimator I−1ΣI−1 of sandwich form, where I is the product of n−1 and the negative
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of the matrix of partial derivatives of U(β; τ1, τ2) with respect to β evaluated at β, and Σ is an

empirical estimator of Σ(β; τ1, τ2) that can be written as

Σ = n−1 ∑
i = 1

n

∫
0

τ1
{Xi(t1, 0) − X(t1, 0; β10)}′L10i(dt1, 0; β10)

∫
0

τ2
{Xi(0, t2) − X(0, t2; β01)}′L01i(0, dt2; β01)

∫
0

τ1∫
0

τ2
{Xi(t1, t2) − X(t1, t2; β11)}′L11i(dt1, dt2; β11)

⊗ 2

, (5)

where L10, L01 and L11 are obtained from L10, L01 and L11, respectively, by evaluating at β

and at empirical estimators of the baseline hazard rates Λ10, Λ01 and Λ11 in (1)–(3). Natural

empirical estimators Λ10, Λ01 and Λ11 of these baseline rates have Aalen–Breslow form, and

are given by

Λ10 t1, 0 = ∫
0

t1
∑
i = 1

n
N1i ds1 / ∑

i = 1

n
Y1i s1 exp{Xi s1, 0 β10}, (6)

Λ01 0, t2 = ∫
0

t2
∑
i = 1

n
N2i ds2 / ∑

i = 1

n
Y2i s2 exp{Xi 0, s2 β01}, and (7)

Λ11 t1, t2 = ∫
0

t1∫
0

t2
∑
i = 1

n
N1i ds1 N2i ds2

/ ∑
i = 1

n
Y1i s1 Y2i s2 exp{Xi s1, s2 β11} .

(8)

Empirical process methods can be used to show the weak convergence of

n1/2(Λ10 −Λ10), n1/2(Λ01 − Λ01), n1/2(Λ11 − Λ11) jointly as n → ∞ to a zero mean Gaussian

process under (1)–(3). In fact an empirical covariance function estimator for these parameter

estimates can be developed. These asymptotic developments follow from modest extensions

of the work of Spiekerman and Lin (1998), and Lin et al. (2000). Some detail on these

developments and related conditions is given in the Appendix in the more general context of

§5.

The marginal single failure hazard rate models (1) and (2) impose constraints on the double

failure hazard rate model (3) and visa versa, so that (1) and (2) typically will not be fully

consistent with (3) in their respective hazard rate regression components. The solutions to

(1)–(3), and the estimators of the baseline rates (6)–(8) may incorporate some asymptotic

bias under departure from one or more of the regression models (1)–(3). However, through

Prentice and Zhao Page 6

J Am Stat Assoc. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the time-varying features of the modeled regression variables in these models, and even

further through the use of both time-varying regression variates and time-varying baseline

hazard rate stratification, the latter of which can be readily incorporated by replacing (4) by

corresponding summations over a fixed number of possibly time-dependent strata, one has

the tools to arrange for each of (1), (2) and (3) to provide a suitable fit to available data.

Having done so one can expect that estimators of joint survival probabilities and related

statistics, for example those that assess the strength of dependency between T1 and T2 given

Z, to be estimated with little bias. This topic too will be elaborated below. Also, departure

from any one, or two, of the hazard rate models (1)–(3) does not adversely affect asymptotic

distributional results for estimators of parameters in the remaining hazard rate models.

2.2 Simulation evaluations

Continuous failure times given a single binary covariate z that takes values 0 or 1 with

probability 0.5 were generated under the rather specialized Clayton–Oakes regression model

(Clayton, 1978; Oakes, 1986) of the form

F t1, t2; z = {F0 t1, 0 −θ + F0 0, t2
−θ − 1}−ezγ /θ (9)

for values θ ≥ 0, where F0 denotes the survival function at z = z(0, 0) = 0. The resulting

failure time variates have marginal single failure hazard rates of the form

Λ10 dt1, 0; z = Λ10 dt1, 0 ezγ and Λ01 0, dt2; z = Λ01 0, dt2 ezγ,

and double failure hazard rates

Λ11 dt1, dt2; z = Λ11 dt1, dt2 ezγ ezγ + θ /(1 + θ),

so that (1)–(3) is obtained for a binary covariate z with x(t1, 0) = x(0, t2) = x(t1, t2) = z, with

x t1, 0 = x 0, t2 = x t1, t2 = z, with β10 = β01 = γ, and with β11 = log{eγ(eγ + θ)/(1 + θ)} . Data

were generated with unit exponential marginals at z = 0, and censoring times that were

independent of each other and equally and exponentially distributed with censoring hazard

rate, c, chosen to give certain specified uncensored failure fractions for T1 and T2, or with no

censoring (c = 0). Covariate values were generated with probabilities 0.5 for z = 0 and z = 1.

In implementing (4) τ1 and τ2 were specified as the maximal values of S1i and S2i

respectively in the sample of size n. Table 1 shows sample means and sample standard

deviations for (β10, β01, β11) at (θ, γ) values of (2, 0) and (2, log 2) at n = 250 or 500 with

substantial censoring (c = 5), and at n = 100 with no censoring, based on 1000 simulations at

each configuration. These simulations show little evidence of regression parameter bias,

even though there are, for example, only about 13.5 expected double failures at (θ, γ) = (2, 0)
and n = 250, with substantial censoring (c = 5) for each of T1 and T2. Also there is good

agreement generally between the sample standard deviation for the regression parameter

estimates and the average of the standard deviation estimators from the sandwich variance
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formula, as well as good proximity to 95% for the associated asymptotic 95% confidence

interval coverage. An exception occurs at (θ, γ) = (2, 0) and n = 250, where the sample

standard deviation for β11 is considerably larger than the average of sandwich standard

deviations, presumably reflecting a distribution with heavier tails than the approximating

asymptotic normal distribution. The approximation, however, seems adequate at n = 500,

where the expected number of double failures is about 27. Note that the marginal double

failure hazard rate from (9) has a very specialized form, which typically does not agree with

the semiparametric model (3) if z is not binary.

Table 2 shows corresponding summary statistics for the cumulative double failure hazard

rate estimator Λ11 t1, t2; z , under (8) and the second Table 1 configuration (θ = 2, γ = log2), at

both z = 0 and z = 1. One can show the targeted double failure hazard rate to be

Λ11 t1, t2; z = ezγ(ezγ + θ){t1/θ + t2/θ − log(e
t1θ

+ e
t2θ

− 1)/θ2}

under the simulation conditions of this subsection. Estimated Λ11 values are reasonably

accurate under the configurations shown, as was also the case at some smaller sample sizes

(e.g. n = 100 with no censoring). Empirical approximations to asymptotic standard deviation

estimates are somewhat low in heavy censoring scenarios, especially close to the coordinate

axes or toward distributional tails, and corresponding confidence interval coverage rates tend

to be less than nominal levels. These features derive from few preceding double failures

close to the axes, and from empty double failure risk sets for some samples toward

distributional tails. Hence fairly large sample sizes may be needed for these asymptotic

approximations to the distribution of Λ11 to be accurate.

