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Abstract

Semiparametric, multiplicative-form regression models are specified for marginal single and
double failure hazard rates for the regression analysis of multivariate failure time data. Cox-type
estimating functions are specified for single and double failure hazard ratio parameter estimation,
and corresponding Aalen—Breslow estimators are specified for baseline hazard rates.
Generalization to allow classification of failure times into a smaller set of failure types, with
failures of the same type having common baseline hazard functions, is also included. Asymptotic
distribution theory arises by generalization of the marginal single failure hazard rate estimation
results of Danyu Lin, L.J. Wei and colleagues. The Péano series representation for the bivariate
survival function in terms of corresponding marginal single and double failure hazard rates leads
to novel estimators for pairwise bivariate survival functions and pairwise dependency functions, at
specified covariate history. Related asymptotic distribution theory follows from that for the
marginal single and double failure hazard rates and the continuity, compact differentiability of the
Péano series transformation and bootstrap applicability. Simulation evaluation of the proposed
estimation procedures are presented, and an application to multiple clinical outcomes in the
Women’s Health Initiative Dietary Modification Trial is provided. Higher dimensional marginal
hazard rate regression modeling is briefly mentioned.
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1 Introduction

Sir David Cox’s landmark paper (Cox, 1972) revolutionized the methods for analyzing
censored failure time regression data. Cox regression, along with Kaplan—-Meier (KM)
survival function estimators, quickly became core methods for the analysis of univariate
failure time data.

In the subsequent 45 years a considerable statistical literature has arisen proposing methods
that are built upon univariate Cox regression for the analysis of multivariate failure time
regression data. An important contribution was provided by Andersen and Gill (1982), who
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used the same semiparametric exponential model form for the counting process intensity,
which models failure rates for multivariate events on a single failure time axis conditional on
all preceding failure, censoring and covariate information. As such these methods are suited
to examining hazard ratio dependencies on covariates after allowing for the preceding failure
history for the correlated set of outcomes, but cannot be used to examine covariate effects on
hazard rates without the counting process conditioning. Frailty models (e.g., Andersen et al.,
1993; Hougaard, 2000; Aalen et al., 2010; Duchateau and Janssen, 2010; Wienke, 2011)
have also played a major role in multivariate failure time data analysis methods. These
models avoid intensity models that depend explicitly on the individual’s preceding failure
time counting process by assuming independence between the failure times given a random
effect, or frailty variable, which is typically assumed to act multiplicatively on the hazard
rates for the correlated failure times given preceding covariate histories. These modeling
methods are suited to the study of dependencies or clustering among correlated failure times
given preceding covariate histories, but are less suited to the study of hazard rate
associations with covariate histories themselves. In particular, marginal hazard rates given
covariates that are induced by frailty models typically do not reduce to the standard form of
the Cox models for marginal single failure hazard rates.

The copula model approach (e.g. Clayton, 1978; Oakes, 1986, 1989; Nan et al., 2006;
Nelsen, 2007; Bandeen-Roche and Ning, 2008; Hu et al., 2011) to multivariate failure time
modeling avoids these issues by assuming the standard Cox models for marginal single
failures hazard rates, and by bringing together corresponding marginal survival functions
(given covariates) through a copula function having a low dimensional parameter that
controls dependency. A two-stage data analysis (e.g. Shih and Louis, 1995) then retains the
usual marginal single failure hazard parameter rate estimators, while also providing
estimators of copula distribution parameters. If the assumed copula model is a good fit to the
data, this approach can provide a simple parametric description of dependencies among
failure times, given covariates. This description can allow such dependencies to depend on
baseline covariates, but the copula approach is not suited to estimating dependencies that are
functions of covariates that evolve over the study follow-up period(s).

Frailty and copula models typically embrace a limited class of dependencies among the
multivariate failure times. A semiparametric marginal regression modeling approach can add
valuable analytic flexibility. Importantly the modeling approach that is considered here
includes semiparametric regression models for both marginal single and marginal double
failure hazard rates, and has the potential to add readily interpretable information on
regression influences on failure time outcomes jointly, beyond that from Cox model analyses
of the univariate outcomes. Asymptotic distribution theory for estimators of the regression
parameters and corresponding baseline rates in the marginal single and double failure rate
models will be developed by generalizing the empirical process results of Spiekerman and
Lin (1998) for marginal single failure hazard rates and Lin et al. (2000) for recurrent event
data, to embrace both marginal single and double failure rate models. These methods are
largely complementary to well-developed semiparametric regression methods for the failure
counting process intensity that considers the regression associations with the rates that
condition on the entire preceding failure time counting process history for the correlated set
of outcomes. The methods that are presented here aim to elucidate population-averaged
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regression effects, in contrast to the subject-specific associations targeted by intensity
models.

2 Bivariate Failure Time Regression Modeling and Estimation

2.1 Marginal single and double failure rate regression

Consider bivariate failure times 7; > 0 and 7, > 0 that are subject to right censoring by C; =
0 and G, = 0, respectively, with the usual convention that failures precede censorings in the
event of tied times. Also suppose that the pair (77, 77) is accompanied by a bivariate
covariate that may stochastically evolve over the study follow-up period. Let A4, &) denote
a vector of measured covariates at follow-up times (4, &) and let

Z(t).1y) =2(0,0) V {z(s.5,): 5, < 1.5, < 1,} the covariate history prior to (#, &), where ‘v’

denotes composition. One can define the marginal single failure hazard rate processes,
Aol +.0:2(-, 0} and Ay, {0, -:2(0, )} by
Ajoldty 0:2(t,,0)} = P{T| €t 1, +dt));T| 2 1,,2(t},0)} for £, >0, and

1=°1r
A01 {O,dtz;Z(O, tz)} = P{T2 € [’2’ Ih+ dtz); T2 > 1y Z(O, tz)}, for ty >0,

and marginal double failure hazard rate process A, { -. -:Z(-. -)} by

Apyldipdig: Z(ey.05)) = P{T) € [t).1) +dn) ) Ty € [ty 4 iy Ty 2 0. T, > 1).2(1 1.1},

forall 4 =0 and & = 0. An independent censoring assumption (given 2) for estimation of
parameters in these hazard rate processes requires that lack of censoring in [0, 4), in [0, b),
and in [0, 4) x [0, &) can be added, respectively, to the conditioning events in these
expressions without altering the failure rates, for any (4, &).

Though a variety of regression models could be entertained for these marginal single and
double failure hazard rates, we will focus on Cox-type semiparametric models, and write

Alo{dtls 0; Z(t,, 0)} = Alo(dtla O)GXp{X(tl, O)ﬂ]o}’ 1)
AOl{O, dl‘z;Z(O, tz)} = A01(07 dtg)eXP{X(Os tz)ﬁ()l}s and )
Ay ldey, dey Z(2, 1)} = Ay (de, dey)exp{ X2, 1) 6 - ®3)

Here A (-,0),A,(0, -),and A,,(-, -) are unspecified ‘baseline” hazard functions at zero

values for the corresponding regression variables
X(11,0) = {X,(1,,0), X,(t1,0), ...}, X(0, 1,) = {X (0, 1,), X5(0, 1), ...}, and X(&1, b) = {X1(4, b),

Xo(8, b),...}. These regression variables, with sample paths that are continuous from the left
with limits from the right, are each fixed length vectors (i.e., same length vectors for all
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study subjects at all times) formed from {#, Z(4, 0)}, {6, Z0, )} and {4, &; A4, b)}
respectively. Also, Bio, Bo1 and SBy1 are corresponding (column vector) regression
parameters to be estimated. The hazard ratio factors on the right side of (1)—(3) aim to
quantify the dependence of these failure rates on the pertinent preceding covariate history.

