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a b s t r a c t 

Research on Coronavirus Disease 2019 (COVID-19) detection methods has increased in the last months as 

more accurate automated toolkits are required. Recent studies show that CT scan images contain useful 

information to detect the COVID-19 disease. However, the scarcity of large and well balanced datasets 

limits the possibility of using detection approaches in real diagnostic contexts as they are unable to gen- 

eralize. Indeed, the performance of these models quickly becomes inadequate when applied to samples 

captured in different contexts (e.g., different equipment or populations) from those used in the training 

phase. In this paper, a novel ensemble-based approach for more accurate COVID-19 disease detection us- 

ing CT scan images is proposed. This work exploits transfer learning using pre-trained deep networks 

(e.g., VGG, Xception, and ResNet) evolved with a genetic algorithm, combined into an ensemble archi- 

tecture for the classification of clustered images of lung lobes. The study is validated on a new dataset 

obtained as an integration of existing ones. The results of the experimental evaluation show that the 

ensemble classifier ensures effective performance, also exhibiting better generalization capabilities. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

COVID-19, which appeared for the first time in China in De- 

ember 2019, rapidly spread around the world and became a pan- 

emic. It has caused a devastating effect on both the public health 

nd the global economy, changing our daily lives. The rapid spread 

f the COVID-19 epidemic constitutes a relevant research challenge, 

rom different points of view: humanitarian as well as technologi- 

al. In particular, COVID-19 is the first pandemic in the digital era, 

herefore there is a large amount of publicly available information 

ollected by various institutions allowing the enrollment of the en- 

ire scientific community to provide their contribution to analyze 

uch a complex and multifaceted context. 

Research communities of different research centers are actively 

articipating in developing effective diagnostic mechanisms and 

olutions for its treatment. 

In the medical field, the use of medical images is widespread. 

edical professionals and radiologists commonly use medical im- 

ges for diagnosing and prescribing treatment of diseases. Histor- 

cally, template-based and retrieval-based approaches have been 

roposed and are now superseded by methods based on deep 

eural networks. The network architecture used for these pattern 
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ecognition tasks may include encoder-decoder frameworks, fully 

onnected networks, convolutional neural networks (CNN) that ex- 

racts the visual features from images and are trained on the 

ataset. Specifically, the research studies in the field of medicine 

r biotechnology aimed at mitigating this pandemic greatly exploit 

ecent developments in convolutional neural networks especially 

or pattern recognition tasks [1] . 

The major challenges in the COVID-19 rapid detection are re- 

ated to the long duration of the tests for the diagnosis of the dis- 

ase, and the long time required to provide physical equipment 

or tests. This leads to the lack of an adequate number of kits for 

OVID-19 detection available worldwide. 

According to this, experts evaluate the adoption of AI-driven 

ools [2] for the collection of multiple data types and the detection 

f anomaly patterns due to COVID-19. Among these useful data, CT 

Computed Tomography) scan images represent an alternative di- 

gnosis method with several advantages of leveraging them [3] . 

In this direction, Deep learning (DL) algorithms could provide 

 useful tool for the COVID-19 disease detection. Indeed, Deep 

earning techniques have been successfully applied in many similar 

roblems such as skin cancer classification [4] , Parkinson and brain 

isease classification [5] , and pneumonia detection through chest 

-ray images [6] . As a consequence, several AI models have been 

roposed for the automatic diagnosis of COVID-19 from medical 

mages [6,7] . Several models exploit images of the chest, obtained 

hrough CT scans that provide a 3D view of organs and a conve- 

ient way to analyze the disease effects on the impacted locations. 
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ome recent studies highlight that the sensitivity of CT for COVID- 

9 infection is 98% compared to the RT-PCR (Reverse Transcriptase- 

olymerase Chain Reaction) sensitivity of 71% [8,9] . However, a 

imit of these applications is the scarcity of large heterogeneous 

nd well-balanced datasets. This reduces the possibility of using 

etection approaches in real diagnostic contexts as they are unable 

o generalize to wider populations, demographics, or geographies 

10,11] . Moreover, the performance of these models seems inade- 

uate when applied to samples captured in different contexts (e.g., 

ifferent equipment or populations) compared to those used for 

he neural networks training phase [11] . 