3 Bivariate Survival Function and Dependency Function Estimation

3.1 Bivariate survival function estimation

Given specifications, such as (1)–(3), for marginal single and double failure hazard rate

processes one can define a bivariate process F given Z for all t1 ≥ 0 and t2 > 0 by the product

integrals

F{t1, 0; Z t1, 0 } = ∏
0

t1
1 − Λ10{ds1, 0; Z s1, 0 } , and

F{0, t2; Z 0, t2 } = ∏
0

t2
1 − Λ01{0, ds2; Z 0, s2 } ,

along the coordinate axes. Away from these axes F given Z is defined by the inhomogeneous

Volterra integral equation
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F{t1, t2; Z(t1, t2)} = F{t1, 0; Z(t1, 0)} + F{0, t2; Z(0, t2)} − 1

+ ∫
0

t1∫
0

t2
F{s1

−, s2
−; Z(s1, s2)}Λ11{ds1; ds2; Z(s1, s2)},

(10)

that has a unique Péano series solution given by

F{t1, t2; Z(t1, t2)} = ψ{t1, t2; Z(t1, 0), Z(0, t2)}

+ ∑
j = 1

∞ ∫
0

t1∫
s11

t1
…∫

s1, j − 1

t1 ∫
0

t2∫
s21

t2
…∫

s2, j − 1

t2
ψ{s11

− , s21
− ; Z(s11, s21)

} ∏
m = 1

j
Λ11{ds1m, ds2m; Z(s1m, s2m)},

(11)

where ψ t1, t2; Z t1, 0 , Z 0, t2 = F t1, 0; Z t1, 0 + F 0, t2; Z 0, t2 − 1. Note that F given Z

will have a survival function interpretation if Z is composed only of the baseline covariate

data, z(0, 0), and evolving covariates that are external to the failure processes (e.g.

Kalbfleisch and Prentice, 2002, chapter 6).

Now denote the uncensored T1 failures in the sample of a size n by t11, t12,..., t1I, and the

uncensored T2 failures by t21,t22,..., t2J. The semiparametric model estimators

Λ10 dt1, 0; Z t1, 0 , Λ01 0, dt2; Z 0, t2  and Λ11 dt1, dt2; Z t1, t2  place mass only at the

uncensored data grid points (t1i, t2j) within the risk region R = (t1, t2; S1ℓ ≥ t1, S2ℓ ≥ t2, for

some ℓ ∈ (1, …, n) ] of the data, and along the half-lines through the uncensored failure times

in either direction beyond the risk region. One can readily estimate F given Z at specified

covariate history Z, using a simple recursive procedure as follows: At uncensored failure

time grid point (t1i, t2 j) ∈ R one can define

F{Δt1i, Δt2 j; Z(t1i, t2 j)} = F{t1i
−, t2 j

− ; Z(t1i, t2 j)}Λ11{Δt1i, Δt2 j; Z(t1i, t2 j)}

where Λ11{Δt1i, Δt2 j; Z(t1i, t2 j)} = Λ11(Δt1i, Δt2 j)exp{X(t1i, t2 j)β11}, from which

F{t1i, t2 j; Z(t1i, t2 j)} = F{t1i, t2 j
− ; Z(t1i, t2 j)} + F{t1i

−, t2 j; Z(t1i, t2 j)}
− F{t1i

−, t2 j
− ; Z(t1i, t2 j)} 1 − Λ11{Δt1i, Δt2 j; Z(t1i, t2 j)} .

(12)

This expression provides a procedure for calculating F{t1i, t2 j; Z(t1i, t2 j)} for a specified

covariate history Z, starting with
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F{t1i, 0; Z(t1i, 0)} = ∏
ℓ = 1

i
[1 − Λ10(Δt1ℓ, 0)e

X(t1ℓ, 0)β10], and

F{0, t2 j; Z(0, t2 j)} = ∏
m = 1

j
[1 − Λ01(0, Δt2m)e

X(0, t2m)β01] .
(13)

Under (1)–(3) F given Z will generally provide a strongly consistent estimator of F given Z,

and n1/2(F − F) given Z will converge as n ∞ to a zero mean Gaussian process, on the

basis of the properties of the univariate Cox model estimators (13) and the continuity and

weakly continuous compact differentiability of the Péano series transformation (Gill et al.,

1995) from these marginal estimators and Λ11 to F, given Z. As such (12) and (13) provide a

rather flexible regression generalization, with fixed and external covariates, of a Volterra

bivariate survival function estimator that has been attributed to Peter Bickel (Dabrowska,

1988).

3.2 Dependency function estimation

One use of the estimator F given Z is for assessing dependency between the two failure time

variates given Z. If F given Z has a survival function interpretation one can define, building

on the work of Fan et al. (2000), an average cross ratio function estimator C t1, t2; Z t1, t2
over 0, τ1 × 0, τ2 , where τ1, τ2  is in the risk region of the data, by

C{t1, t2; Z(t1, t2)} = ∫
0

t1∫
0

t2
F{s1

−, s2
−; Z(s1, s2)}Λ11{Δs1, Δs2; Z(s1, s2)}/

∫
0

t1∫
0

t2
F{s1

−, s2
−; Z(s1, s2)}Λ10{Δs1, s2

−; Z(s1, s2)}Λ01

{s1
−, Δs2; Z(s1, s2)},

(14)

which contrasts the double failure rate Λ11 with the corresponding local independence value

Λ10Λ01 given Z, where

Λ10{Δs1, s2
−; Z(s1, s2)} = − F{Δs1, s2

−; Z(s1, s2)}/F{s1
−, s2

−; Z(s1, s2)} and

Λ01{s1
−, Δs2; Z(s1, s2)} = − F{s1

−, Δs2; Z(s1, s2)}/F{s1
−, s2

−; Z(s1, s2)},

with weight function F{s1
−, s2

−; Z(s1, s2)} that depends on the failure rates, but not the

censoring rates, given Z.

