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Summary

Canonical correlation analysis investigates linear relationships between two sets of variables, but

often works poorly on modern datasets due to high-dimensionality and mixed data types

(continuous/binary/zero-inflated). We propose a new approach for sparse canonical correlation

analysis of mixed data types that does not require explicit parametric assumptions. Our main

contribution is the use of truncated latent Gaussian copula to model the data with excess zeroes,

which allows us to derive a rank-based estimator of latent correlation matrix without the

estimation of marginal transformation functions. The resulting semiparametric sparse canonical

correlation analysis method works well in high-dimensional settings as demonstrated via

numerical studies, and application to the analysis of association between gene expression and

micro RNA data of breast cancer patients.
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1. Introduction

Canonical correlation analysis investigates linear associations between two sets of variables,

and is widely used in various fields including biomedical sciences, imaging and genomics

(Hardoon et al., 2004; Chi et al., 2013; Safo et al., 2018). However, sample canonical

correlation analysis often performs poorly due to two main challenges: high-dimensionality

and non-normality of the data.

In high-dimensional settings, sample canonical correlation analysis is known to overfit the

data due to singularity of sample covariance matrices (Hardoon et al., 2004; Guo et al.,

2016). Additional regularization is often used to address this challenge. González et al.

(2008) focus on ridge regularization of sample covariance matrices to avoid singularity,

while more recent methods focus on sparsity regularization of canonical vectors

(Parkhomenko et al., 2009; Witten et al., 2009; Chi et al., 2013; Cruz-Cano & Lee, 2014;

Wilms & Croux, 2015; Safo et al., 2018). At the same time, with the advancement in

technology, it is common to collect data of different types. For example, the Cancer Genome
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Atlas Project contains matched data of mixed types such as gene expression (continuous),

mutation (binary) and micro RNA (count) data. While regularized canonical correlation

methods work well for Gaussian data, they still are based on sample covariance matrix, and

therefore are not appropriate for the analysis in the presence of binary data or data with

excess of zero values.

Several approaches have been proposed to address the non-normality of the data. On the one

hand, there are completely non-parametric approaches such as kernel canonical correlation

analysis (Hardoon et al., 2004). On the other hand, there are parametric approaches building

up on probabilistic interpretation of Bach & Jordan (2005). For example, Zoh et al. (2016)

develop probabilistic canonical correlation analysis for count data by exploring natural

parameter for Poisson distribution. More recently, Agniel & Cai (2017) utilize the normal

semi-parametric transformation model for the analysis of mixed types of variables, however

the method requires estimation of marginal transformation functions via nonparametric

maximum likelihood.

In summary, a significant progress has been made in developing regularized variants of

sample canonical correlation analysis that work well in high-dimensional settings. However,

these approaches are not suited for mixed data types. At the same time, several methods

have been proposed to account for non-normality of the data, however are not designed for

high-dimensional settings. More importantly, to our knowledge none of the existing methods

explicitly address the case of zero-inflated measurement, which, for example, is common for

micro RNA and microbiome abundance data.

To bridge this gap, we propose a semi-parametric approach for sparse canonical correlation

analysis, which allows to handle high-dimensional data of mixed types via a common latent

Gaussian copula framework. Our work has three main contributions. First, we assume that

zeros in the data are observed due to truncation of underlying latent continuous variable, and

define corresponding truncated Gaussian copula model. We derive explicit formulas for the

bridge functions that connect the Kendall’s τ of observed data to the latent correlation

matrix for different combinations of data types, and use these formulas to construct a rank-

based estimator of the latent correlation matrix for the mixed (continuous/binary/truncated)

data. Fan et al. (2016) use bridge function approach in the context of graphical models,

however the authors do not consider the truncated variable type. The latter requires

derivation of new bridge functions, and those derivations are considerably more involved

than corresponding derivations for continuous/binary case. The significant advantage of

bridge function technique is that it allows to estimate the latent correlation structure of

Gaussian copula without estimating marginal transformation functions, in contrast to Agniel

& Cai (2017). Secondly, we use the derived rank-based estimator instead of sample

correlation matrix within the sparse canonical correlation analysis framework that is

motivated by Chi et al. (2013) and Wilms & Croux (2015). This allows us to take into

account the dataset-specific correlation structure in addition to cross-correlation structure. In

contrast, Parkhomenko et al. (2009) and Witten et al. (2009) model the variables within each

dataset as uncorrelated. We develop an efficient optimization algorithm to solve the

corresponding problem. Finally, we propose two types of Bayesian Information Criterion

(BIC) for tuning parameter selection, which leads to significant computational saving
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compared to commonly used cross-validation and permutation techniques (Witten &

Tibshirani, 2009). Wilms & Croux (2015) also use BIC in canonical correlation analysis

context, however only one criterion is proposed. Two criteria originate from BIC formulation

for Gaussian linear models depending on whether the case of known or unknown error

variance is considered. We found that both are competitive in our numerical studies, however

one criterion works best for variable selection, whereas the other works best for prediction.