In this study, a novel DL-based ensemble approach for auto- 

atic and accurate COVID-19 disease detection using CT scan im- 

ges is proposed. The ensemble classifier is obtained as a combina- 

ion of three pre-trained deep neural networks (i.e., VGG, Xception, 

nd ResNet) evolved with a direct coding scheme based on genetic 

rogramming. In particular, three single classifiers are built to an- 

lyze three different groups of clustered images, one for each lung 

obe. This allows one to specialize each single classifier on a spe- 

ific lung area to increase the classification performance. To val- 

date this approach, this study introduces a balanced dataset ob- 

ained as an integration of two existing ones. The goal is to over- 

ome the limitations of similar studies by evaluating, in a real sce- 

ario, if the proposed approach improves the performance of the 

lassification and exhibits better generalization capabilities across 

ifferent datasets. 

To this aim, the validation reported in this study compares the 

nsemble approach with the pre-trained models carefully analyz- 

ng their performance. Specifically, the described assessment quan- 

ifies the impact of dataset integration, lobe-driven CT images clus- 

ering, and the ensemble architecture on the final end-to-end de- 

ection performance. 

The remainder of the paper is organized as follows. In Section 2 , 

 background on convolutional neural networks and genetic algo- 

ithms is provided. Section 3 presents and discusses the most rel- 

vant related work, highlighting differences and common aspects. 

he proposed approach is described in Section 4 , whereas the ex- 

eriment description is explained in Section 5 . An in-depth dis- 

ussion of the experiment results is reported in Section 6 . Finally, 

ection 7 highlights some threats to the validity of the described 

xperiments, while Section 8 discusses some final remarks and fu- 

ure research directions. 

. Background 

.1. Convolutional neural networks 

In this study, we compare the performance obtained by using 

hree state-of-the-art alternative pre-trained convolutional neural 

etworks (CNNs) [12] , i.e., ResNet50, VGG19, and Xception. The 

eason for the pre-training is that the refinement of a pre-trained 

etwork with transfer learning is generally much faster and easier 

han training from scratch, by requiring a minimal amount of data 

nd computing resources. Transfer learning uses knowledge of one 

ype of problem to solve similar problems and allows the usage of 

 pre-trained network in order to learn a new activity. 

VGG19 [13] , shown in Fig. 1 , was conceived and created by the

isual Geometry Group of the University of Oxford for the Ima- 

eNet Large Scale Visual Recognition Challenge (ILSVRC-2014). This 

ype of CNN receives as input a fixed-size RGB image (224 x 224), 

hich is passed through a stack of convolutional layers using 3 x 

 filters, with a step size of 1 pixel, covering the whole notion 

f an image. It usually has 16 convolutional layers followed by 3 

ully connected layers. The first two have 4096 channels each, the 

hird one contains 10 0 0 channels and performs ILSVRC classifica- 
2 
ion. The final layer is characterized by a softmax activation func- 

ion. All hidden layers are equipped with the ReLU function. 

ResNet-50 [14] is a very deep convolutional neural network, 

ade up of 50 layers, which, with the help of a technique known 

s “skip connection”, paved the way for the so-called residual net- 

orks. Moreover, ResNet-50 neural networks are an innovative so- 

ution to the problem of the escaping gradient. As shown in Fig. 2 ,

 ResNet-50 stacks the levels and initially skips some of them 

n the first phases of the training, reusing the activation func- 

ions from previous levels. The jump initially compresses the net- 

ork into only a few levels, which allows for faster learning. Then, 

hen the network trains again, all the layers are expanded and the 

residual” parts of the network explore more and more the feature 

pace of the source image. 