Similarly, one can define, following Oakes (1989) and Fan et al. (2000), an average

concordance function estimator between T1 and T2 over 0, τ1 × 0, τ2  given Z, that takes

values in (−1, 1), by
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𝒯{t1, t2; Z(t1, t2)}

= ∫
0

t1∫
0

t2
F{s1

−, s2
−; Z(s1, s2)}F{Δs1, Δs2; Z(s1, s2)}

−∫
0

t1∫
0

t2
F{Δs1, s2

−; Z(s1, s2)}F{s1
−, Δs2; Z(s1, s2)} /

∫
0

t1∫
0

t2
F{s1

−, s2
−; Z(s1, s2)}F{Δs1, Δs2; Z(s1, s2)}

+∫
0

t1∫
0

t2
F{Δs1, s2

−; Z(s1, s2)}F{s1
−, Δs2; Z(s1, s2)} .

(15)

These estimators quite generally inherit strong consistency, and weak Gaussian convergence

properties from these same properties for F given Z and the continuity and compact

differentiability of the transformations from F to C and from F to 𝒯 ..

3.3 Confidence interval and confidence band estimation

The asymptotic properties just stated for survival and dependency function estimators

conceptually generate corresponding analytic variance function estimators using the delta

function method. However the transformations from marginal single and double hazard rate

estimators to the bivariate survival function using (11), and the transformations from the

survival function to the average cross ratio and concordance estimators (14) and (15) may be

too complex for the delta function approach to be useful. Accordingly we employ a

bootstrap resampling approach to estimate confidence intervals and bands for these

functions, as well as to estimate confidence bands for marginal single and double failure

cumulative hazard functions. The applicability of bootstrap procedures follows from the

asymptotic Gaussian properties already cited for regression parameter and baseline hazard

function estimators in (10)–(13), and the weakly continuous compact differentiabilty of the

Péano series survival function transformation (11) (Gill et al., 1995) and of the

transformations (14) and (15) (Fan et al., 2000).

3.4 Simulation evaluation of survival and dependency function estimators

In the special case where all regression parameters in (1)–(3) take value zero, F given Z from

(12) and (13) is the previously mentioned Volterra estimator. While nonparametric plug-in

estimators of the bivariate survival function due to Dabrowska (1988) and Prentice and Cai

(1992) have been shown (Gill et al., 1995) to be nonparametric efficient under the compete

independence of (T1, T2, C1, C2), this property evidently does not hold for the Volterra

estimator. On that basis it has been speculated that the Volterra estimator may be ‘much

inferior’ to these other estimators (Gill et al., 1995). To examine this topic further we

conducted simulations under (9) with γ = 0, so that β10 = β01 = β11 = 0 with no regression

variable influences. As previously T1 and T2 were specified as the maximal observed S1i and

S2i values respectively in the generated sample.
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Table 3 shows summary statistics evaluating the Volterra estimator and comparing it to the

Dabrowska estimator, which is also simply calculated recursively using

F(t1i, t2 j) =
F(t1i

−, t2 j)F(t1i, t2 j
− )

F(t1i
−, t2 j

− )

di j
00ri j

(di j
10 + di j

00)(di j
01 + di j

00)

at all grid points where the denominator components in the factor in curly brackets are

positive, and F = 0 otherwise, again starting with KM marginal survival function estimators.

In this expression ‘di j
10, di j

01 and di j
00’ are the numbers of observations known to have ‘T1 = t1i

and T2 > ti j’; ‘T1 > t1i and T2 = t2 j’; and ‘T1 > t1i, T2 > t2 j’ respectively, among the rij

individuals at risk at uncensored failure time grid point (t1i, t2j). From Table 3 one can see

that both the Volterra and Dabrowska estimators are quite accurate under the specified

sampling configurations. The two estimators also appear to have similar corresponding

moderate sample efficiencies, even at the complete independence of (T1, T2, C1, C2), where

the Dabrowska estimator is nonparametric efficient. Note that, in contrast to the Dabrowska

estimator, the Volterra estimator does not assign negative mass within the risk region of the

data. However, it tends to assign more negative mass than does the Dabrowska estimator, to

half-lines beyond the risk region. Overall, these simulations provide little basis for choosing

between the Volterra and Dabrowska nonparametric estimators of the bivariate survivor

function.

Table 4 shows summary statistics for F at various follow-up times (t1,t2) under (9) and a

specific Table 1 configuration (θ = 2, γ = log2) . The survival function estimators F do not

show evidence of bias under these simulation conditions, similar to what was observed for

smaller sample sizes (e.g., n = 100 with no censoring). One could apply the bootstrap

procedure to some transformation of F, such as log F, but we applied it directly to F in these

simulations. Note the good correspondence between sample standard deviation (SD) based

on 1000 generated samples at each configuration and the corresponding average of bootstrap

SD estimates, based on 200 bootstrap replicates for each generated sample. Also asymptotic

95% confidence interval coverage rates, based on F t1, t2 ± 1.96 (bootstrap SD), are close to

the nominal levels throughout Table 4.

Supplementary Table 1 compares analytic and bootstrap SD estimators for Λ11, as well as

corresponding 95% confidence interval coverage rates under the same generated samples,

and at the same (t1, t2) values, as in Table 4. There appears to be good agreement between

empirical (sandwich) estimator and bootstrap (200 replicates) standard deviation estimators.

Confidence interval coverage rates are low under some configurations, but tend to be a little

closer to nominal levels with the bootstrap than with the analytic SD estimators.

Table 5 gives confidence band performance statistics for both Λ11 and F, over specified

follow-up regions. These were developed by applying a supremum statistic over the

confidence region without estimator transformation, for each estimator. Specifically, over a

follow-up region [0, t1] × [0, t2] the statistics
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WΛ11
t1, t2 = sup

0, t1 × 0, t2
n

1
2 |Λ11 s1, s2 − Λ11 s1, s2 | and WF t1, t2

= sup
0, t1 × 0, t2

n

1
2 |F s1, s2 − F s1, s2 |

are targeted at specified (t1, t2) values. Bootstrap estimates of these quantities are obtained,

respectively, by calculating

WΛ11 t1, t2
= sup

0, t1 × 0, t2
n

1
2 |Λ11* s1, s2 − Λ11 s1, s2 | and W

F
t1, t2

= sup
0, t1 × 0, t2

n

1
2 |F* s1, s2 − F s1, s2 |

where Λ11*  and F* denote bootstrap replicate estimators derived using Λ11 and F . Critical

values for an α-level (e.g. α = 0.95) confidence region can be estimated as the α percentiles

Cα(Λ11) and Cα(F) from the bootstrap replicate supremum statistics WΛ11
(t1, t2) and W

F
(t1, t2)

respectively. Corresponding α-level confidence bands are then estimated for region [0, t1] ×

0, t2] as

Λ11 t1, t2 ± n
− 1

2Cα(Λ11) and F t1, t2 ± n
− 1

2Cα(F)

respectively.