Consider a random sample
Sy =T AC 8y, = 1T ;= S1]. S0 = Typ A by = 1T =8,] Z(S . Sy;). fori=1,....n
from a study cohort, where A denotes minimum and /] is an indicator function. These

observations define corresponding counting processes Ay, No;and “at risk’ processes Y7,
Yz,’Via

1 ifSll.=t1 and 5”:1 1 iszl.=z‘2 and 52i=1,

Nli(dtl) - lO otherwise ;NZi(dZZ) -

1ifSll-Zt

0 otherwise

1 1 iszl-Zt2

Yyfn)=

;and Y, .(14) = A
0 otherwise 21( 2) lO otherwise

for 7=1,...,n. From the above expressions one can define processes
Lol -0 8100 Lo 0, -5 By and Ly (-, -5 f;,) that have zero means under (1)—(3)

respectively, by
Lygidey-0: ) = Ny fdt)) = ¥ (1) )A ofdry O)exp{X (1. 0) |-
Loy {0-dty: Byy) = Ny fdty) = Yo (1) (0.d1yJexp{X,(0.1,)y | and
Lyy(dty.diy: pry) = Ny {di )N {diy) =¥ (1 )Y (1) (deydepJexpl X (o)1) |-

i

An estimating equation for the hazard ratio parameter j = (5}, ;. #;,)’ over a follow-up

region [0,7,] x [0, z,] can be written as

Uyo(Byo371)
U(Bit ) =| Upi(Borita) | =0, @)
Upi(Bry371:70)
where
n tl _
Uolbron) = 2 fo (Xl 0) = X{s.0: 8,0}V, sy )
i=1
t2 _ ,
Upi(Borita) = X /0 [x,(0.5) = X(0.55: B )} N (ds)-
i=1
and

n t, .t

1 _
U11(ﬂ11;’1”2)=i2f0 /0 [Xi(sy59) = X(s 5281 )} N (ds) N s

=1
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and where
n n
X(5):0:819) = ZZ:I Y1i<~‘1)xi(sl’0)°XP{Xi(51’O)ﬂ10}/i;1 Yy fsp)exp{X,{s1.0)810).
n n
X(0.59:91) = ; Yos)X {0 55)exp{X(0.5,) 8, }/ _21 Yo {s)exp{X,(0.5,)8, }. and

1

1=

n
Yy s )Y ailsa)X sy splexp{X (s 5,8, |/ iZl Yy s ¥ailspJexp{X (s ) 5)81 |-

=

X(spspbyy) =

Note that the solution 3 = (31, B;,. 51, to (4) provides an estimator of Bunder (1)(3) as

derives from the fact that MV {dsy) in Uy can be replaced by Lig{ds1, 0; Bro), No{ds) in
Upy can be replaced by L .(ds;,0; ), N,(ds,) and My (ds) N> (dsp) in Uy can be replaced

by Lq11/{ds1, dsy; Br1) while retaining equality to zero, as follows from some simple algebra.
Hence U(p; 7, 7,) is composed of stochastic integrals of functions of the data with respect to

a zero mean process at the ‘true’ S-value.

The distribution theory for 4 is complicated due to the dependence of the ‘centering’
processes X( -, 0; B,,) X(0, - ; By, ) and X( -, -; #,,) on data from all sampled individuals.

However, under independent and identically distributed (i.i.d.) conditions and some
regularity conditions these processes converge almost surely to the ratio of the expectations
of numerator and denominator terms, denoted here by (-, 0: 8,,). 0. - : 8,) and X(- . - : 8,)

respectively. In fact, the convergence is at a sufficiently rapid rate as n —  that the
centering processes can be replaced by these limits without altering the asymptotic
distribution of n~"/2U(; 7. 7,) . The central limit theorem can therefore be applied to
n_l/zU(ﬂ; t,.1,). for all (r,.1,) € [0.7,] x [0, 7,]. to show weak convergence to a zero mean
Gaussian process with covariance function

tl ®2
/0 {X(s1.0) = 35, 0:81) ) Ly ofds - 0: 1)

Il
o]

1,
2
i) [) {X(0.5) = 5053y ) L (05 0: )

el
/0 _/(; {X(sy5p) = Ty By )} Ly (dsyodsyi )

where £ denotes expectation, and a ® 2 = aa’ for column vector a. For these developments
(11,72) is required to be in the support of the observed follow-up times {(S,,,S,),i =1,...,n}.

A Taylor series expansion of U(p;z,7,) about the ‘true’ S value then leads under regularity

12,5

conditions to a mean zero asymptotic Gaussian distribution for »*'<(8 — ) with analytic

1

variance estimator 7~ 'S7~! of sandwich form, where /is the product of /71 and the negative
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of the matrix of partial derivatives of U(f; z,,7,) with respect to Sevaluated at B, and £ is an

empirical estimator of £(f; 7,, 7,) that can be written as

2 ®2
/(; {X,(,,0) _}?(tl’ 0; B19)} Lypidty, 0; 5 1)
n 7
« 2 3 R R
== i;1 ‘/0 {X(0,1)) = X(0, 1,5 By 1)} Ly, €0, dty; By ’ ©)
2 —_— ~ ~ ~
/(; A {Xl'(tlstz) —X(l‘l,l‘2;ﬂ“)}/l‘“i(dt1, dtz;ﬂll)

where L, Ly, and L, are obtained from Ly, Log and Ly1, respectively, by evaluating at /
and at empirical estimators of the baseline hazard rates A, A,; and A, in (1)—(3). Natural

empirical estimators A . A, and A, of these baseline rates have Aalen-Breslow form, and

10
are given by

I n n R
Alo(tro):A .ZlNli(dsl)/_ZlYli(sl)exp{xi(sl’o)ﬁlo}’ ©

Ay, (0,2,) = / Z (ds,)/ Z (5,)expiX(0,5,)By, ), and )

X1 (tp1y) = // ZlledS N, (ds,)
1=

n

/Z le( 1)Y21(52)6XP{X( 1’S2)511}‘

i=

®

Empirical process methods can be used to show the weak convergence of
12,7 12,7 12,7 i ;
n(A g =N (g = Ay T(Ay; = Ay jointly as 7 — oo to a zero mean Gaussian

process under (1)—(3). In fact an empirical covariance function estimator for these parameter
estimates can be developed. These asymptotic developments follow from modest extensions
of the work of Spiekerman and Lin (1998), and Lin et al. (2000). Some detail on these
developments and related conditions is given in the Appendix in the more general context of
85.

The marginal single failure hazard rate models (1) and (2) impose constraints on the double
failure hazard rate model (3) and visa versa, so that (1) and (2) typically will not be fully
consistent with (3) in their respective hazard rate regression components. The solutions to
(1)-(3), and the estimators of the baseline rates (6)—(8) may incorporate some asymptotic
bias under departure from one or more of the regression models (1)—(3). However, through

J Am Stat Assoc. Author manuscript; available in PMC 2022 January 01.
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the time-varying features of the modeled regression variables in these models, and even
further through the use of both time-varying regression variates and time-varying baseline
hazard rate stratification, the latter of which can be readily incorporated by replacing (4) by
corresponding summations over a fixed number of possibly time-dependent strata, one has
the tools to arrange for each of (1), (2) and (3) to provide a suitable fit to available data.
Having done so one can expect that estimators of joint survival probabilities and related
statistics, for example those that assess the strength of dependency between 7; and 75 given
Z, to be estimated with little bias. This topic too will be elaborated below. Also, departure
from any one, or two, of the hazard rate models (1)—(3) does not adversely affect asymptotic
distributional results for estimators of parameters in the remaining hazard rate models.