The Xception model [15] usually overtakes the previously de- 

cribed CNNs in both speed and accuracy. It relies on two main 

oints: “Depth-wise Separable Convolution” and “Shortcuts be- 

ween Convolutional blocks” as in the ResNet. As shown in Fig. 3 , 

he architecture of the Xception model is based on depth-wise sep- 

rable convolutional layers and consists of three major sections: 

ntry Flow, Middle Flow, and Exit Flow. Each Convolution and Sep- 

rable Convolution layer is followed by a batch normalization layer. 

he Xception model takes the principles of Inception to an ex- 

reme, instead of partitioning input data into several compressed 

hunks, it maps the spatial correlations for each output channel 

eparately and then performs a 1 × 1 depth-wise convolution to 

apture cross-channel correlation. 

.2. Evolutionary algorithms for neural networks optimization 

In this study, the design of the single classifiers is driven by an 

volutionary algorithm [16] , that is responsible to search for effec- 

ive adaptations of pre-trained deep neural networks to the given 

lassification task. Specifically, a generic genetic algorithm is used 

o optimize both the neural network architectures fine-tuning and 

he related hyper-parameters. Genetic algorithms are search-based 

lgorithms inspired by the process of natural selection and genet- 

cs [17] . They start by constructing an initial set of candidate so- 

utions (population size) and calculate their fitness function in or- 

er to evaluate each chromosome in the population. After the fit- 

ess value is computed, some genetic operations are performed to 

elect and evolve the population according to the typical genetic 

rocess, characterized by bio-inspired operators such as selection, 

utation, and crossover. The selection process consists of preserv- 

ng strong subjects and eliminating the weak ones. In the mutation 

rocess, new subjects are produced by randomly combining the ex- 

sting ones. The crossover operator simulates the reproduction and 

iological crossover process, and the new subjects are produced by 

sing the genetic material of the existing subjects (parents). The 

volutionary process ends when the desired accuracy or the max- 

mal generation number is reached. The genetic algorithms are re- 

ently broadly used in several application domains [17] since, given 

heir capability of global search, they are considered as a novel 

nd essential approach related to the modern intelligent calcula- 

ion. However, the advantages of genetic algorithms are several: 

i) they do not require additional information that generally is not 

vailable in real-world problems, (ii) they perform better with re- 

pect to traditional methods, (iii) they are suitable when the search 

pace is very large and a large number of parameters is involved, 

ike in the case of deep neural networks. 

. Related work 

Machine Learning (ML) and DL techniques have been used in 

edical domains, obtaining good classification results [18,19] . More 

pecifically, ML and DL classifiers have been used to extract the 
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Fig. 1. VGG convolutional neural network. 

Fig. 2. ResNet network model. 
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2 www.radiopaedia.org 
elevant features from medical images to perform a disease di- 

gnosis and/or prediction [20] . Basing on these premises, in the 

ast months, some research introduced the application of DL for 

he COVID-19 diagnosis [21] . Some studies [22] propose deep neu- 

al networks for either CT scans and Chest X-rays (CXRs) to de- 

ect COVID-19 positive cases. Here, we focus on the adoption of 

L on CT scan datasets to perform COVID-19 diagnosis. For exam- 

le, in [9] a weakly supervised deep learning framework for auto- 

atic detection and classification of COVID-19 infected regions is 

ntroduced. It uses retrospectively extracted CT images from multi- 

canners and multi-centres obtaining good results on typical exam- 

les of images of COVID-19 and other pneumonia cases. Similarly, 

uthors in [23] adopt various deep CNN based approaches for de- 

ecting COVID-19 patients from chest CT images. The F1-score ob- 
3 
ained on a dataset 1 composed of images collected from a scien- 