2. Background

2·1. Canonical correlation analysis

In this section we review both the classical canonical correlation analysis, and its sparse

alternatives. Given two random vectors X1 ∈ ℝ
p1 and X2 ∈ ℝ

p2, let Σ1 = cov(X1), Σ2 =

cov(X2) and Σ12 = cov(X1, X2). The population canonical correlation analysis (Hotelling,

1936) seeks linear combinations w1
⊤X1 and w2

⊤X2 with maximal correlation:

maximize 
w1, w2

w1
⊤Σ12w2   subject to  w1

⊤Σ1w1 = 1,   w2
⊤Σ2w2 = 1 .

(1)

Problem (1) has a closed form solution via the singular value decomposition of

Σ1
−1/2Σ12Σ2

−1/2. Given the first pair of singular vectors (u, v), the solutions to (1) can be

expressed as w1 = Σ1
−1/2u and w2 = Σ2

−1/2v.

The sample canonical correlation analysis replaces Σ1, Σ2 and Σ12 in (1) by corresponding

sample covariance matrices S1, S2 and S12. In high-dimensional settings when sample size is

small compared to the number of variables, S1 and S2 are singular, thus leading to non-

uniqueness of solution and poor performance due to overfitting. A common approach to

circumvent this challenge is to consider sparse regularization of w1 and w2 via the addition

of 𝓁1 penalty in the objective function of (1) (Witten et al., 2009; Parkhomenko et al., 2009;

Chi et al., 2013; Wilms & Croux, 2015). The sparse canonical correlation analysis is then

formulated as

maximize 
w1, w2

w1
⊤S12w2 − λ1 w1 1

− λ2 w2 1
   subject to   w1

⊤S1w1 ≤ 1,    w2
⊤S2w2

≤ 1 .
(2)

In addition to 𝓁1 penalties, the equality constraints in (1) are replaced with inequality

constraints which define convex sets. This generalization is possible since nonzero solutions

to (2) satisfy the constraints with equality, see Proposition 1 below.

While problem (2) works well in high-dimensional settings, it still relies on sample

covariance matrices, and therefore is not well-suited for skewed or non-continuous data,

such as binary or zero-inflated. Further we review the Gaussian copula models that we

propose to use to address these challenges.
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2·2. Latent Gaussian copula model for mixed data

In this section we review the Gaussian copula model in Liu et al. (2009), and its extension to

mixed (continuous/binary) data in Fan et al. (2016).

Definition 1 (Gaussian copula model). A random vector X = (X1, … , Xp)⏉ satisfies
Gaussian copula model if there exists a set of monotonically increasing transformations

f = f j j = 1
p

 satisfying f(X) = (f1(X1), … , fp(Xp))⏉ ~ Np(0,Σ) with Σjj = 1. We denote X ~

NPN(0,Σ, f).

Definition 2 (Latent Gaussian copula model for mixed data). Let X1 ∈ ℝ
p1 be continuous

and X2 ∈ ℝ
p2 be binary random vectors with X = (X1, X2). Then X satisfies the latent

Gaussian copula model if there exists a p2-dimensional random vector

U2 = Up1 + 1, …, Up1 + p2

⊤
 such that U := (X1, U2) ~ NPN(0,Σ, f) and Xj = I(Uj > Cj) for all

j = p1 + 1, … , p1 + p2, where I(·) is the indicator function and C = (C1, … , Cp) is a vector
of constants. We denote X ~ LNPN(0, Σ, f,·C), where Σ is the latent correlation matrix.

Fan et al. (2016) consider the problem of estimating Σ for the latent Gaussian copula model

based on the Kendall’s τ. Given the observed data (Xj1, Xk1), … , (Xjn, Xkn) for variables Xj

and Xk, Kendall’s τ is defined as

τ jk = 2 n(n − 1) 1/2 ∑
1 ≤ i < i′ ≤ n

sign X ji − X ji′ sign Xki − Xki′ .

Since τ jk is invariant under monotone transformation of the data, it is well-suited to capture

associations in copula models. Let τ jk = 𝔼 τ jk  be the population Kendall’s τ. The latent

correlation matrix Σ can be connected to the Kendall’s τ via the so-called bridge function F
such that Σjk = F −1(τjk) for all variables j and k. Fan et al. (2016) derive an explicit form of

the bridge function for continuous, binary and mixed (continuous/binary) variable pairs,

which allows to estimate latent correlation matrix via method of moments. We summarize

these results below.