2.2 Simulation evaluations

Continuous failure times given a single binary covariate zthat takes values 0 or 1 with
probability 0.5 were generated under the rather specialized Clayton—Oakes regression model
(Clayton, 1978; Oakes, 1986) of the form

Flty.15:2) = (Fot,0)77 4 Fo(0.15) 7 = 1yt ©)

for values 8= 0, where Ay denotes the survival function at z= #0, 0) = 0. The resulting
failure time variates have marginal single failure hazard rates of the form

A O(dt -0 z) =A lo(dzl, o)eZV and A 1(o,dzz; z) = A, 1(0, dtz)eZV,

and double failure hazard rates

A 1<dt1,dt2; z) = A, l(dzl,dzz)ezy(eZV +0)/(1+0),

so that (1)—(3) is obtained for a binary covariate zwith x(#, 0) = X(0, ) = X(4, b) = z, with
x(t},0) = x(0, 1)) = x(t,1,) = z, with B, = B, = v, and with g, =log{e’ (¢ + 6)/(1 +6)} . Data
were generated with unit exponential marginals at z= 0, and censoring times that were
independent of each other and equally and exponentially distributed with censoring hazard
rate, ¢, chosen to give certain specified uncensored failure fractions for 7; and 75, or with no
censoring (¢ = 0). Covariate values were generated with probabilities 0.5 for z=0and z=1.

In implementing (4) =, and =, were specified as the maximal values of S;;and S

respectively in the sample of size n. Table 1 shows sample means and sample standard
deviations for (5. 5. 3, at (6.y) values of (2, 0) and (2, log 2) at /7= 250 or 500 with

substantial censoring (¢ =5), and at 7= 100 with no censoring, based on 1000 simulations at
each configuration. These simulations show little evidence of regression parameter bias,
even though there are, for example, only about 13.5 expected double failures at 9,7) = (2,0)
and n= 250, with substantial censoring (¢ = 5) for each of 7; and 75. Also there is good
agreement generally between the sample standard deviation for the regression parameter
estimates and the average of the standard deviation estimators from the sandwich variance
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formula, as well as good proximity to 95% for the associated asymptotic 95% confidence
interval coverage. An exception occurs at (4, y) = (2,0) and n= 250, where the sample

standard deviation for /?11 is considerably larger than the average of sandwich standard

deviations, presumably reflecting a distribution with heavier tails than the approximating
asymptotic normal distribution. The approximation, however, seems adequate at /7= 500,
where the expected number of double failures is about 27. Note that the marginal double
failure hazard rate from (9) has a very specialized form, which typically does not agree with
the semiparametric model (3) if zis not binary.

Table 2 shows corresponding summary statistics for the cumulative double failure hazard
rate estimator Kl l(tl, lz;z), under (8) and the second Table 1 configuration (9 = 2,y = log2), at

both z=0and z= 1. One can show the targeted double failure hazard rate to be

o 1o 1,0 )
A“(tl,tz;z)=e (€ +0) {110 +1,10 —logle * +e = —1)/07}

under the simulation conditions of this subsection. Estimated X“ values are reasonably

accurate under the configurations shown, as was also the case at some smaller sample sizes
(e.g. n=100 with no censoring). Empirical approximations to asymptotic standard deviation
estimates are somewhat low in heavy censoring scenarios, especially close to the coordinate
axes or toward distributional tails, and corresponding confidence interval coverage rates tend
to be less than nominal levels. These features derive from few preceding double failures
close to the axes, and from empty double failure risk sets for some samples toward
distributional tails. Hence fairly large sample sizes may be needed for these asymptotic
approximations to the distribution of XH to be accurate.

3 Bivariate Survival Function and Dependency Function Estimation

3.1 Bivariate survival function estimation

Given specifications, such as (1)—(3), for marginal single and double failure hazard rate
processes one can define a bivariate process F~given Zfor all 4 =0 and & > 0 by the product
integrals

t
1
F{t},0;Z(1},0)} = H[l —Alo{dsl,O;Z(sl,O)}], and
0
t
2

F{0,1:2(0,0)} = [] [1 = Mg 10.ds,; Z(0, sz)}],
0

along the coordinate axes. Away from these axes Fgiven Zis defined by the inhomogeneous
\olterra integral equation

J Am Stat Assoc. Author manuscript; available in PMC 2022 January 01.
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Flt, 1y, Z(t),1,)} = F{1,,0; Z(t},0)} + F{0,2,; Z(0,1,)} — 1
(10)

+/0 /o Fisys855 205, s) A {ds 3 dsy; Z(s 1, 55)

that has a unique Péano series solution given by

]—1

)
f f / / / / W{sll’szvz(slpszl) 11)
J

} H A ds 1, d5,3 210 53,

where y{1,.1,: Z(t,.0). 2(0.1,)} = F{t,,0: Z(z,.0)} + F{0,1,: Z(0.1,)} — 1. Note that Fgiven Z

will have a survival function interpretation if Zis composed only of the baseline covariate
data, Z(0, 0), and evolving covariates that are external to the failure processes (e.g.
Kalbfleisch and Prentice, 2002, chapter 6).

Now denote the uncensored 7; failures in the sample of a size by 41, 42,..., 1, and the
uncensored 75 failures by &1,5o,..., b The semiparametric model estimators
Ajoldt;.0:Z(t,.0)}. Ag,{0.dty: Z(0.1,)} and A {dr . dry: Z(t . 1,)} place mass only at the

uncensored data grid points (4 %) within the risk region [R = {(ll,lz; Sip21:8,, 2 1y, for
some ¢ € (1, ...,n)}] of the data, and along the half-lines through the uncensored failure times
in either direction beyond the risk region. One can readily estimate £~ given Zat specified
covariate history Z, using a simple recursive procedure as follows: At uncensored failure
time grid point (ty; tzj) € R one can define

ﬁ{Atli, Atzj; Z(tli, zzj)} F{ Z(t )}KH{Az Z(t 2])}

17 2]

where A A, At2j; VA tzj)} = A (A1, At2j)exp{X(tll., tzj)/fll}, from which

F{th, fjs Z(t; tzl)} = F{th, t2/ Z(t tzl)} +F{th, t2] Z(t,; t2/)}

(12)
F{tll’t2] Z(tp 1} 1 11{At1r Aty Z(tll’t2])}]

This expression provides a procedure for calculating F“{tl o1 201y ) for a specified

covariate history Z, starting with

J Am Stat Assoc. Author manuscript; available in PMC 2022 January 01.
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X110,

i
Flt,,0;Z(t,,0)} = le[l — A (At 0)e
= . ~ 13
N . ~ X(0.15,)84; =
F{0,1,32(0,1,)} = IT 11— 29,00, A1,,)e 1.

m=1

Under (1)-(3) F given Zwill generally provide a strongly consistent estimator of ~given Z,

and n'/2(F - F) given Zwill converge as n — oo to a zero mean Gaussian process, on the

basis of the properties of the univariate Cox model estimators (13) and the continuity and
weakly continuous compact differentiability of the Péano series transformation (Gill et al.,
1995) from these marginal estimators and Ku to 7, given Z. As such (12) and (13) provide a

rather flexible regression generalization, with fixed and external covariates, of a \olterra
bivariate survival function estimator that has been attributed to Peter Bickel (Dabrowska,
1988).