The simulation summary statistics in Table 5 include bootstrap-based confidence regions for

both Λ11 and F over certain rectangular follow-up regions, using 200 bootstrap replicates for

each generated sample, for each of the latter two configurations of Table 4. Note that the full

set of uncensored data grid points for a generated sample was retained for all associated

bootstrap samples in the calculation of WΛ11
 and W

F
 statistics. The sample mean and

standard deviation of critical value estimates from the 1000 generated samples are shown.

Summary statistics for 95% confidence bands for Λ11 and F at both z = 0 and z = 1 are also

shown in Table 5. Coverage rates tend to be somewhat low but, considering the size of the

standard deviation for the bootstrap critical value estimates, these may improve if a larger

number of bootstrap replicates are used.

Supplementary Table 2 provides simulation summary statistics for average cross ratio and

average concordance estimators under the same simulation conditions as Table 5. Under

these simulation conditions C t1, t2; z  estimates 1 + θe−zγ and 𝒯 t1, t2; z  estimates
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θe−zγ / θe−zγ + 2  at any t1 > 0 and t2 > 0. As shown in Supplementary Table 2 the cross ratio

estimates with follow-up periods [0, t1] × [0, t2] tend to have small upward bias, and average

concordance estimators have a small downward bias at these sample sizes, especially under

the configuration with substantial censoring. These estimated biases derive in part from

moderate sample size distributions that are somewhat skewed, and additional calculations

show they can be reduced through simple transformation (e.g., apply asymptotic normal

approximation to log C, rather than to C). Bootstrap procedures can again be used to

estimate confidence intervals and bands for these dependency function estimators.

4 Composite Outcomes in a Low-fat Dietary Pattern Trial

The Women’s Health Initiative (WHI) includes a low-fat dietary pattern randomized

controlled trial among 48,835 postmenopausal women (Women’s Health Initiative Study

Group, 1998). Participating women were in the age range 50–79 at randomization at one of

the 40 clinical centers in the US during 1993–1998. Forty percent of the participants were

assigned to a low-fat dietary pattern intervention that included goals of reducing dietary fat

to 20% of energy, as well as increasing vegetables and fruit to five servings a day and grains

to six servings a day. The intervention was administered by nutritionists in groups of size

10–15, with 18 sessions in the first year of the intervention, and quarterly maintenance

sessions thereafter over an intervention period that averaged 8.5 years, with subsequent

continuing non-intervention follow-up. The other 60% of the participants were assigned to a

comparison (control) group, with no dietary intervention. Comparison group women were

provided written materials on diet and health only. Breast cancer incidence and colorectal

cancer incidence were designated primary outcomes, while coronary heart disease incidence

was designated as the secondary trial outcome. Various other clinical outcomes, including

mortality from any cause were also ascertained, and used in trial monitoring and reporting.

Chlebowski et al. (2017) recently reported updated analyses of breast cancer incidence (T1)

and total mortality (T2) from this dietary modification (DM) trial, for both the intervention,

and a combined intervention and post-intervention, time periods. Cox models (1)–(3) were

applied with X t1, 0 = X 0, t2 = X, t1, t2 = z, where z is an indicator for intervention (z = 1)

or comparison (z = 0) randomization assignment, and with baseline stratification on age (5-

year intervals) and on randomization status in the companion WHI hormone therapy trials.

The (T1, T2) failure times were censored by a common value C1 = C2 = C equal to the

participants follow-up time at the end of the intervention period (3/31/05) or, for a small

fraction of women, at the time of earlier loss to follow-up. Since deaths can only follow

breast cancer incidence events (i.e. T2 ≥ T1) for a participant, an independent censoring

assumption requires specifically that censoring rates for T2 do not depend on the

corresponding T1 value, an appropriate assumption here since all death ascertainment

procedures continued unchanged following a breast cancer diagnosis, including matching to

the U.S. National Death Index.

At the end of the intervention period the breast cancer (T1) hazard ratio (estimated 95% CI)

was 0.92 (0.84,1.01), with logrank significance level of p = 0.09, with 671 and 1093 incident

breast cancer cases in the intervention and comparison groups respectively. The
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corresponding values for all-cause mortality (T2) were 0.98 (0.91, 1.06), with 989 and 1519

deaths in the respective groups. The composite outcome (T1, T2) of breast cancer followed

by death from any cause had an estimated double failure hazard ratio (95% confidence

interval) of 0.64 (0.44, 0.93), with 40 and 94 women experiencing the dual events in the two

randomization groups, respectively, during the intervention period.

Note that the composite outcome analysis provides stronger evidence for an intervention

benefit (logrank p = 0.02) than does the marginal analysis for either outcome separately, in

spite of a much smaller number of cases. A corresponding univariate analysis of time from

randomization to death attributed to breast cancer has estimated hazard ratio (95%

confidence interval) of 0.67 (0.43, 1.06), with logrank p = 0.08. There were 27 and 61 deaths

attributed to breast cancer in the two groups, respectively, during the intervention period.

Another univariate analysis considers death, with classification of whether or not the death

followed a breast cancer diagnosis, as a marked point process. This approach leads to a

hazard ratio estimate (95% CI) of 0.65 (0.45,0.94), as reported in Chlebowski et al. (2017),

which is nearly identical to the double failure hazard ratio estimate given above. In fact the

corresponding estimating equations agree except for minor differences in the dual outcome

risk set specifications at each death time following breast cancer. The double failure hazard

rate model, however, brings potential to address additional questions such as whether the

observed intervention influence is primarily through breast cancer incidence or through

subsequent survival, and can do so in a manner that retains intention-to-treat interpretation

for inferences. For example, suppose that the modeled regression variable in Λ11 is extended

to X t1, t2 = z, z t2 − t1 . One then obtains β11 = (0.226, − 0.220), with corresponding

standard deviation estimates of (0.364, 0.101) from the sandwich-form estimated variance

matrix. This gives nominally significant evidence (p = 0.03) of a dual outcome hazard ratio

that is reduced at larger time periods from breast cancer diagnosis to death. See Chlebowski

et al. (2017) for more detailed analyses that also include breast tumor hormone receptor

status, subgroup analyses, and longer-term non-intervention follow-up.