ific paper preprint is 0.867. A 3D deep learning model, referred 

o as COVNet, for detecting COVID-19 patients is also proposed in 

24] . On the adopted dataset (composed of 4356 CT scans of 3322 

atients) the AUC value for COVID-19 is 0.96. In [25] a combina- 

ion of DL and Q-deformed entropy handcrafted features have been 

sed for discriminating patients with COVID-19, pneumonia, and 

ealthy cases by their CT lung scans. The best performance for the 

roposed LSTM network on the adopted dataset (it is obtained by 

sing CT images of COVID-19 patients extracted by Radiopaedia 2 ) 

s 99.68%. Authors in [26] test 10 convolutional neural networks to 

iscriminate COVID-19 from non-COVID-19 cases: AlexNet, VGG-16, 

GG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet- 

0, ResNet-101, and Xception. Among all networks, the best per- 

ormance on the ad hoc built dataset (it is not available online) is 

btained by ResNet-101 with an AUC of 0.994. The study proposed 

y Mei et al. [27] uses a deep CNN for the training step and both a

upport vector machine (SVM) and a random forest and multilayer 

erceptron (MLP) classifiers to detect patients with COVID-19 ac- 

ording to clinical information. Authors create a dataset (not avail- 

ble online) of chest CT scans from 905 patients obtaining in the 

est case (MLP) similar performance with respect to the classifica- 

ion of a senior radiologist. As also highlighted in [8,11] , the bot- 

leneck of these studies is the limited number of high quality pub- 

icly available comprehensive datasets. According to this, in [8] the 

uthors adopt transfer learning along with data augmentation to 

etect COVID-19 patients from a small dataset. This work has con- 

idered ResNet18, ResNet50, ResNet101, and SqueezeNet architec- 

ures for the experimental evaluation. The best results are obtained 

y the ResNet18 pre-trained transfer learning-based model (valida- 

ion accuracy = 97.32% and testing accuracy = 99.4%). This issue is 

lso discussed in [11] , where a cross dataset is obtained by inte- 

rating CT images of COVID-19 patients in order to obtain a more 

ealistic scenario where images come from different sources. How- 

ver, these images are also extracted from pre-prints of scientific 

rticles, and data augmentation techniques are applied to increase 

he number of data. The adopted deep learning models drop from 

7.68% to 56.16% of accuracy highlighting the necessity of further 

tudies. 

In this paper, differently from the aforementioned studies, we 

ropose a new dataset obtained by integrating publicly available 

atasets. This allowed us to consider images coming from differ- 

https://arxiv.org/abs/2003.13865
https://www.radiopaedia.org
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Fig. 3. Xception convolutional neural network. 
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nt sources avoiding the need of synthetic data. The adoption of 

he integrated dataset also allowed us to increase the general- 

zation capabilities of the proposed approach with respect to the 

xisting ones. However, differently from other approaches, herein 

e adopt an ensemble-based classification specialized on differ- 

nt lung lobes performing clustering of CT scan sequences. As pro- 

osed in [28] , this allows each neural classifier to specialize in a 

ell-defined lobe, capturing its specific patterns of damages and 

heir distribution. The literature about ensemble learning with DL 

or COVID-19 detection from CT scans is discussed in [29] . Here the 

uthors propose an ensemble-based approach to improve perfor- 

ance with respect to a single classifier. Another deep-LSTM en- 

emble approach is also proposed in [30] . Similarly, in [31] , the 

uthors use an ensemble-based approach to reduce the high de- 

ree of inter-observer variability in determining COVID-19. How- 

ver, we differ from these approaches because our ensemble clas- 

ifier relies on a preliminary image clustering activity. This cluster- 

ng activity is aimed to group similar images (one group for each 

obe) allowing the neural network to focus on disease patterns spe- 

ific to a certain lobe. Moreover, another novelty introduced in this 

tudy is the adoption of a genetic algorithm, consisting of an evolu- 

ionary process to discover the best architecture adaptation of the 

re-trained models to adapt them to the COVID-19 detection task. 

ndeed, we evaluate that this algorithm can be suitable in the pro- 

osed domain given the large search space and the high number 

f parameters. 