3.2 Dependency function estimation

One use of the estimator F given Zis for assessing dependency between the two failure time
variates given Z If Fgiven Zhas a survival function interpretation one can define, building
on the work of Fan et al. (2000), an average cross ratio function estimator 6{:1, tz;Z(tl, ’2)}

over [0,z,] x [0,7,]. where (z,,z,) is in the risk region of the data, by
1 ph
C{tl,tz;Z(tl,t2)}=A A F{sl_’SE;Z(SI’SZ)}AII{ASI’ASZ;Z(SI’SZ)}/
o ph
A /; F{s,855Z(s),5) Y\ o1 As, 555 Z(s 1, 55) 1A, (14)

{s1,Asy; Z(s1, 55},

which contrasts the double failure rate K“ with the corresponding local independence value

AjoAo; diven Z where

Klo{Asl,sg;Z(sl,sz)} = —ﬁ{Asl,sg;Z(sl,sz)}/ﬁ{sl‘,sg;zul,sz)} and
Agi 1T+ A5y Zs . 5p)} = = FsT, Asys ZGsy, s F(s] 553 Z(s.55)),

with weight function ﬁ{sl‘,s;Z(sl,sz)} that depends on the failure rates, but not the

censoring rates, given Z.

Similarly, one can define, following Oakes (1989) and Fan et al. (2000), an average
concordance function estimator between 77 and 7 over [0,,] x [0,7,] given Z, that takes

values in (-1, 1), by

J Am Stat Assoc. Author manuscript; available in PMC 2022 January 01.
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§'{t1,t2;Z(t1,t2)}
ol R
= lA A F{s1,55;Z(sy, ) F{Asy, Asy; Z(sy, 55)}
hoph
—/ / ﬁ{Asl,sg;Z(sl,sz)}ﬁ{sl_, Asz;Z(sl,sz)}‘/ (15)
[A [) F{sy,55;Z(sq,8))}F{As, Asy; Z(sy, 55)}

1 plh R
+‘A A F{Asl,sg;Z(sl,sz)}F{sl_,Asz;Z(sl,s2)}‘.

These estimators quite generally inherit strong consistency, and weak Gaussian convergence
properties from these same properties for 7 given Zand the continuity and compact
differentiability of the transformations from £ to C and from F to 7 ..

3.3 Confidence interval and confidence band estimation

The asymptotic properties just stated for survival and dependency function estimators
conceptually generate corresponding analytic variance function estimators using the delta
function method. However the transformations from marginal single and double hazard rate
estimators to the bivariate survival function using (11), and the transformations from the
survival function to the average cross ratio and concordance estimators (14) and (15) may be
too complex for the delta function approach to be useful. Accordingly we employ a
bootstrap resampling approach to estimate confidence intervals and bands for these
functions, as well as to estimate confidence bands for marginal single and double failure
cumulative hazard functions. The applicability of bootstrap procedures follows from the
asymptotic Gaussian properties already cited for regression parameter and baseline hazard
function estimators in (10)—(13), and the weakly continuous compact differentiabilty of the
Péano series survival function transformation (11) (Gill et al., 1995) and of the
transformations (14) and (15) (Fan et al., 2000).

3.4 Simulation evaluation of survival and dependency function estimators

In the special case where all regression parameters in (1)—(3) take value zero, F given Zfrom
(12) and (13) is the previously mentioned Volterra estimator. While nonparametric plug-in
estimators of the bivariate survival function due to Dabrowska (1988) and Prentice and Cai
(1992) have been shown (Gill et al., 1995) to be nonparametric efficient under the compete
independence of (71, 7, Cq, &), this property evidently does not hold for the Volterra
estimator. On that basis it has been speculated that the Volterra estimator may be ‘much
inferior’ to these other estimators (Gill et al., 1995). To examine this topic further we
conducted simulations under (9) with y = 0, so that B19 = fo1 = Fr1 = 0 with no regression
variable influences. As previously 7; and 7, were specified as the maximal observed S;;and
S, jvalues respectively in the generated sample.
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Table 3 shows summary statistics evaluating the Volterra estimator and comparing it to the
Dabrowska estimator, which is also simply calculated recursively using

F(t7 .1, )F(t 00

Bt 1000 4iiij
W)= 2 - = 0. 00 01 00
Fajai) @)+ )@ + )

at all grid points where the denominator components in the factor in curly brackets are
positive, and F = 0 otherwise, again starting with KM marginal survival function estimators.

In this expression ‘dl.l;), d?jl and d?;)’ are the numbers of observations known to have ‘T, = 1,
and 7, > 15 Ty > 1y and 7, = fh' and ‘7, > 1, T, > f respectively, among the 7;;

individuals at risk at uncensored failure time grid point (# %,). From Table 3 one can see
that both the Volterra and Dabrowska estimators are quite accurate under the specified
sampling configurations. The two estimators also appear to have similar corresponding
moderate sample efficiencies, even at the complete independence of (71, 73, Ci, &), where
the Dabrowska estimator is nonparametric efficient. Note that, in contrast to the Dabrowska
estimator, the Volterra estimator does not assign negative mass within the risk region of the
data. However, it tends to assign more negative mass than does the Dabrowska estimator, to
half-lines beyond the risk region. Overall, these simulations provide little basis for choosing
between the Volterra and Dabrowska nonparametric estimators of the bivariate survivor
function.

Table 4 shows summary statistics for  at various follow-up times (#,4) under (9) and a
specific Table 1 configuration (6 = 2,y = log2). The survival function estimators 7 do not
show evidence of bias under these simulation conditions, similar to what was observed for
smaller sample sizes (e.g., 7= 100 with no censoring). One could apply the bootstrap
procedure to some transformation of 7, such as log 7, but we applied it directly to 7 in these
simulations. Note the good correspondence between sample standard deviation (SD) based
on 1000 generated samples at each configuration and the corresponding average of bootstrap
SD estimates, based on 200 bootstrap replicates for each generated sample. Also asymptotic
95% confidence interval coverage rates, based on ﬁ(zl,tz) + 1.96 (bootstrap SD), are close to

the nominal levels throughout Table 4.

Supplementary Table 1 compares analytic and bootstrap SD estimators for Kl |- aswell as

corresponding 95% confidence interval coverage rates under the same generated samples,
and at the same (4, &) values, as in Table 4. There appears to be good agreement between
empirical (sandwich) estimator and bootstrap (200 replicates) standard deviation estimators.
Confidence interval coverage rates are low under some configurations, but tend to be a little
closer to nominal levels with the bootstrap than with the analytic SD estimators.

Table 5 gives confidence band performance statistics for both 7\11 and F, over specified

follow-up regions. These were developed by applying a supremum statistic over the
confidence region without estimator transformation, for each estimator. Specifically, over a
follow-up region [0, #] x [0, &] the statistics
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N —

Wa ()= sup  nTIA (s = Ay (spsp)l and Wil 1)
i Yoy

1
= sup nzlﬁ(sl,sz)—F(sl,sz)l
[0, x[0.1,]

are targeted at specified (#, &) values. Bootstrap estimates of these quantities are obtained,
respectively, by calculating

= sup n Iﬁ*(sl,sz)—ﬁ(sl,sz)l
o, <o)

where Xﬂfl and F* denote bootstrap replicate estimators derived using K“ and F . Critical
values for an a-level (e.g. a = 0.95) confidence region can be estimated as the a percentiles

60@11) and C (F) from the bootstrap replicate supremum statistics lel(zl, t,) and WAty 1)

respectively. Corresponding a-level confidence bands are then estimated for region [0, #] x
0, b] as

—

1
Rpplryry)£n 2C R, and Flrpag)2n 2 (F)

respectively.