For completeness Table 6 shows the estimated survival probability for (Tl, T2) at follow-up

times of three, six, and nine years from randomization for each variate. For this purpose we

dropped the baseline hazard rate stratification described above, so that survival function

estimators at z = 0 and z = 1 correspond to the comparison and intervention groups as a

whole. Corresponding bootstrap-based 95% confidence intervals and 95% supremum-type

confidence bands are also shown, the latter from a rectangular follow-up region with from 0

to 9 years for each failure time variate. These were based on 200 bootstrap replicates with

asymptotic approximations applied to F, without transformation. Confidence bands are

presented only at follow-up grid points {3, 6, 9} × {3, 6, 9} in years. As expected the

confidence bands are somewhat wider than corresponding confidence intervals at these

follow-up times, especially at short follow-up times. Supplementary Table 3 provides

corresponding estimators, bootstrap-based confidence intervals and confidence bands for Λ11
using the same bootstrap replicates. Since T2 ≥ Tl, these are only of interest on or above the

main diagonal.
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A second illustration in the same clinical trial illustrates the value of including a focus on

marginal hazard rates for Tl and T2 beyond counting process intensity modeling. Although

diabetes was not a designated outcome in the trial protocol, information on the use of ‘pills

for diabetes’ or ‘insulin shots for diabetes’ were collected twice annually during the trial

intervention period and annually thereafter, through medical update questionnaire. These

self-reports were found to be in reasonably good agreement with periodic medication

inventories provided by study participants. A total of 45, 579 women were without prevalent

diabetes at baseline. Clinical practice dictates the use of diabetes pills as a first line treatment

for diabetes, changing to insulin injections if the disease progresses. Cox-type regression

models were applied to these data, with baseline rates stratified as described above. An

analysis (Howard et al., 2018) of time from randomization to initiation of diabetes pills (T1)

gives a hazard ratio estimate (95% confidence interval) for the low-fat dietary pattern

intervention of 0.95 (0.88,1.02) over the intervention period with p = 0.13, with 3179

women developing diabetes. A counting process intensity model was applied to the post-

diabetes pills follow-up to ascertain time from randomization to insulin use (T2). This

intensity was modeled to allow a distinct parameter for the intervention hazard ratio, and a

baseline hazard rate that retained the original stratification, but also stratified on time-from-

randomization to first use of oral diabetes agents (in quartiles). The intervention hazard ratio

estimate (95% CI) from this analysis was 0.82 (0.64, 1.04) with a significance level of 0.10

and with 309 women progressing to insulin during the intervention period. This provides

some modest evidence that the intervention slowed progression to the more serious type of

disease requiring insulin injections, after controlling for time from randomization to the

initiation of diabetes pills. A marginal single and double hazard rate analysis of the (T1, T2)

data was also carried out with the original stratification mentioned above for both time

variates and with distinct baseline rates and intervention group regression parameters for the

two times. The marginal hazard rate analysis for T1 is the same as was described above,

whereas the marginal hazard rate analysis for time from randomization to diabetes requiring

insulin injections (T2) gave intervention hazard ratio estimate (95% confidence interval) of

0.74 (0.59, 0.94) with intention-to-treat significance level of 0.01. An independent

censorship assumption, again with C1 ≡ C2, is entirely appropriate in this context, so that

one obtains considerably stronger evidence of intervention benefit for time from

randomization to diabetes requiring insulin than is the case from analysis of either of its

component parts; namely, time from randomization to diabetes pills and time from diabetes

pills to insulin injections. Moreover, this stronger result arises from a comparison between

randomized groups, whereas the time from pills to insulin component of the intensity

modeling contrasts groups that may differ in their distributions of time-to-diabetes pills,

complicating the associated regression parameter interpretation. The double failure hazard

ratio estimate (95% confidence interval) here is nearly identical to that for T2. Over a longer

term follow-up that included a substantial post-intervention period, and a median total

follow-up of 17.3 years, the T1 estimated marginal hazard ratio estimate (95% CI) was 0.96

(0.91, 1.00), while that for T2 was 0.88 (0.78, 0.99) as was reported in Howard et al. (2018).
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5 Higher Dimensional Failure Time Regression Methods

5.1 Hazard rate regression models

With bivariate failure time data there may be natural commonalities in baseline rates and in

regression parameters in (1) and (2). For example, in twin studies it may be natural to restrict

the baseline hazard rates Λ10(dt1, 0) and Λ01(0, dt2) to be identical, and to require some

components of β10 and β01 to be equal. Following Spiekerman and Lin (1998) we will refer

to failure times having a common baseline rate function as failures of the same ‘type’, and

for notational convenience we will redefine the marginal single failure hazard rate regression

parameter to have a single value for all failure types by allowing the modeled regression

vector to include interaction terms with failure type. Also, we now allow the multivariate

failure times to be of arbitrary dimension.

5.2 Regression on marginal single and double failure hazard rates

Suppose that there is an arbitrary number, q, of failure times denoted by T1...,Tq for each

‘study subject,’ with a possibly evolving q-dimensional covariate Z. Denote by z(t1,...,tq)

covariate values at (t1,...,tq) and by Z(t1,..., tq) = z(0,..., 0) ∨ {z(s1,..., sq); s1 < t1,..., sq < tq}

the covariate history prior to (t1,..., tq). Also let M denote a unique mapping from {1,..., q} to

{1,..., K}, with K ≤ q, so that k = M(j) denotes the unique failure type for Tj, out of K
possible types, for j = 1,..., q. Much of the interest in the study of failure rates on Z typically

resides in the marginal single failure hazard rates. Suppose that the single failure hazard rate

for Tj at follow-up time tj, given Z(0,...,0, tj, 0,...) is modeled by

Γk(dt j)exp{Xk(t j)β} (16)

for j = 1, . . ., q. Note that failures of the same type, k, are assumed to have a common

baseline hazard rate function ‘Γk’, which is obtained when the modeled covariate Xk is

identically zero, with Xk(tj) a fixed length row vector which for Tj is formed from {tj;
Z(0,...,0, tj, 0,...0)}, and β a corresponding (column) regression vector to be estimated. As

noted by Spiekerman and Lin (1998), this parameterization is flexible enough to allow, for

example, distinct hazard ratio parameter vectors for each failure type, by including

interaction variables with failure type in the specification of Xk.