Theorem 1 (Fan et al. (2016)). Let X = (X1, X2) ~ LNPN(0,Σ, f,C) with p1-dimensional
continuous X1 and p2-dimensional binary X2. The rank-based estimator of Σ is given by the

symmetric matrix R with R j j = 1 and R jk = Rk j = F jk
−1 τ jk , where for t ∈ (0, 1)

F jk(t) =

2sin−1(t)/π  if  1 ≤ j < k ≤ p1;

2 Φ2 Δ j, Δk, t − Φ Δ j Φ Δk  if  p1 + 1 ≤ j < k ≤ p1 + p2;

4Φ2 Δ j, 0, t / 2 − 2Φ Δ j  if  1 ≤ j ≤ p1, p1 + 1 ≤ k ≤ p1 + p2 .

YOON et al. Page 4

Biometrika. Author manuscript; available in PMC 2021 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here Δj = fj(Cj), Φ(·) is the cdf of standard normal distribution, and Φ2(·,·, t) is the cdf of
standard bivariate normal distribution with correlation t

Remark 1. Since Δj = fj(Cj) is unknown in practice, Fan et al. (2016) propose to use plug-in

estimator from the moment equation 𝔼 Xi j = 1 − Φ Δ j  leading to Δ j = Φ−1 1 − X j .

Fan et al. (2016) use these results in the context of Gaussian graphical models, and replace

the sample covariance matrix with rank-based estimator R, which allows to use Gaussian

models with skewed con tinuous and binary data. However, Fan et al. (2016) do not consider

the case of zero-inflated data, which requires formulation of a new model, and subsequently

derivation of new bridge functions.

3. Methodology

3·1. Truncated latent Gaussian copula model

Our goal is to model the zero-inflated data through the latent Gaussian copula models. Two

motivating examples are micro RNA and microbiome data, where it is common to encounter

large number of zero counts. In both examples it is reasonable to assume that zeros are

observed due to truncation of underlying latent continuous variable. More generally, one can

think of zeroes as representing the measurement error due to truncation of values below a

certain positive threshold. This intuition leads us to consider the following model.

Definition 3 (Truncated latent Gaussian copula model). A random vector X = (X1, … , Xd)⏉

satisfies truncated Gaussian copula model if there exists a d-dimensional random vector U =

(U1, … , Ud)⏉ ~ NPN(0,Σ, f) such that

X j = I U j > C j U j  ( j = 1, …, d),

where I(·) is the indicator function and C = (C1, … , Cd) is a vector of positive constants. We
denote X ~ TLNPN(0,Σ, f,C), where Σ is the latent correlation matrix.

The methodology in Fan et al. (2016) allows to estimate the latent correlation matrix in the

presence of mixed continuous and binary data. Our Definition 3 adds a third type, which we

denote as truncated for short. To construct a rank-based estimator for Σ as in Theorem 1 in

the presence of truncated variables, below we derive an explicit form of the bridge function

for all possible combinations of the data types (continuous/binary/truncated). Throughout,

we use Φ(·) for the cdf of standard normal distribution and Φd(· · · ;Σd) for the cdf of

standard d-variate normal distribution with correlation matrix Σd. All the proofs are deferred

to the Appendix A.

Theorem 2. Let Xj be truncated and Xk be binary. Then 𝔼 τ jk = F Σ jk; Δ j, Δk , where

F Σ jk; Δ j, Δk = 2 1 − Φ Δ j Φ Δk − 2Φ3 −Δ j, Δk, 0; Σ3a − 2Φ3 −Δ j, Δk, 0; Σ3b , Δ j = f j C j , Δk = f k Ck
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and

Σ3a =

1 −Σ jk 1/ 2

−Σ jk 1 −Σ jk / 2

1/ 2 −Σ jk / 2 1
,     Σ3b =

1 0 −1/ 2
0 1 −Σ jk / 2

−1/ 2 −Σ jk / 2 1
.

Theorem 3. Let Xj be truncated and Xk be continuous. Then 𝔼 τ jk = F Σ jk; Δ j , where

F Σ jk; Δ j = − 2Φ2 −Δ j, 0; 1/ 2 + 4Φ3 −Δ j, 0, 0; Σ3 , Δ j = f j C j

and

Σ3 =

1 1/ 2 Σ jk / 2

1/ 2 1 Σ jk
Σ jk / 2 Σ jk 1

.

Theorem 4. Let both Xj and Xk be truncated. Then 𝔼 τ jk = F Σ jk; Δ j, Δk , where

F Σ jk; Δ j, Δk = − 2Φ4 −Δ j, − Δk, 0, 0; Σ4a + 2Φ4 −Δ j, − Δk, 0, 0; Σ4b , Δ j = f j C j , Δk = f k Ck

and

Σ4a =

1 0 1/ 2 −Σ jk / 2

0 1 −Σ jk / 2 1/ 2

1/ 2 −Σ jk / 2 1 −Σ jk

−∑ jk / 2 1/ 2 −Σ jk 1

and

Σ4b =

1 Σ jk 1/ 2 Σ jk / 2

Σ jk 1 Σ jk / 2 1/ 2

1/ 2 Σ jk / 2 1 Σ jk
Σ jk / 2 1/ 2 Σ jk 1

.