The simulation summary statistics in Table 5 include bootstrap-based confidence regions for
both A, and Fover certain rectangular follow-up regions, using 200 bootstrap replicates for

each generated sample, for each of the latter two configurations of Table 4. Note that the full
set of uncensored data grid points for a generated sample was retained for all associated

bootstrap samples in the calculation of W and W statistics. The sample mean and
11

standard deviation of critical value estimates from the 1000 generated samples are shown.
Summary statistics for 95% confidence bands for A, and Fat both z=0and z=1 are also

shown in Table 5. Coverage rates tend to be somewhat low but, considering the size of the
standard deviation for the bootstrap critical value estimates, these may improve if a larger
number of bootstrap replicates are used.

Supplementary Table 2 provides simulation summary statistics for average cross ratio and
average concordance estimators under the same simulation conditions as Table 5. Under

these simulation conditions E(tl, ty:z) estimates 1+ ¢~ and §(z],t2;z) estimates
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e~ 1(0e " +2) atany ¢, > 0 and r, > 0. As shown in Supplementary Table 2 the cross ratio

estimates with follow-up periods [0, #] x [0, &] tend to have small upward bias, and average
concordance estimators have a small downward bias at these sample sizes, especially under
the configuration with substantial censoring. These estimated biases derive in part from
moderate sample size distributions that are somewhat skewed, and additional calculations
show they can be reduced through simple transformation (e.g., apply asymptotic normal
approximation to log C, rather than to C). Bootstrap procedures can again be used to
estimate confidence intervals and bands for these dependency function estimators.

4 Composite Outcomes in a Low-fat Dietary Pattern Trial

The Women’s Health Initiative (WHI) includes a low-fat dietary pattern randomized
controlled trial among 48,835 postmenopausal women (Women’s Health Initiative Study
Group, 1998). Participating women were in the age range 5079 at randomization at one of
the 40 clinical centers in the US during 1993-1998. Forty percent of the participants were
assigned to a low-fat dietary pattern intervention that included goals of reducing dietary fat
to 20% of energy, as well as increasing vegetables and fruit to five servings a day and grains
to six servings a day. The intervention was administered by nutritionists in groups of size
10-15, with 18 sessions in the first year of the intervention, and quarterly maintenance
sessions thereafter over an intervention period that averaged 8.5 years, with subsequent
continuing non-intervention follow-up. The other 60% of the participants were assigned to a
comparison (control) group, with no dietary intervention. Comparison group women were
provided written materials on diet and health only. Breast cancer incidence and colorectal
cancer incidence were designated primary outcomes, while coronary heart disease incidence
was designated as the secondary trial outcome. Various other clinical outcomes, including
mortality from any cause were also ascertained, and used in trial monitoring and reporting.

Chlebowski et al. (2017) recently reported updated analyses of breast cancer incidence (77)
and total mortality ( 75) from this dietary modification (DM) trial, for both the intervention,
and a combined intervention and post-intervention, time periods. Cox models (1)—(3) were

applied with X(r,,0) = X(0,1,) = X, (,.1,) = z, where zis an indicator for intervention (z= 1)

or comparison (2= 0) randomization assignment, and with baseline stratification on age (5-
year intervals) and on randomization status in the companion WHI hormone therapy trials.
The (77, Ty) failure times were censored by a common value C; = & = Cequal to the
participants follow-up time at the end of the intervention period (3/31/05) or, for a small
fraction of women, at the time of earlier loss to follow-up. Since deaths can only follow
breast cancer incidence events (i.e. 7, = 7;) for a participant, an independent censoring
assumption requires specifically that censoring rates for 7, do not depend on the
corresponding 7; value, an appropriate assumption here since all death ascertainment
procedures continued unchanged following a breast cancer diagnosis, including matching to
the U.S. National Death Index.

At the end of the intervention period the breast cancer ( 77) hazard ratio (estimated 95% CI)
was 0.92 (0.84,1.01), with logrank significance level of p=0.09, with 671 and 1093 incident
breast cancer cases in the intervention and comparison groups respectively. The
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corresponding values for all-cause mortality ( 7) were 0.98 (0.91, 1.06), with 989 and 1519
deaths in the respective groups. The composite outcome (71, 75) of breast cancer followed
by death from any cause had an estimated double failure hazard ratio (95% confidence
interval) of 0.64 (0.44, 0.93), with 40 and 94 women experiencing the dual events in the two
randomization groups, respectively, during the intervention period.

Note that the composite outcome analysis provides stronger evidence for an intervention
benefit (logrank p = 0.02) than does the marginal analysis for either outcome separately, in
spite of a much smaller number of cases. A corresponding univariate analysis of time from
randomization to death attributed to breast cancer has estimated hazard ratio (95%
confidence interval) of 0.67 (0.43, 1.06), with logrank p=0.08. There were 27 and 61 deaths
attributed to breast cancer in the two groups, respectively, during the intervention period.
Another univariate analysis considers death, with classification of whether or not the death
followed a breast cancer diagnosis, as a marked point process. This approach leads to a
hazard ratio estimate (95% CI) of 0.65 (0.45,0.94), as reported in Chlebowski et al. (2017),
which is nearly identical to the double failure hazard ratio estimate given above. In fact the
corresponding estimating equations agree except for minor differences in the dual outcome
risk set specifications at each death time following breast cancer. The double failure hazard
rate model, however, brings potential to address additional questions such as whether the
observed intervention influence is primarily through breast cancer incidence or through
subsequent survival, and can do so in a manner that retains intention-to-treat interpretation
for inferences. For example, suppose that the modeled regression variable in A, is extended

to X(t,.1,) = {z.2(t, — #;)} . One then obtains E” = (0.226, — 0.220), with corresponding

standard deviation estimates of (0.364, 0.101) from the sandwich-form estimated variance
matrix. This gives nominally significant evidence (p = 0.03) of a dual outcome hazard ratio
that is reduced at larger time periods from breast cancer diagnosis to death. See Chlebowski
et al. (2017) for more detailed analyses that also include breast tumor hormone receptor
status, subgroup analyses, and longer-term non-intervention follow-up.

For completeness Table 6 shows the estimated survival probability for (7, 75) at follow-up
times of three, six, and nine years from randomization for each variate. For this purpose we
dropped the baseline hazard rate stratification described above, so that survival function
estimators at z=0 and z= 1 correspond to the comparison and intervention groups as a
whole. Corresponding bootstrap-based 95% confidence intervals and 95% supremum-type
confidence bands are also shown, the latter from a rectangular follow-up region with from 0
to 9 years for each failure time variate. These were based on 200 bootstrap replicates with
asymptotic approximations applied to £, without transformation. Confidence bands are
presented only at follow-up grid points {3, 6, 9} x {3, 6, 9} in years. As expected the
confidence bands are somewhat wider than corresponding confidence intervals at these
follow-up times, especially at short follow-up times. Supplementary Table 3 provides
corresponding estimators, bootstrap-based confidence intervals and confidence bands for A |