. Approach 

The classification methodology adopted in this paper is based 

n a hierarchical multiple classifier schema using majority voting, 

s depicted in Fig. 4 . 

Specifically, the ensemble architecture is made of two essential 

omponents: 

• multiple deep neural networks (i.e., referred to as single clas- 

sifiers) based on pre-trained models that are adapted and re- 

trained for the COVID-19 detection task by means of an evolu- 

tionary algorithm; 
• a voting strategy, used to take decisions based on the outcomes 

of the single classifiers. 

The upper part of Fig. 4 depicts the ensemble training process: 

t starts with merging, clustering, and partitioning procedures used 

o generate the input for the adopted neural network models dur- 

ng the re-training phase. The output of the clustering step is the 
4 
et of three sub-datasets ( D I , D S , D M 

) each one used to train a sin-

le classifier ( C I , C S , C M 

). 

The lower part of Fig. 4 depicts the end-to-end classification 

chema of the ensemble, revealing also its internal structure. The 

nsemble is built by combining the re-trained single classifiers ( C I , 

 S , C M 

) with a majority voting strategy. During the inference phase, 

or unlabeled and clustered instances of CT scans, the single classi- 

ers are applied to produce the input for the voter (i.e., the super 

lassifier). The voting is performed by using a classic majority vot- 

ng approach. 

In the following subsections, the dataset clustering, the single 

lassifiers optimized by means of an evolutionary algorithm, and 

he resulting ensemble will be further described. 

.1. Dataset clustering 

In this phase, the CT scan images, coming from the two consid- 

red datasets, are clustered into three sub-datasets. In particular, 

eferring to the right lung segments (Superior lobe, Inferior lobe, 

nd Middle lobe) we named these three image clusters as follows: 

 S , D M 

, D I . Figure 5 reports the three groups of CT scan images

elonging to the three lung segments. 

The adopted clustering procedure starts with an encoding step. 

n this step the network pre-trained on the image dataset has 

een used to extract numerical feature descriptors of each image 

32] . The images are submitted to the input layer of the network. 

he outputs coming out of one or more intermediate layers in 

he network can be used as the feature representation of the im- 

ge. These features are used to perform a subsequent clustering 

tep with the goal of grouping images that are similar with re- 

pect to a distance metric. The selected distance metric is a vari- 

nt of the Structural Similarity Index Metric (SSIM) that exploits 

eparate functional measures for luminance, contrast, and struc- 

ural similarity between two images. In order to perform the cal- 

ulation of local sample statistics, overlapping windows are used, 

herein the functional measures are weighted by means, for in- 

tance, of a Gaussian-like profile. The overall index is a combina- 

ion of the three components (structural, luminance, and contrast 

orrelations) yielding to a general form where the three param- 

ters are used to mediate the relative importance of the compo- 

ents themselves. From the original definition of the SSIM, sev- 

ral variants have been proposed by adding multi-scale support 

nd additional components to make the index more robust to 

lterations that do not change semantic (scaling, rotations and 

o on). In this work, the four-component multi-scale structural 
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Fig. 4. Overview of the proposed hierarchical multiple classifiers approach. 

Fig. 5. Clusters of CT scans images for lung segments using K-means with k = 3. 
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imilarity index defined in [33] is used, since it is particularly 

uitable for radiological images (e.g., CT scans) as highlighted in 

34] . 