We also show that the inverse bridge function exists for all of the cases.

Theorem 5. For any constants Δj and Δk, the bridge functions F (Σjk) in Theorems 2–4 are
strictly increasing in Σjk ∈ (−1, 1), and therefore, the inverse function F−1(Σjk) exists.

Theorems 2–5 complement the results of Fan et al. (2016) summarized in Theorem 1 by

adding three more cases (continuous/truncated, binary/truncated and truncated/truncated),
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thus allowing to construct rank-based estimator R for Σ in the presence of mixed

(contunuous/binary/truncated) variables.

Remark 2. Since R is not guaranteed to be positive semidefinite, Fan et al. (2016) regularize

R by projecting it onto the cone of positive semidefinite matrices. We follow this approach

using nearPD function in Matrix R package leading to estimator Rp. Furthermore, we

consider

R = (1 − ρ)Rp + ρI (3)

with a small value of ρ > 0, so that R is strictly positive definite. Throughout, we fix ρ =

0.01.

Remark 3. As in binary case, Δj = fj(Cj) is unknown for truncated variables. Similar to Fan et

al. (2016), we use a plug-in estimator Δ j based on the moment equation

𝔼I Xi j > 0 = ℙ X j > 0 = ℙ f j U j > Δ j = 1 − Φ Δ j . Let nnonzero  = ∑i = 1
n I Xi j > 0  for i = 1,

… , n, then we use Δ j = Φ−1 1 − nnonzero /n .

3·2. Semiparametric sparse canonical correlation analysis

Our proposal is based on formulating sparse canonical correlation analysis using latent

correlation matrix from the Gaussian copula model for mixed data. On a population level, let

Σ be the latent correlation matrix for (X1, X2) ~ LNPN(0, Σ, f, C) where each X1 and X2

follows one of the three data types: continuous, binary or truncated. In Section 3·1 we

derived a rank-based estimator for Σ, which we propose to use within the sparse canonical

correlation analysis framework (2).

Given semiparametric estimator R in (3), we propose to find canonical vectors by solving

minimize
w1, w2

−w1
⊤ R12w2 + λ1 w1 1

+ λ2 w2 1
   subject to   w1

⊤ R1w1 ≤ 1,

  w2
⊤ R2w2 ≤ 1 .

(4)

While we focus only on the estimation of the first canonical pair, the subsequent canonical

pairs can be found sequentially by using the deflation scheme. Let R12
(1) = R12 and let w1, w2

be the (k − 1)th estimated canonical pair. To estimate the kth pair for k > 1, form

R12
(k) = R12

(k − 1) − w1
⊤R12

(k − 1)w2  R1w1w2
⊤ R2,

and solve (4) using R12
(k) instead of R12.

While problem (4) is not jointly convex in w1 and w2, it is biconvex. Therefore, we propose

to iteratively optimize over w1 and w2. First, consider optimizing over w1 with w2 fixed.
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Proposition 1. For a fixed w2 ∈ ℝ
p2, let

w1 = argmin
w1

−w1
⊤ R12w2 + λ1 w1 1

   subject to   w1
⊤ R1w1 ≤ 1 . (5)

This problem is equivalent to finding

w1 = argmin
w1

(1/2)w1
⊤R1w1 − w1

⊤ R12w2 + λ1 w1 1
, (6)

and then setting w1 = 0 if w1 = 0, and w1 = w1/ w1
⊤ R1w1

1/2
 if w1 ≠ 0.

Both problems (5) and (6) are convex, but unlike (5), problem (6) is unconstrained.

Furthermore, problem (6) is of the same form as the well-studied penalized LASSO problem

(Tibshirani, 1996), which can be solved efficiently using for example coordinate-descent

algorithm. Hence, the proposed optimization algorithm for (4) can be viewed as a sequence

of LASSO problems with rescaling. Given the value of w2 at iteration t, the updates at

iteration t + 1 have the form

w1 = argmin
w1

  (1/2)w1
⊤ R1w1 − w1

⊤R12w2
(t) + λ1 w1 1 ;

w1
(t + 1) = w1/ w1

⊤ R1 w1
1/2;

w2 = argmin 
w2

(1/2)w2
⊤R2w2 − w2

⊤R12
⊤ w1

(t + 1) + λ2 w2 1 ;

w2
(t + 1) = w2/ w2

⊤R2w2
1/2 .

If a zero solution is obtained at any of the steps, the optimization algorithm stops, and both

w1 and w2 are returned as zeroes. Otherwise, the algorithm proceeds until convergence,

which is guaranteed due to biconvexity of (4) (Gorski et al., 2007).