using the same bootstrap replicates. Since 7, = 7j, these are only of interest on or above the
main diagonal.
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A second illustration in the same clinical trial illustrates the value of including a focus on
marginal hazard rates for 7 and 7, beyond counting process intensity modeling. Although
diabetes was not a designated outcome in the trial protocol, information on the use of “pills
for diabetes’ or ‘insulin shots for diabetes’ were collected twice annually during the trial
intervention period and annually thereafter, through medical update questionnaire. These
self-reports were found to be in reasonably good agreement with periodic medication
inventories provided by study participants. A total of 45, 579 women were without prevalent
diabetes at baseline. Clinical practice dictates the use of diabetes pills as a first line treatment
for diabetes, changing to insulin injections if the disease progresses. Cox-type regression
models were applied to these data, with baseline rates stratified as described above. An
analysis (Howard et al., 2018) of time from randomization to initiation of diabetes pills (77)
gives a hazard ratio estimate (95% confidence interval) for the low-fat dietary pattern
intervention of 0.95 (0.88,1.02) over the intervention period with p=0.13, with 3179
women developing diabetes. A counting process intensity model was applied to the post-
diabetes pills follow-up to ascertain time from randomization to insulin use (7). This
intensity was modeled to allow a distinct parameter for the intervention hazard ratio, and a
baseline hazard rate that retained the original stratification, but also stratified on time-from-
randomization to first use of oral diabetes agents (in quartiles). The intervention hazard ratio
estimate (95% CI) from this analysis was 0.82 (0.64, 1.04) with a significance level of 0.10
and with 309 women progressing to insulin during the intervention period. This provides
some modest evidence that the intervention slowed progression to the more serious type of
disease requiring insulin injections, after controlling for time from randomization to the
initiation of diabetes pills. A marginal single and double hazard rate analysis of the (73, 75)
data was also carried out with the original stratification mentioned above for both time
variates and with distinct baseline rates and intervention group regression parameters for the
two times. The marginal hazard rate analysis for 7; is the same as was described above,
whereas the marginal hazard rate analysis for time from randomization to diabetes requiring
insulin injections (75) gave intervention hazard ratio estimate (95% confidence interval) of
0.74 (0.59, 0.94) with intention-to-treat significance level of 0.01. An independent
censorship assumption, again with C; = G, is entirely appropriate in this context, so that
one obtains considerably stronger evidence of intervention benefit for time from
randomization to diabetes requiring insulin than is the case from analysis of either of its
component parts; namely, time from randomization to diabetes pills and time from diabetes
pills to insulin injections. Moreover, this stronger result arises from a comparison between
randomized groups, whereas the time from pills to insulin component of the intensity
modeling contrasts groups that may differ in their distributions of time-to-diabetes pills,
complicating the associated regression parameter interpretation. The double failure hazard
ratio estimate (95% confidence interval) here is nearly identical to that for 7,. Over a longer
term follow-up that included a substantial post-intervention period, and a median total
follow-up of 17.3 years, the 7; estimated marginal hazard ratio estimate (95% CI) was 0.96
(0.91, 1.00), while that for 7, was 0.88 (0.78, 0.99) as was reported in Howard et al. (2018).
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5 Higher Dimensional Failure Time Regression Methods

5.1 Hazard rate regression models

With bivariate failure time data there may be natural commonalities in baseline rates and in
regression parameters in (1) and (2). For example, in twin studies it may be natural to restrict
the baseline hazard rates Ajodt,0) and A0, dt,) to be identical, and to require some

components of B1p and By to be equal. Following Spiekerman and Lin (1998) we will refer
to failure times having a common baseline rate function as failures of the same ‘type’, and
for notational convenience we will redefine the marginal single failure hazard rate regression
parameter to have a single value for all failure types by allowing the modeled regression
vector to include interaction terms with failure type. Also, we now allow the multivariate
failure times to be of arbitrary dimension.

5.2 Regression on marginal single and double failure hazard rates

Suppose that there is an arbitrary number, g, of failure times denoted by 7;..., 7, for each
‘study subject,” with a possibly evolving g-dimensional covariate Z. Denote by Z(4,...,Z,)
covariate values at (,...,%;) and by Z(4,..., &) = Z0,..., 0) V {As1,..., Sp); $1 <l Sg< Ig}
the covariate history prior to (..., ;). Also let Mdenote a unique mapping from {1,..., g} to
{1,..., K}, with K< g, so that k= M(j) denotes the unique failure type for 7} out of K
possible types, for j=1,..., ¢ Much of the interest in the study of failure rates on Ztypically
resides in the marginal single failure hazard rates. Suppose that the single failure hazard rate
for 7;at follow-up time #; given Z0,...,0,  0,...) is modeled by

Fk(dtj)exp{xk(tj)ﬂ} (16)

for j=1, ..., g Note that failures of the same type, &; are assumed to have a common
baseline hazard rate function ‘T, which is obtained when the modeled covariate Xj is

identically zero, with Xj(#) a fixed length row vector which for 7;is formed from {#;
A0,...,0, £, 0,...0)}, and B a corresponding (column) regression vector to be estimated. As
noted by Spiekerman and Lin (1998), this parameterization is flexible enough to allow, for
example, distinct hazard ratio parameter vectors for each failure type, by including
interaction variables with failure type in the specification of X.

Similarly suppose that the marginal double failure hazard rate for a pair of failure time
variates (7 Tp) at follow-up times (#; #), given Z0,...,0, ; 0,...,0, #, 0,... 0), is modeled by

Fkg(dtj, dth)exp{ng(tj, 1} (17)

foreach 1 < j< /< g, where k= M(j) and g = M(/)) are the failure types for 7;and 7,
respectively. In (17) X% #) is a fixed length row regression vector which for (7, 7x) is
formed from {#;, #,; £0,...,0, £ 0,...,0, £ 0,...,)}, v is a corresponding column double failure
hazard ratio parameter to be estimated, and Tkg’ is a baseline double failure hazard rate

function that is obtained at Xj, = 0.
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In this formulation the failure times 7,..., 7, can occur along the same or different failure
time axes, but failures of the same type are required to fall on the same time axis. For the
parameters in (16) and (17) to have a useful interpretation an independent censorship
condition, given Z needs to be met. Hence we assume that lack of censoring in [0, #) can be
added to the single failure hazard rate conditioning without affecting (16) for any j=1,...,4,
and lack of censoring in [0, #) x [0, ) can be added to the double failure hazard rate
conditioning without affecting (17), for any (4; #) and 1< j< h< g.

Now consider a random sample {(Sjl., 5ji),j =1.Lq: 28, ...,Sqi)}, fori=1,...,nfroma
study cohort, where S;i=T;nC; is the minimum of the sth failure time 7;and a

corresponding potential censoring time Cj; for the #h individual, and 8, =1I1S; =Tl From

these one can define counting processes Ajjand “at risk” processes Yj;by

1ifS.=¢t.and 5. =1 1ifS..>z.
JuoJ Jt JET

N .(dt.) = Y .(t)=
]l( t]) ]l(t])

0 otherwise 0 otherwise

for j=1,..,gand /= 1,...,n. Missing failure times can be accommodated by setting the
pertinent Cj; value equal to zero.

Similar to Spiekerman and Lin (1998) one can define an estimating equation for the
marginal single failure hazard ratio parameter g by

2 X

n q
=1j=1

K Tk _
> M) =k} A {Xkl.(tj) =X, (t; VN (dt) = 0. (18)
k=1

i

Also, a corresponding estimating equation for the double failure hazard rates parameter y
can be written

nog q K K
XY Y XYY M=k ][M(h)=g]
i=lj=lh=j+1k=1g=k+1

- - (19)
k rg _
A A (Xt 1) = Kt 1 )YN (i N (dty) = 0.

In these expressions (z,, z g) are such that
P{Sﬁ 27, M) =kS,,; 2 rg,M(h) =g;,Z(0, ..., L 0,...,0,1,,0,...0)} > 0 for some (j; /), for each
1< k< g< Kfor theoretical developments, but each 7, can evidently be taken to be the

maximal observed Sj;value, where k= M), in application. Also the “centering” variates in
(18) are

= 0W 500 .
X B = 0 Ig .
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where 0\ )(z spH=n"t30_ X4 M) = k}Yﬁ(rj)in(rj)(f )exp{in(tj)/}}, forr=0,1,2

with «©=1, «V = aand «® = & arow vector 4, while those in (19) are

Kugltytiir) = Qg1 i Qi le i)

WECYe (T BV YARD ) D ) S 1I(M(j) = kMM(h) =

}le.(tj)Y wiltn)X kg(lj, th)(f)exp{X kg(zj, th);/}, for £=0,1,2.