Similarly suppose that the marginal double failure hazard rate for a pair of failure time

variates (Tj, Th) at follow-up times (tj, th), given Z(0,...,0, tj, 0,...,0, th, 0,... 0), is modeled by

Γkg(dt j, dth)exp{Xkg(t j, th)γ}, (17)

for each 1 ≤ j < h ≤ q, where k = M(j) and g = M(h) are the failure types for Tj and Th,

respectively. In (17) Xkg(tj, th) is a fixed length row regression vector which for (Tj, Tk) is

formed from {tj, th; Z(0,...,0, tj, 0,...,0, th, 0,...,)}, γ is a corresponding column double failure

hazard ratio parameter to be estimated, and ‘Γkg’ is a baseline double failure hazard rate

function that is obtained at Xkg ≡ 0.
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In this formulation the failure times T1,...,Tq can occur along the same or different failure

time axes, but failures of the same type are required to fall on the same time axis. For the

parameters in (16) and (17) to have a useful interpretation an independent censorship

condition, given Z, needs to be met. Hence we assume that lack of censoring in [0, tj) can be

added to the single failure hazard rate conditioning without affecting (16) for any j = 1,...,q,

and lack of censoring in [0, tj) × [0, th) can be added to the double failure hazard rate

conditioning without affecting (17), for any (tj, th) and 1 ≤ j < h ≤ q.

Now consider a random sample {(S ji, δ ji), j = 1, …, q; Z(S1i, …, Sqi)}, for i = 1, …, n from a

study cohort, where S ji = T ji ∧ C ji is the minimum of the jth failure time Tji and a

corresponding potential censoring time Cji for the ith individual, and δ ji = I[S ji = T ji] . From

these one can define counting processes Nji and ‘at risk’ processes Yji by

N ji(dt j) =
1 if S ji = t j and δ ji = 1

0 otherwise
; Y ji(t j) =

1 if S ji ≥ t j
0 otherwise

for j = 1,...,q and i = 1,...,n. Missing failure times can be accommodated by setting the

pertinent Cji value equal to zero.

Similar to Spiekerman and Lin (1998) one can define an estimating equation for the

marginal single failure hazard ratio parameter β by

∑
i = 1

n
∑
j = 1

q
∑

k = 1

K
I{M( j) = k}∫

0

τk
{Xki t j − Xk(t j; β)}′N ji(dt j) = 0. (18)

Also, a corresponding estimating equation for the double failure hazard rates parameter γ
can be written

∑
i = 1

n
∑
j = 1

q
∑

h = j + 1

q
∑

k = 1

K
∑

g = k + 1

K
I M( j) = k I M(h) = g

∫
0

τk∫
0

τg
{Xkgi(t j, th) − Xkg(t j, th; γ)}′N ji(dt j)Nhi(dth) = 0.

(19)

In these expressions (τk, τg) are such that

P{S ji ≥ τk, M( j) = k, Shi ≥ τg, M(h) =g; Z(0, …, t j, 0, …, 0, th, 0, …0)} > 0 for some (j, h), for each

1 ≤ k ≤ g ≤ K for theoretical developments, but each τk can evidently be taken to be the

maximal observed Sji value, where k = M(j), in application. Also the ‘centering’ variates in

(18) are

Xk(t j; β) = Qk
(1)(t j; β)/Qk

(0)(t j; β),
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where Qk
(ℓ)(t j; β) = n−1∑i = 1

n ∑ j = 1
q I{M( j) = k}Y ji(t j)Xki(t j)

(ℓ)exp{Xki(t j)β}, for 𝓁 = 0, 1, 2

with a(0)= 1, a(1) = a and a(2) = a′a row vector a, while those in (19) are

Xkg t j, th; γ = Qkg
(1) t j, th; γ /Qkg

(0) t j, th; γ ,

where Qkg
(ℓ) t j, th; γ = n−1∑i = 1

n ∑ j = 1
q ∑h = j + 1

q I M( j) = k I M(h) = g

Y ji t j Yhi th Xkg t j, th
(ℓ)exp Xkg t j, th γ , for ℓ = 0, 1, 2.

The utility of (18) and (19) as estimating functions derives from the fact that each N ji dt j  in

(18) can be replaced by L ji dt j; β  where

L ji t j; β = ∫0

t j
N ji ds j − ∑

k = 1

K
I M( j) = k Y ji s j exp{Xki s j β}Γk ds j

while retaining equality to zero under (16), and similarly each N ji dt j Nhi dth  in (19) can be

replaced by L jhi dt j, dth; γ  where

L jhi t j, th; γ = ∫0

t j∫0

th
N ji ds j Nhi dsh − ∑

k = 1

K
∑

g = k + 1

K
I M( j) = k I M(h) = g Y ji s j Yhi sh

exp{Xkgi s j, sh γ}Γkg(ds j, dsh) ,

while retaining equality to zero under (17). It follows that the product of n−1/2 and left sides

of (18) and (19) are stochastic integrals of sample variates with respect to processes Lji and

Ljhi that have zero means under (16) and (17) respectively at the true (β, γ) values. Moreover,

it turns out that under i.i.d. conditions for the processes

{(N ji, Y ji), j =1, …, q, Zi(S ji, …, S jq)} for i = 1, …, n that the centering variates in (18) and (19)

can be replaced by their almost sure limits.

xk(t j; β) = qk
(1)(t j; β)/qk

(0)(t j; β) and xkg(t j, th; γ) = qkg
(1)(t j, th; γ)/qkg

(0)(t j, th; γ),

where qk
(ℓ) and qkg

(ℓ) are expectations of Qk
(ℓ) and Qkg

(ℓ) respectively for ℓ = 0, 1, 2, without

altering the asymptotic distribution of the left sides of (18) and (19). It then follows further

that the left sides of (18) and (19) behave, for large n, like a sum of i.i.d. variates to which

the central limit theorem applies under modest additional regularity conditions. From this n
−1/2 times these left sides converges to a zero mean Gaussian variate at the ‘true’ values for

(β, γ) under (16) and (17). The variance matrix for this Gaussian variate quite generally can

be consistently estimated by
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Σ = n−1 ∑
i = 1

n

∑
j = 1

q
∑

k = 1

K
I M( j) = k ∫0

τk
{Xki(t j) − Xk(t j, β)}′L ji(dt j; β)

∑
j = 1

q
∑

h = j + 1

q
∑

k = 1

K
∑

g = k + 1

K
I M( j) = k I M(h) = g

∫0

τk∫0

τg
{Xkgi(t j, th) − Xkg(t j, th; γ )}′L jhi(dt j, dth; γ )

⊗ 2

,

where Lji and Ljhi denote Lji and Ljhi respectively evaluated at (β, γ ) and at Aalen–Breslow

estimators of baseline hazard functions given by

Γk tk; β = ∑
i = 1

n
∑

j = 1

q
I M( j) = k ∫0

tk
N ji dsk / nQk

(0) sk; β , and

Γkg tk, tg; γ = ∑
i = 1

n
∑

j = 1

q
∑

h = j + 1

q ∫0

tk∫0

tg

I M( j) = k I M(h) = g N ji dsk Nhi dsg / nQkg
(0) sk, sg; γ ,

for k = 1,..., K and for 1 ≤ k ≤ g ≤ K, respectively.