We further describe coordinate-descent algorithm for (6). Consider the KKT conditions

R1w1 − R12w2 + λ1s1 = 0,

where s1 is the subgradient of ‖w1‖1. If λ1 ≥ ‖R12w2‖∞, it follows that w1 = 0. Otherwise, the

ith element of w1 can be expressed through the other coordinates as
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w1i = Sλ1
R12 i

w2
(t) − R1 i, − i

w1 −i
,

where Sλ(t) = sign(t) (|t| − λ)+ is the soft-thresholding operator, (R12)i denotes the ith row of

matrix R12 and (R1)i,−i denotes ith row of matrix R1 without the ith component that is (R)i,−i

= (Ri1, … , Ri,i−1, Ri,i+1, … , Rip). The coordinate-descent algorithm proceeds by using the

above formula to update one coordinate at a time until the convergence to global optimum is

achieved. This convergence is guaranteed due to convexity of the objective function and

separability of the penalty with respect to coordinates (Tseng, 1988).

Remark 4. Problem (6) allows an alternative interpretation of R. Using the definition of R in

(3), (6) can be written as

minimize 
w1

(1 − ρ)(1/2)w1
⊤R1w1 − (1 − ρ)w1

⊤R12w2
(t) + ρ(1/2)w1

⊤w1 + λ1 w1 1 ,

which is equivalent to using with R elastic net regularization rather than the lasso penalty

(Zou & Hastie, 2005).

3·3. Selection of tuning parameters

Cross-validation is a popular approach to select the tuning parameter in LASSO. In our

context, however, it amounts to performing a grid search over both λ1 and λ2. Moreover,

splitting the data as in cross-validation leads to too small number of testing samples fto

construct the rank-based estimator of latent correlation matrix. Instead, motivated by Wilms

& Croux (2015), we propose to adapt the Bayesian information criterion to the canonical

correlation analysis to avoid splitting the data and decrease computational costs.

For Gaussian linear regression model, the Bayesian information criterion (BIC) has the form

BIC = − 2𝓁 + df log n,

where df indicate the number of parameters in the model, and l is the log-likelihood

𝓁 = log L = − (n/2) log σ2 − ∑
i = 1

n
yi − Xiβ

2/ 2σ2 .

Two cases can be considered depending on whether the variance σ2 is known or unknown.

1. If σ2 is known, and the data are scaled so that σ2 = 1, then

BIC = n−1 ∑
i = 1

n
yi − Xiβ

2 + df
β
log n/n .
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2. If σ2 is unknown, using σMLE
2 = n−1∑n = 1

n yi − Xiβ
2 leads to

BIC  = n log  n−1 ∑
i = 1

n
yi − Xiβ

2 + df
β

 log n .

Wilms & Croux (2015) use criterion 2 for canonical correlation analysis by substituting

‖X1w1 − X2w2‖2
2/n instead of ∑i = 1

n yi − Xiβ
2/n for centered X1 and X2. Since

‖X1w1 − X2w2‖2
2/n = w1

⊤S1w1 − 2w1
⊤S12w2 + w2

⊤S2w2, and we use R instead of sample

covariance matrix S, we substitute

f w1 = w1
⊤ R1w1 − 2w1

⊤ R12w2 + w2 R2w2

instead of residual sum of squares. Furthermore, motivated by the performance of the

adjusted degrees of freedom variance estimator in Reid et al. (2016), we also adjust f w1  s

for the 2nd criterion leading to

BIC1 = f w1 + dfw1
 log n/n;

BIC2 =  log  n
n − dfw1

f w1 + dfw1
log n/n .

Here d f w1
 coincide with the size of the support (Tibshirani & Taylor, 2012). BICcriteria for

w2 are defined analogously to w1.

We use both criteria in evaluating our approach. Given the selected criterion (either BIC1 or

BIC2), we apply it sequentially at each step of biconvex optimization algorithm of Section

3·2, and each time select the tuning parameter corresponding to the smallest value of

criterion.

4. Simulation Studies

In this section we evaluate the performance of the following methods: (i) Classical canonical

correlation analysis based on the sample covariance matrix; (ii) Canonical ridge available in

the R package CCA (González et al., 2008); (iii) Sparse canonical correlation analysis of

Witten et al. (2009) available in the R package PMA; (iv) Sparse canonical correlation

analysis via Kendall’s τ proposed in this paper. For our method, we evaluate both types of

BICcriteria as described in Section 3·3.

We generate n = 100 independent pairs Z1, Z2 ∈ ℝ
p1 + p2 following
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Z1
Z2

N 0
0 ,

Σ1 ρΣ1w1w2
⊤Σ2

ρΣ2w2w1
⊤Σ1 Σ2

.