The utility of (18) and (19) as estimating functions derives from the fact that each Nji(dtj) in

(18) can be replaced by Lﬁ(dtj; ﬁ) where

t.

Lifth)= /0 J

M(j) =

i) 31

Yl

while retaining equality to zero under (16), and similarly each Nﬁ(dtj)Nhi(dth) in (19) can be

replaced by Ljhl.(dlj, dty; y) where

jhll thy f /

exp{ngi(sj, sh)y I (s o ds h)],

K K
ds Nh dsh) Z Z 1

lg=k+1

M(j) = kl1|M(h) = leji(sj)Yhi(sh)

while retaining equality to zero under (17). It follows that the product of 772/2 and left sides
of (18) and (19) are stochastic integrals of sample variates with respect to processes L ;;and
L jpithat have zero means under (16) and (17) respectively at the true (4, 7) values. Moreover,
it turns out that under i.i.d. conditions for the processes

(NG Y i =L@ (S jyp s S )} for i =1, .on that the centering variates in (18) and (19)

can be replaced by their almost sure limits.

o =a D10 ) =gV (0
i By =aqp i plqy (i f) and X (4 ty:y) = qpo (s i) gy (1 7),

where ¢ and q,(é ) are expectations of 0" and Q,((’; ) respectively for # = 0, 1,2, without

altering the asymptotic distribution of the left sides of (18) and (19). It then follows further
that the left sides of (18) and (19) behave, for large 7, like a sum of i.i.d. variates to which
the central limit theorem applies under modest additional regularity conditions. From this 7
~1/2 times these left sides converges to a zero mean Gaussian variate at the ‘true’ values for
(B,7) under (16) and (17). The variance matrix for this Gaussian variate quite generally can
be consistently estimated by
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7 ®2
M@ =k]‘/(; {in(tj)_Xk(tj’ﬁ)}/l*ji(dtj;ﬁ)

M@ =k

I‘M(h) =g

lh=j+1lk=1g=k+1
T

‘L'k g
[) f {ngl(t th) (z s y)}Lh(dt dth 7)

where Lj;and L denote Lj;and L x;respectively evaluated at (3.7) and at Aalen-Breslow
estimators of baseline hazard functions given by

ji(dsk)N hi(dsg)/ {”Ql(cg)(sk’ g 77) }

—_—
N .
2
5

for k=1,..., Kand for 1 < k< g< K, respectively.

Taylor series expansions of the left sides of (18) and (19) about the true (3, y) values then
lead, under regularity conditions, to a zero mean asymptotic normal distribution for

with variance matrix consistently estimated by ATISA! where A is the product of /771 and
the negative of the derivative matrix of the left sides of (18) and (19) with respect to (3,7).
Specifically A is a block diagonal matrix with entries

/ [Q(z)(t 210 5 - 10V o by ] [M(j) ]Z N ifdry)
j=1

k=1 t—l'

in the upper left, with entries

K K % (2) ~\,~(0) . ) (0) ®2
kglg =Zk:+ 1/0 A [Q (tk’tg;y)/Q (tk’ tg;y)_ {Q (tk’ tg;}’)/Q (tk»tg;y)} }
ﬁ: ﬁ: 1 M(j)=k’1|M(h) ’ 3N (dt N, (dt )
j=lh=j+1 R

in the lower right, and with zero matrices in the off-diagonal blocks, so that one can write
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(A 0
A=l |
0 A,
Empirical process methods can also be used to show n'/A(T', —T), for k = 1,....K and

n2C, -1, yforl<k<g<Kto converge jointly to a zero mean Gaussian processes under
kg " kg

(16) and (17), and a sandwich-type covariance process estimator can be specified for this set
of parameter estimates. These asymptotic developments again follow from modest
extensions of Spiekerman and Lin (1998) and Lin et al. (2000). Some related detail is given
in the Appendix. As in the previous section, bootstrap resampling procedures can be used for
supremum-type confidence band estimation for marginal single and double cumulative
hazard rates, or for confidence intervals or bands for bivariate survival function estimators,
and for pairwise cross ratio or concordance functions, given Z forany 1 < k< g< K

It can also be remarked that these asymptotic results assume the marginal single and double
failure rate models (16) and (17) to hold simultaneously. Note however, that the asymptotic
properties for 4 and f"k, for k=1,..., Khold under (16) even under departure from (17), and

those for 7 and fkg, forall 1 < k< g< Khold under (17) even under departure from (16),

providing some flexibility in the modeling and interpretation of the respective single and
double failure hazard rates. For example, the marginal single failure hazard ratio factor
exp{Xk(z)B} may have an interpretation as an average failure type k hazard ratio for the

modeled covariate even if (16) is oversimplified and (17) fails to hold, and similarly for
exp{ng(tl, zz);?} under an oversimplified double failure hazard rate model (17) and departure

from (16). However, when the fitted marginal single and double failure hazard rates are
brought together to estimate bivariate survival functions and pairwise dependency functions
given Z some care may be needed to ensure an adequate fit of (16) and (17) to available
data, as will be considered further in Section 6 below.

Note also that mixed continuous and discrete failure times are included in the methodology
described above, subject to the models (16) and (17), and the sandwich-type variance
estimators and other weak convergence results mentioned above adapt appropriately to the
nature of the failure time variates.

It may be possible to improve the efficiency of g estimators by introducing weights into the
left side of (18) (e.g., Lin et al., 2000) possibly using the fitted marginal double failure
hazard rates as a source of weighting information. Efficiency gains are likely to be small
however, unless dependencies among the failure times are strong and censoring is not too
severe. Related asymptotic results extend in a straightforward manner under some additional
regularity conditions, following Lin et al. (2000), provided any dependence of the weights
on Bin estimating equation (18) is fixed at the parameter estimate j described above.
Further study of the preferred form of weights that could be included in (18) and of their
value for enhancing estimator efficiency, would be worthwhile.
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6 Additional Aspects of Hazard Ratio Regression Parameter Modeling and
Estimation

6.1 Model misspecification
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Some readers may find it problematic that the single and double failure hazard rate models
(16) and (17) may be mutually incompatible in that there may be no proper ‘survival’
function Fgiven Zfor which these models are simultaneously obtained. This issue arises
also for mean and covariance parameter estimation using estimating equations with
uncensored outcomes (e.g. Liang and Zeger, 1986). If this situation arises then one or both
of (16) and (17) are misspecified, and, as usual, one can then expect some bias in estimators
of related parameters, such as Fgiven Z An advantage of the semiparametric models (16)
and (17), however, is that the unspecified baseline hazard rate functions provide valuable
flexibility to these models, with restrictions entering only through the parametric form of the
hazard ratio factors. The time-dependent covariate option allows the data analyst to adapt
these hazard ratio factors to available data, and time-dependent baseline hazard rate
stratification options allow even more flexible modeling. Hence, under careful modeling one
can expect to obtain estimated single and double failure hazard rate estimators that are
consistent with available data. These estimators uniquely determine estimators £ given Z for
all univariate and bivariate failure times, and these too will then be consistent with available
data.