Taylor series expansions of the left sides of (18) and (19) about the true (β, γ) values then

lead, under regularity conditions, to a zero mean asymptotic normal distribution for

n

1
2 β − β

γ − γ

with variance matrix consistently estimated by A−1ΣA−1 where A is the product of n−1 and

the negative of the derivative matrix of the left sides of (18) and (19) with respect to (β, γ) .
Specifically nA is a block diagonal matrix with entries

∑
k = 1

K ∫0

τk
Q(2)(tk; β)/Q(0)(tk, β) − {Q(1)(tk; β)/Q(0)(tk; β)} ⊗ 2 ∑

j = 1

q
I M( j) = k ∑

i = 1

n
N ji dtk

in the upper left, with entries

∑
k = 1

K
∑

g = k + 1

K ∫0

τk∫0

τg
Q(2) tk, tg; γ /Q(0) tk, tg; γ − Q(1) tk, tg; γ /Q(0) tk, tg; γ

⊗ 2

∑
j = 1

q
∑

h = j + 1

q
I M( j) = k I M(h) = g ∑

i = 1

n
N ji dtk Nhi dtg

in the lower right, and with zero matrices in the off-diagonal blocks, so that one can write
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A =
A1 0

0 A2
.

Empirical process methods can also be used to show n1/2(Γk − Γk), for k = 1, …, K and

n1/2(Γkg − Γkg) for 1 ≤ k < g ≤ K to converge jointly to a zero mean Gaussian processes under

(16) and (17), and a sandwich-type covariance process estimator can be specified for this set

of parameter estimates. These asymptotic developments again follow from modest

extensions of Spiekerman and Lin (1998) and Lin et al. (2000). Some related detail is given

in the Appendix. As in the previous section, bootstrap resampling procedures can be used for

supremum-type confidence band estimation for marginal single and double cumulative

hazard rates, or for confidence intervals or bands for bivariate survival function estimators,

and for pairwise cross ratio or concordance functions, given Z, for any 1 ≤ k ≤ g ≤ K.

It can also be remarked that these asymptotic results assume the marginal single and double

failure rate models (16) and (17) to hold simultaneously. Note however, that the asymptotic

properties for β and Γk, for k = 1,..., K hold under (16) even under departure from (17), and

those for γ  and Γkg, for all 1 ≤ k ≤ g ≤ K hold under (17) even under departure from (16),

providing some flexibility in the modeling and interpretation of the respective single and

double failure hazard rates. For example, the marginal single failure hazard ratio factor

exp Xk(t)β  may have an interpretation as an average failure type k hazard ratio for the

modeled covariate even if (16) is oversimplified and (17) fails to hold, and similarly for

exp Xkg t1, t2 γ  under an oversimplified double failure hazard rate model (17) and departure

from (16). However, when the fitted marginal single and double failure hazard rates are

brought together to estimate bivariate survival functions and pairwise dependency functions

given Z, some care may be needed to ensure an adequate fit of (16) and (17) to available

data, as will be considered further in Section 6 below.

Note also that mixed continuous and discrete failure times are included in the methodology

described above, subject to the models (16) and (17), and the sandwich-type variance

estimators and other weak convergence results mentioned above adapt appropriately to the

nature of the failure time variates.

It may be possible to improve the efficiency of β estimators by introducing weights into the

left side of (18) (e.g., Lin et al., 2000) possibly using the fitted marginal double failure

hazard rates as a source of weighting information. Efficiency gains are likely to be small

however, unless dependencies among the failure times are strong and censoring is not too

severe. Related asymptotic results extend in a straightforward manner under some additional

regularity conditions, following Lin et al. (2000), provided any dependence of the weights

on β in estimating equation (18) is fixed at the parameter estimate β described above.

Further study of the preferred form of weights that could be included in (18) and of their

value for enhancing estimator efficiency, would be worthwhile.
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6 Additional Aspects of Hazard Ratio Regression Parameter Modeling and

Estimation

6.1 Model misspecification

Some readers may find it problematic that the single and double failure hazard rate models

(16) and (17) may be mutually incompatible in that there may be no proper ‘survival’

function F given Z for which these models are simultaneously obtained. This issue arises

also for mean and covariance parameter estimation using estimating equations with

uncensored outcomes (e.g. Liang and Zeger, 1986). If this situation arises then one or both

of (16) and (17) are misspecified, and, as usual, one can then expect some bias in estimators

of related parameters, such as F given Z. An advantage of the semiparametric models (16)

and (17), however, is that the unspecified baseline hazard rate functions provide valuable

flexibility to these models, with restrictions entering only through the parametric form of the

hazard ratio factors. The time-dependent covariate option allows the data analyst to adapt

these hazard ratio factors to available data, and time-dependent baseline hazard rate

stratification options allow even more flexible modeling. Hence, under careful modeling one

can expect to obtain estimated single and double failure hazard rate estimators that are

consistent with available data. These estimators uniquely determine estimators F given Z for

all univariate and bivariate failure times, and these too will then be consistent with available

data.

From a practical point of view a data analyst is likely to just include some simple time-

dependent terms in the modeled single and double failure regression vectors in (16) and

(17). We considered a generalization of the bivariate survival function model (9) where the

single failure hazard rates for the binary covariate z are correctly modeled, but the double

failure hazard rate is not, to examine the bias associated with this model misspecification,

and to examine the extent to which it can be mitigated by the inclusion of the simple time-

dependent components z log t1 and z log t2 in the respective regression vectors X t1, 0  and

X 0, t2 , and the inclusion of both of these time-dependent terms in X(t1, t2), in the models

(1)–(3).

The joint survival function considered was the Clayton-Oakes model

F t1, t2, z = F0 t1, 0
−θexp z β10 − γ

+ F0 0, t2
−θexp z β01 − γ

− 1
−ezγ /θ

(20)

for θ ≥ 0, with F0 again denoting the survival function at z = 0. This class of models has the

same single failure hazard rates as (9), and the same cross ratio function 1 + θe−zγ, but the

double failure hazard rate model has the more complex form
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Λ11 dt1, dt2; z = Λ11 dt1, dt2)ezγ(ezγ + θ)/(1 + θ)

F0 t1, 0 −θ + F0 0, t2
−θ − 1

F0 t1, 0
−θexp z β10 − γ

+ F0 0, t2
−θexp z β01 − γ

− 1

2

F0 t1, 0
−θ exp z β10 − γ − 1

F0 0, t2
−θ exp z β01 − γ − 1

,

which departs from (3) under departure from β10 = β01 = γ . Table 7 shows some simulation

results for estimating F given Z, at both z = 0 and z = 1 for β10 = 0, β01 = log2, θ = 2, and

γ = log2, either with x t1, 0 = x 0, t2 = x t1, t2 = z as before, or with

x t1, 0 = z, zlogt1 , x 0, t2 = z, zlogt2  and x t1, t2 = z, zlogt1, zlogt2 . From the left side of

Table 7 one sees that the biases in F given z are minimal in the heavy censoring scenario,

even without time-dependent regression variables, whereas bias is evident away from the

origin in the uncensored data scenario where the model misspecification has more influence

in the tails of the survival function. Much of this bias is avoided by the inclusion of these

simple time-varying regression variable that allow the single and double failure hazard ratio

for z = 1 versus z = 0 to be power functions of tl and t2. Note that the sample standard

deviations for F given z are little affected by the inclusion of these time-dependent variables.