We consider two settings for the number of variables: low-dimensional (p1 = p2 = 25) and

high-dimensional (p1 = p2 = 100). Each canonical vector wg (g = 1, 2) is defined by taking a

vector of ones at the coordinates (1, 6, 11, 16, 21) and zeros elsewhere, and normalizing it

such that wg
⊤Σgwg = 1, similar model is used in Chen et al. (2013). The value of canonical

correlation is set at ρ = 0.9. We use autoregressive structure for Σ1 = γ| j − k|
j, k = 1

p1
 and

block-diagonal structures for Σ2:

Σ2 =

Σγ 0 ⋯ 0

0 Σγ ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 0 Σγ

,

where Σγ ∈ Rd×d is an equicorrelation matrix with value 1 on the diagonal and γ off the

diagonal. We use five blocks of size d ∈ {3, 3, 6, 6, 7} for low-dimensional, and d ∈ {12, 14,

21, 25, 28} for high-dimensional setting. We set γ = 0.7 for both Σ1 and Σ2, similar results

are obtained when autoregressive structure is substituted with identity matrix. We further

randomly permute the order of variables in each Zg to remove the covariance-induced

ordering.

We consider transformations Ug = fg(Zg + c) with c being 0 or 1 with equal probability. The

choice of c allows to vary the proportion of zero values in truncated and binary variables at

5–80%. We consider three choices for fg: (copula 0) no transformation, fg(z) = z for g = 1, 2;

(copula 1) exponential transformation for U1, f1(z) = exp(z), and no transformation for U2,

f2(z) = z; (copula 2) exponential transformation for U1, f1(z) = exp(z), and cubic

transformation for U2, f2 (z) = z3. Finally, we set Xg to be equal to Ug for continuous

variable type, and dichotomize Ug at value C to form binary/truncated Xg. We set C = 0 for

copula 0 and 1, and C = 1.5 for copula 2. For each case, we consider three combinations of

variable types for X1/X2: truncated/truncated, truncated/continuous and truncated/binary.

To compare the methods performance, we evaluate expected out-of-sample correlation

ρ =
w1

⊤Σ12w2

w1
⊤Σ1w1

1/2 w2
⊤Σ2w2

1/2 , (7)

and predictive loss
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L wg, wg = 1 −
|wg

⊤Σgwg|

wg
⊤Σgwg

1/2   (g = 1, 2); (8)

similar loss function is used in Gao et al. (2017). Since wg
⊤Σgwg = 1, L wg, wg ∈ [0, 1] with

L wg, wg = 0 if wg = wg. We also evaluate the variable selection performance using the

selected model size, true-positive rate and true-negative rate defined as

TPRg =
# j:wg j ≠ 0 and wg j ≠ 0

# j:wg j ≠ 0
,   TNRg =

# j:wg j = 0 and wg j = 0

# j:wg j = 0
  (g = 1, 2) .

The results for truncated/truncated case over 100 replications are presented in Figures 1–3,

the results for other cases are qualitatively similar and deferred to Appendix B.

From Figure 1, all methods perform better in absence of data transformation (copula 0)

compared to cases where transformation is applied (copula 1 and 2). Similarly, the

performance deteriorates with increased dimensions leading to smaller values of ρ, larger

predictive losses and worse true positive rates. The classical canonical correlation analysis

performs especially poor in high-dimensional settings with ρ being very close to 0 and

predictive loss being close to 1 for both w1 and w2. Canonical ridge works well in copula 0

setting, however its performance is strongly affected in the presence of transformations

(copula 1 and 2). Witten’s method outperforms canonical ridge in the presence of

transformations, however works worse than both variants of our approach. Overall, our

method with BIC1 attains the highest values of ρ in low-dimensional settings, whereas BIC2 is

the highest in high-dimensional settings. Unlike the classical canonical correlation and

canonical ridge, both Witten’s and our method perform variable selection. Unexpected to us,

the number of selected variables varies significantly across replications for Witten’s method

(Figure 3), leading to significant variations in true positive and true negative rates. In all

cases BIC1 leads to sparsest model and highest true negative rate. On the other hand, since

BIC1 sometimes misses true variables, especially in the high-dimensional settings, BIC2 shows

more accurate values of ρ and smaller predictive loss (See Figure 1). In summary, BIC1

works better for variable selection, whereas BIC2 works better for prediction.

5. Application To Tcga Data

The Cancer Genome Atlas (TCGA) project collects data from multiple platforms using high-

throughput sequencing technologies. We consider gene expression data (p1 = 891) and micro

RNA data (p2 = 431) for n = 500 matched subjects from TCGA BRCA database. We treat

gene expression data as continuous and micro RNA data as truncated continuous. The range

of proportions of zero values contained in each variable in micro RNA data is 0 − 49.8%.