From a practical point of view a data analyst is likely to just include some simple time-
dependent terms in the modeled single and double failure regression vectors in (16) and
(17). We considered a generalization of the bivariate survival function model (9) where the
single failure hazard rates for the binary covariate zare correctly modeled, but the double
failure hazard rate is not, to examine the bias associated with this model misspecification,
and to examine the extent to which it can be mitigated by the inclusion of the simple time-
dependent components zlog £ and zlog & in the respective regression vectors X(rl, 0) and

X(0.1,). and the inclusion of both of these time-dependent terms in X(#, %), in the models
(1-3).

The joint survival function considered was the Clayton-Oakes model

ool 1) ool 1) _ -0

(20)

F(t),1y,2) = |Fy(t,,0) +F(0,1,)

for 6 > 0, with Ay again denoting the survival function at z= 0. This class of models has the

same single failure hazard rates as (9), and the same cross ratio function 1 + 6=, but the
double failure hazard rate model has the more complex form
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Ay l(dtl,dtz; z) = A, l(dtl,dzz)eZV(eZV +0)/(1+6)

ol 0+ ooy ’
Fol, 0)—9exp{1(ﬁ 10-7)} +F0 tz)—ﬁexp{ (o1 -7)] .
Foft)s )—H[exp{Z(ﬁlo -7))- 1]F0(0,, —6fexp{<(py; - 7)) - 1]

which departs from (3) under departure from 4, , = 3, = v. Table 7 shows some simulation
results for estimating ~given Z at both z=0and z= 1 for §;, = 0, §,; = log2,6 = 2, and

y = log2, either with x(r,.0) = x(0,1,) = x(t,.1,) = z as before, or with

x(t}.0) = (z. zlogt, ), x(0.1,) = (z. zlogt,) and x(t . 1,) = (z. zlogt . zlogt,) . From the left side of

Table 7 one sees that the biases in F given zare minimal in the heavy censoring scenario,
even without time-dependent regression variables, whereas bias is evident away from the
origin in the uncensored data scenario where the model misspecification has more influence
in the tails of the survival function. Much of this bias is avoided by the inclusion of these
simple time-varying regression variable that allow the single and double failure hazard ratio
for z=1 versus z= 0 to be power functions of # and #. Note that the sample standard
deviations for F given zare little affected by the inclusion of these time-dependent variables.
Corresponding estimators of average cross ratios and average concordances incorporate
somewhat greater biases under these sampling configurations, but these biases too were
considerably reduced by the inclusion of the time-dependent components of the modeled
regression variables. Results were similar at various other parameter values, sample sizes
and censoring configurations. Time-dependent regression variable zi and z5, instead of z
log 4 and zlog & were also considered, with very similar bias reduction properties for these
choices, under the simulation model (20).

An additional simulation was conducted under (20) and the same parameter configuration
described above, but with regression vectors augmented to include a standard normal variate
in addition to the binary regression variable, with the two regression variables having
identical parameter values By, fo1 and y. Analyses that included modeled regression
variables zlog 4 and zlog & for marginal single failure hazard rates, and zlog(4 + & + 1)
for the marginal double failure hazard rate demonstrated good agreement between sample
standard deviations and the average of standard deviation estimators from sandwich
estimation—based standard deviation estimators, and good agreement of sandwich
estimation—based 95% confidence intervals with nominal levels for targeted parameters,
based on 1000 simulated data sets.
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6.2 Higher dimensional marginal hazard rate regression estimation

Marginal hazard rate regression models analogous to (16) and (17) can also be considered
for trivariate and higher dimensional marginal hazard rates. The methods of the preceding
section generalize naturally to the estimation of hazard ratio regression parameters and

baseline hazard rates for subsets of the failure times (Tl, Tq) for any g= 1. Moreover, the

survival function Fgiven Zfor (Tl, Tq) at a specified g-dimensional covariate history,

with fixed or external covariates, can be readily estimated in a recursive fashion. For
example, one can write

F{tl, ...,tq;Z(zl, ...,tq)] = "’Z(tl’ ...,tq)+

t t
1 q
F ;‘,...,“;z(; ) A, Ads.....d ;Z(A )
‘[) A. {sl S‘q 51 S‘q} 1“_1{ 51 vq 51 sq}

where ylz(tl, ’q) depends only on marginal distributions of F~given Zof dimension less

than g. This inhomogenous Volterra integral equation has a unique solution as a function of

q
y/Z(zl,...,tq) —(-1? (- 1)‘1‘2i§1F{o,...,zi,o,...,o;z(o, ent0,...,0))

i=1lj=1
0 & g
+et(=1) 2 2 Fl0,...,0,1, ,0,...,0,; 0,....0
=1 i =1 1 g-1
q—1
I <y <<y

and the g-variate hazard rate regression model A; , in Péano series form, leading to

strongly consistent and weakly Gaussian convergent estimators of ~given Zby plugging in
marginal hazard rate regression estimators for hazard rates of all dimensions up to g, starting
with Cox model marginal single failure hazard rate estimators.

Note, however, that marginal g-variates hazard rate estimators have precision that depends
directly on the number of individuals experiencing a g-variate failure. In many applications,
for example in epidemiologic cohort studies with failure times constituting ¢ specific clinical
outcomes, the data for estimating high-dimensional marginal hazard rates will be too sparse
to be useable. In fact, the most useful and interpretable regression information will often
derive from marginal single and double failure rate estimation, analogous to mean and
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covariance parameter estimation in uncensored data regression settings (e.g. Liang and
Zeger, 1986; Prentice and Zhao, 1991).

6.3 Summary and Concluding remarks

In summary, the methods provided here aim to fill an important gap in the various possible
extensions of the univariate failure time Cox model to multivariate failure time data. The
proposed marginal methods are based on semiparametric multiplicative form regression
models for marginal single and double, and potentially higher order, failure hazard rates,
where marginal implies that possibly-evolving covariate histories are included in the hazard
rate conditioning, but the evolving failure time counting process for the ‘individual’
(correlated set of measurements) is not included. These methods, along with models of a
similar form for the counting process intensity, which does condition on the preceding
counting process history, provide flexible tools for the analysis of multivariate failure time
regression data. The present marginal methods allow separate censoring processes to apply
to the components of the multivariate failure time variable, and allow failure time
components of different types to fall on unrelated time axes, provisions that are not available
for martingale-based distribution theory for counting process intensity models. On the other
hand, intensity process modeling allows censoring rates to depend on the prior counting
process data for the correlated set, while somewhat stronger censoring requirements apply to
the marginal hazard rate methods considered here.

The applicability of these stronger censoring requirements can be examined by applying
models of the form (16) and (17) to marginal single and double failure censoring rates, while
extending the conditioning event to include aspects of the preceding failure counting process
for the “individual’ in addition to the preceding covariate history. A dependence of these
censoring rates on the prior counting process history would suggest departure from
independent censoring given Z.

The marginal methods can also be viewed as extending copula model methods to include a
semiparametric class of dependency models, including models that can depend on an
evolving covariate process. Additionally, the proposed marginal methods build upon the
marginal single failure regression methods of Lin, Wei, and colleagues, while including
higher dimensional marginal hazard rate regression models, and do so using straightforward
computations that extend those used in this earlier work, and in Cox’s (1972) seminal paper.
As a byproduct, these methods yield semiparametric bivariate survival function estimators,
and related cross ratio and concordance dependency function estimators, with fixed or
external covariates, that are considerably more flexible than corresponding estimators
previously available using copula and frailty regression model approaches. Furthermore the
relationship of marginal double failure hazard rates to covariates will often be readily
interpretable, and may lead to novel insights; for example, into intervention effects and
related intervention mechanisms in a clinical trial context.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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