Clustering is performed by using the K-means algorithm [35] , 

hich works by partitioning n observations into k mutually ex- 

lusive clusters and placing each observation into the cluster with 

he nearest mean. Each cluster in the partition is defined by a 

entroid, or centre, i.e., the point to which the sum of distances 

rom all objects in that cluster is minimized, so that also the to- 

al intra-group variance is minimized. Differently from other ap- 

roaches, K-means requires choosing the number of clusters. The 

uitable number of clusters is computed, in this paper, with an 

utomatic method based on silhouette coefficients [36] . A sil- 

ouette value s (i ) is a measure, for each image i , of how simi-

ar that image is to images in its own cluster compared to im- 

ges in other clusters. Hence the silhouette of a cluster is a plot 

silhouette plot) of s (i ) , ranked in decreasing order, for all im- 
5 
ges in the cluster. Global measures of the silhouettes can be 

iven averaging them over the entire dataset, i.e., the mean of 

ll individual silhouettes, also referred to as the average silhou- 

tte width for the dataset. The silhouette coefficients can be then 

sed as a criterion to decide the best number of clusters [37] : 

he process applies k-means for k varying between two and n − 1 , 

here n is the number of images, choosing the value of k for 

hich the average silhouette width for the entire dataset is maxi- 

ized. 

As Fig. 6 shows, the optimal choice for the number of clusters is 

qual to three when choosing 4-MS-SSIM as image similarity met- 

ic. This confirms that, when choosing k = 3 , the CT scans are par-

itioned into three clusters that roughly belong to the major lungs 

egments ( Fig. 5 ). From the classification point of view, it is im- 

ortant since grouped images of the same lobe tend to be similar 

aking much easier for the neural network to focus on disease 

atterns specific to the lobe. 
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Fig. 6. Silhouette trend over the number of clusters for the merged datasets D 1 and D 2 . The best value is obtained for k = 3. 
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.2. Single classifiers 

As already pointed out, the design of the single classifiers ex- 

loits transfer learning and is based on an evolutionary algorithm. 

n particular, a genetic algorithm coding scheme is used for the 

epresentation of the pre-trained network models along with the 

ptimization of the hyper-parameters in the training step. 

As a consequence the single classifiers were built through a 

wo-fold process procedure: 

• generation of the training and validation sets; 
• models re-training driven by the evolutionary algorithm and se- 

lection of the best performing classifiers. 

Therefore, the classifiers were obtained using transfer learning- 

ased models, given that they are recognized to be suitable for 

he medical image classification tasks [4] . In this work, trans- 

er learning is used for the binary classification of chest CT scan 

mages into two categories: COVID-19 and non-COVID-19. To this 

im, three different pre-trained transfer-learning-based CNN mod- 

ls were used, namely, VGG19, ResNet, and Xception. Then the pre- 

rained transfer learning CNN models were re-trained for the bi- 

ary classification of chest CT images into the aforementioned two 

lasses. For each sub-dataset, the clustered set of images of the pa- 

ients is composed of instances associated with a label ( Covid or 

on-Covid ) and used for the training steps. 

The overall process is highlighted in the upper part of Fig. 4 : 

he first sub-process is depicted on the left side and shows dataset 

artitioning for the generation of the training/validation datasets. 

n the right side of the figure, the overall structure of the genetic 

lgorithm (GA) used for AutoML is represented. Specifically, the al- 

orithm executes an evolutionary process to discover the best ar- 

hitecture adaptation of the pre-trained models to classify the clus- 

ered CT scans. To this aim, it takes as input: (i) the set of prede-

ned building blocks belonging to the pre-defined models (VGG, 

ception, ResNet), (ii) the population size, (iii) the maximal gener- 

tion number for the GA, and (iv) the image classification dataset. 

he starting population is initialized using random choices with 

 predefined population size and exploiting an encoding strategy 

ble to represent a set of possible desired adaptations of the orig- 

nal model along with their hyper-parameters. Then, during evolu- 

ion, the fitness function of each individual, which encodes a par- 

icular architecture of the pre-trained model, is evaluated on the 

nput datasets. At this point, the parent individuals are selected 

ased on the fitness function, and then generate a new offspring by 

pplying suitable genetic operators (e.g., mutation and crossover). 

inally, the population of individuals that survives into the next 

eneration is selected by applying environmental selection to the 
6 
urrent population, composed of the generated offspring popula- 

ion and the parent one. The evolution cycle proceeds until the 

ptimal performance is obtained or the maximum number of it- 

rations is reached. 