The subjects belong to one of the 5 breast cancer subtypes: Normal, Basal, Her2, LumA and

LumB, with 37 subjects having missing subtype information (denoted as NA). The goal of

the analysis is to characterize the association between gene expression and micro RNA data,

and investigate whether this association is relevant with respect to breast cancer subtypes.
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To investigate the performance of our method relative to other approaches, we randomly

split the data 100 times. Each time 400 samples are used for training, and the remaining 100

test samples are used to asses the found association via

ρtest =
w1, train

⊤ Σ12, testw2, train

w1, train
⊤ Σ1, testw1, train

1/2
w2, train

⊤ Σ2, testw2, train
1/2 .

Here Σtest is evaluated based on the test samples, and is either rank-based estimator R (for

our method), or sample covariance matrix (for other methods). We also compare the number

of selected genes and micro RNAs, the results are presented in Table 1.

As expected, neither sample canonical correlation analysis nor canonical ridge method

perform variable selection. In addition, ρtest is very close to 0 for sample canonical

correlation, confirming poor performance of the method. Canonical ridge leads to

significantly higher values of ρtest demonstrating the advantage of added regularization,

however it still has smaller correlation values compared to other approaches. The method of

Witten et al. (2009) leads to higher correlation values compared to both sample canonical

correlation analysis and canonical ridge, however it still selects a significant number of

variables, with highly varied model sizes across replications. We suspect this is due to the

use of permutation-based algorithm for tuning parameter selection, similar behaviour is

observed in Section 4. Finally, the values of ρtest are the highest for both variations of our

method. At the same time, both variations result in sparsest models with smallest variability

in model size across replications. While BIC2 criterion leads to largest out-of-sample

correlation value, BIC1 criterion leads to sparsest model. In light of these results and results

of Section 4, we conclude that BIC1 works well for variable selection, whereas BIC2 works

well for prediction.

We further apply our method with BIC1 criterion using the full set of n = 500 samples,

leading to the selection of 64 genes and 8 micro RNAs. Figures 4 and 5 show heatmaps of

selected variables for each platform, with samples ordered by their respective cancer

subtype. The heatmaps show clear separation between Basal and other subtypes, suggesting

that found association is relevant to cancer biology.

Some of the selected genes and micro RNAs can be found in recent literature which supports

their association with breast cancer. For example, Xiao et al. (2018) identify hsa-miR-452–

5p in the analysis of estrogen receptor subtypes of breast cancer, and Manvati et al. (2015)

demonstrate negative correlation of hsa-miR-24–2 with both metastasis and increasing nodes

in sporadic breast tumours. As for hsa-miR-135b, not only it is reported to be related to

breast cancer cell growth (Aakula et al., 2015; Hua et al., 2016), but it is also demonstrated

to regulate estrogen receptor α gene ESR1 (Aakula et al., 2015), which coincidentally is

among the 64 genes selected by our approach. Some other genes among the selected ones

that demonstrate association with breast cancer according to previous research are ERBB4,

FOXA1, UGT2B15 and ELF5 (Kim et al., 2016; Hu et al., 2016; Piggin et al., 2016).
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6. Discussion

One of the main contributions of this work is the proposed truncated Gaussian copula model

for the zero-inflated data, and corresponding development of a rank-based estimator for the

latent correlation matrix. While our focus is on canonical correlation analysis, the derived

estimator can be used in conjunction with other covariance-based approaches, for example it

can be used for constructing graphical models as in Fan et al. (2016) in cases where some or

all of the variables have excess of zeroes. Micro RNA data is one example that we have

explored in this work, however another prominent example is microbiome abundance data. It

would be of interest to further explore the potential of our modeling approach in different

application areas.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Top: The value of ρ from (7). The horizontal lines indicate true canonical correlation value ρ
= 0.9. Bottom: The value of predictive loss (8). Results over 100 replications. CCA: Sample

canonical correlation analysis; RidgeCCA: Canonical ridge of González et al. (2008);

WittenCCA: method of Witten et al. (2009); KendallBIC1, Kendall-BIC2: proposed method

with tuning parameter selected using either BIC1 or BIC2 criterion; LD: low-dimensional

setting (p1 = p2 = 25); HD: high-dimensional setting (p1 = p2 = 100).
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Fig. 2.
Top: True positive rate (TPR); Bottom: True negative rate (TNR). Results over 100

replications. CCA: Sample canonical correlation analysis; RidgeCCA: Canonical Ridge of

González et al. (2008); WittenCCA: method of Witten et al. (2009); KendallBIC1, Kendall-

BIC2: proposed method with tuning parameter selected using either BIC1 or BIC2 criterion;

LD: low-dimensional setting (p1 = p2 = 25); HD: high-dimensional setting (p1 = p2 = 100).
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Fig. 3.
Selected model size over 100 replications. The horizontal lines indicate true model size 5.

CCA: Sample canonical correlation analysis; RidgeCCA: Canonical Ridge of González et

al. (2008); WittenCCA: method of Witten et al. (2009); KendallBIC1, KendallBIC2:

proposed method with tuning parameter selected using either BIC1 or BIC2 criterion; LD: low-

dimensional setting (p1 = p2 = 25); HD: high-dimensional setting (p1 = p2 = 100).
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Fig. 4.
A heatmap of 64 genes selected by the proposed approach when using BIC1 criterion.