Corresponding estimators of average cross ratios and average concordances incorporate

somewhat greater biases under these sampling configurations, but these biases too were

considerably reduced by the inclusion of the time-dependent components of the modeled

regression variables. Results were similar at various other parameter values, sample sizes

and censoring configurations. Time-dependent regression variable ztl and zt2, instead of z
log tl and z log t2 were also considered, with very similar bias reduction properties for these

choices, under the simulation model (20).

An additional simulation was conducted under (20) and the same parameter configuration

described above, but with regression vectors augmented to include a standard normal variate

in addition to the binary regression variable, with the two regression variables having

identical parameter values β10, β01 and γ . Analyses that included modeled regression

variables z log t1 and z log t2 for marginal single failure hazard rates, and z log(t1 + t2 + 1)

for the marginal double failure hazard rate demonstrated good agreement between sample

standard deviations and the average of standard deviation estimators from sandwich

estimation–based standard deviation estimators, and good agreement of sandwich

estimation–based 95% confidence intervals with nominal levels for targeted parameters,

based on 1000 simulated data sets.
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6.2 Higher dimensional marginal hazard rate regression estimation

Marginal hazard rate regression models analogous to (16) and (17) can also be considered

for trivariate and higher dimensional marginal hazard rates. The methods of the preceding

section generalize naturally to the estimation of hazard ratio regression parameters and

baseline hazard rates for subsets of the failure times T1, …, Tq  for any q ≥ 1. Moreover, the

survival function F given Z for T1, …, Tq  at a specified q-dimensional covariate history,

with fixed or external covariates, can be readily estimated in a recursive fashion. For

example, one can write

F t1, …, tq; Z t1, …, tq = ψZ t1, …, tq +

∫0

t1
⋯∫0

tq
F{s1

−, …, sq
−; Z s1, …, sq }Λ1⋯1{ds1, …, dsq; Z s1, …, sq }

where ψZ t1, …, tq  depends only on marginal distributions of F given Z of dimension less

than q. This inhomogenous Volterra integral equation has a unique solution as a function of

ψZ t1, …, tq = ( − 1)q − 1 + ( − 1)q − 2 ∑
i = 1

q
F 0, …, ti, 0, …, 0; Z 0, …, ti, 0, …, 0

+ ( − 1)q − 3 ∑
i = 1

q
∑

j = 1

q
F 0, …, ti, 0, …, 0, t j, 0, …, 0; Z 0, …, 0, ti, 0, …, t j, 0, …, 0

+ ⋯ + ( − 1)0 ∑
i1 = 1

q
… ∑

iq − 1 = 1

q

i1 < i2 < ⋯ < iq − 1

F 0, …, 0, ti1
, 0, …, 0, tiq − 1

, 0, …, 0;

Z 0, …, 0, ti1
, 0…, 0, tiq − 1

, 0…, 0

and the q-variate hazard rate regression model Λ1…1 in Péano series form, leading to

strongly consistent and weakly Gaussian convergent estimators of F given Z by plugging in

marginal hazard rate regression estimators for hazard rates of all dimensions up to q, starting

with Cox model marginal single failure hazard rate estimators.

Note, however, that marginal q-variates hazard rate estimators have precision that depends

directly on the number of individuals experiencing a q-variate failure. In many applications,

for example in epidemiologic cohort studies with failure times constituting q specific clinical

outcomes, the data for estimating high-dimensional marginal hazard rates will be too sparse

to be useable. In fact, the most useful and interpretable regression information will often

derive from marginal single and double failure rate estimation, analogous to mean and
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covariance parameter estimation in uncensored data regression settings (e.g. Liang and

Zeger, 1986; Prentice and Zhao, 1991).

6.3 Summary and Concluding remarks

In summary, the methods provided here aim to fill an important gap in the various possible

extensions of the univariate failure time Cox model to multivariate failure time data. The

proposed marginal methods are based on semiparametric multiplicative form regression

models for marginal single and double, and potentially higher order, failure hazard rates,

where marginal implies that possibly-evolving covariate histories are included in the hazard

rate conditioning, but the evolving failure time counting process for the ‘individual’

(correlated set of measurements) is not included. These methods, along with models of a

similar form for the counting process intensity, which does condition on the preceding

counting process history, provide flexible tools for the analysis of multivariate failure time

regression data. The present marginal methods allow separate censoring processes to apply

to the components of the multivariate failure time variable, and allow failure time

components of different types to fall on unrelated time axes, provisions that are not available

for martingale-based distribution theory for counting process intensity models. On the other

hand, intensity process modeling allows censoring rates to depend on the prior counting

process data for the correlated set, while somewhat stronger censoring requirements apply to

the marginal hazard rate methods considered here.

The applicability of these stronger censoring requirements can be examined by applying

models of the form (16) and (17) to marginal single and double failure censoring rates, while

extending the conditioning event to include aspects of the preceding failure counting process

for the ‘individual’ in addition to the preceding covariate history. A dependence of these

censoring rates on the prior counting process history would suggest departure from

independent censoring given Z.

The marginal methods can also be viewed as extending copula model methods to include a

semiparametric class of dependency models, including models that can depend on an

evolving covariate process. Additionally, the proposed marginal methods build upon the

marginal single failure regression methods of Lin, Wei, and colleagues, while including

higher dimensional marginal hazard rate regression models, and do so using straightforward

computations that extend those used in this earlier work, and in Cox’s (1972) seminal paper.

As a byproduct, these methods yield semiparametric bivariate survival function estimators,

and related cross ratio and concordance dependency function estimators, with fixed or

external covariates, that are considerably more flexible than corresponding estimators

previously available using copula and frailty regression model approaches. Furthermore the

relationship of marginal double failure hazard rates to covariates will often be readily

interpretable, and may lead to novel insights; for example, into intervention effects and

related intervention mechanisms in a clinical trial context.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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