Dissimilarity measure is set as 1 − τ2 with τ being the Kendall’s τ, and the Ward linkage is

used.
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Fig. 5.
A heatmap of 8 micro RNAs selected by the proposed approach when using BIC1 criterion.

Dissimilarity measure is set as 1 − τ2 with τ being the Kendall’s τ, and the Ward linkage is

used. Colors are assigned based on variable-specific quantiles.
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Fig. 6.
Top: The value of ρ from (7). The horizontal lines indicate true canonical correlation value ρ
= 0.9. Bottom: The value of predictive loss (8). Results over 100 replications. CCA: Sample

canonical correlation analysis; RidgeCCA: Canonical ridge of González et al. (2008);

WittenCCA: method of Witten et al. (2009); KendallBIC1, Kendall-BIC2: proposed method

with tuning parameter selected using either BIC1 or BIC2 criterion; LD: low-dimensional

setting (p1 = p2 = 25); HD: high-dimensional setting (p1 = p2 = 100).
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Fig. 7.
Top: True positive rate (TPR); Bottom: True negative rate (TNR). Results over 100

replications. CCA: Sample canonical correlation analysis; RidgeCCA: Canonical Ridge of

González et al. (2008); WittenCCA: method of Witten et al. (2009); KendallBIC1, Kendall-

BIC2: proposed method with tuning parameter selected using either BIC1 or BIC2 criterion;

LD: low-dimensional setting (p1 = p2 = 25); HD: high-dimensional setting (p1 = p2 = 100).

YOON et al. Page 22

Biometrika. Author manuscript; available in PMC 2021 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8.
Selected model size over 100 replications. The horizontal lines indicate true model size 5.

CCA: Sample canonical correlation analysis; RidgeCCA: Canonical Ridge of González et

al. (2008); WittenCCA: method of Witten et al. (2009); KendallBIC1, KendallBIC2:

proposed method with tuning parameter selected using either BIC1 or BIC2 criterion; LD: low-

dimensional setting (p1 = p2 = 25); HD: high-dimensional setting (p1 = p2 = 100).
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Fig. 9.
Top: The value of ρ from (7). The horizontal lines indicate true canonical correlation value ρ
= 0.9. Bottom: The value of predictive loss (8). Results over 100 replications. CCA: Sample

canonical correlation analysis; RidgeCCA: Canonical ridge of González et al. (2008);

WittenCCA: method of Witten et al. (2009); KendallBIC1, Kendall-BIC2: proposed method

with tuning parameter selected using either BIC1 or BIC2 criterion; LD: low-dimensional

setting (p1 = p2 = 25); HD: high-dimensional setting (p1 = p2 = 100).

YOON et al. Page 24

Biometrika. Author manuscript; available in PMC 2021 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10.
Top: True positive rate (TPR); Bottom: True negative rate (TNR). Results over 100

replications. CCA: Sample canonical correlation analysis; RidgeCCA: Canonical Ridge of

González et al. (2008); WittenCCA: method of Witten et al. (2009); KendallBIC1, Kendall-

BIC2: proposed method with tuning parameter selected using either BIC1 or BIC2 criterion;

LD: low-dimensional setting (p1 = p2 = 25); HD: high-dimensional setting (p1 = p2 = 100).
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Fig. 11.
Selected model size over 100 replications. The horizontal lines indicate true model size 5.

CCA: Sample canonical correlation analysis; RidgeCCA: Canonical Ridge of González et

al. (2008); WittenCCA: method of Witten et al. (2009); KendallBIC1, KendallBIC2:

proposed method with tuning parameter selected using either BIC1 or BIC2 criterion; LD: low-

dimensional setting (p1 = p2 = 25); HD: high-dimensional setting (p1 = p2 = 100).
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Table 1.

Mean support sizes and values of ρtest’ over 100 random splits of breast cancer data, standard deviation is

given in parentheses

Method Selected Genes Selected micro RNAs ρtest

CCA
891 431 0·0219

(0·00) (0·00) (0·111)

RidgeCCA
891 431 0·704

(0·00) (0·00) (0·129)

WittenCCA
368·91 179·86 0·787

(195·38) (100·95) (0·0448)

KendallBICl
83·73 6·11 0·888

(23·43) (1·95) (0·0438)

KendallBIC2
106·03 105·90 0·926

(10·86) (10·20) (0·231)

CCA: Sample canonical correlation analysis; RidgeCCA: Canonical Ridge of González et al. (2008); WittenCCA: method of Witten et al. (2009);
KendallBIC1, KendallBIC2: proposed method with either BIC1 or BIC2 criterion.
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