More specifically, the procedure of the used GA can be detailed 

s follows: 

1. Instantiate the initial population of individuals P (one for each 

pre-trained model), and train the CNNs represented by P using 

the validation accuracy as a fitness function; 

2. Generate a set of λ offspring O , by applying the mutations to P ; 

3. Perform training on the λ modified pre-trained CNNs repre- 

sented by offspring O , and assign the validation accuracy to the 

CNNs as a fitness function; 

4. Select elite individuals from the union of the sets of P and O , 

and then replace P with them; 

5. Repeat from step 2 until the stopping criterion is satisfied. 

The algorithm starts from individuals based on the considered 

re-trained models, giving to each model equal chances to produce 

ndividuals that perform well on the specific classification task. 

owever, if a pre-trained model is not suitable and produces in- 

ividuals that are less performing, it is quickly discarded since it 

ill be not included in the elite set at step 3 after several itera- 

ions. 

In order to represent a trainable model, starting from the origi- 

al pre-trained model, the following encoding scheme was defined 

or both the hyper-parameters and the original model structure: 

• Final blocks training specifiers (FBTS) - indicating which 

blocks of the original pre-trained model, starting from the 

last layers, have trainable weights and which ones are locked 

(specifically the string specifies ’L’ for locked weights and ’T’ 

when they are trainable); 
• number of FC layers - indicating the number of layers of the 

fully connected (FC) final block used to re-train the solution on 

the given classification task; 
• FC neuron scheme - specifying the size, in neurons, of each 

layer of the fully connected final block; 
• FC dropout scheme - specifying where to insert dropout lay- 

ers along with dropout rate probabilities (i.e., the probability of 

training a given node in a layer); 
• Optimizer - specifying the optimization algorithm used to per- 

form training. 

.3. Super classifier and ensemble learning 

Ensemble learning [38] consists of a set of classifiers used to 

lassify new instances in a combined fashion, i.e., the decision of 
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3 https://doi.org/10.17632/8h65ywD2jr.3 
4 https://github.com/abdkhanstd/COVID-19 
5 https://bit.ly/34QJUSd 
ach classifier is taken into account as a vote and all votes are 

ombined together, according to a certain rule, producing a final 

verall classification decision as its output. 

In the proposed approach, the ensemble employs the three sin- 

le classifiers: C I , C S , C M 

. The output of each classifier could be dif-

erent because different training data are used in the single clas- 

ifier itself. Moreover, we adopted the majority voting strategy for 

he combination of the outputs. Majority voting [39] counts the 

otes per label of all single classifiers and decides using the label 

ith most votes. More precisely, for an unknown instance x , each 

ingle basic classifier p produces a class-output probability func- 

ion f p,m 

( x ) for each m 

th class. In general, with M classes (two in

ur case) and L classifiers (three in our case), the predicted class is 

he k th class that collects the largest number of votes, given by the 

ollowing formula: 

lass ( x ) = argmax 
k =1 ... M 

( 
L ∑ 

p 

{ if k = argmax 
m =1 ... M 

( f p,m 

( x )) then 1 else 0 } ) , 

(1) 

here p iterates over the L classifiers and m and k over the M

lasses. 

. Experiment description 

In the following sub-sections, the research questions, the 

ataset construction process and the evaluation setting are de- 

cribed. 

.1. Research questions 

The research goals described in the introduction are detailed in 

he following research questions: 

RQ1 : Is the performance of the best fine-tuned pre-trained deep 

eural network classifiers compatible with their usage in a real-world 

iagnostic context? 

This research question aims to assess, evaluate, and compare 

he performance of the analyzed transfer learning models to de- 

ect Covid-19 positive patients using CT scans to train the classi- 

ers on different datasets. We have evaluated whether a model re- 

rained on one dataset has good performance when tested on an- 

ther dataset in order to be effective in a real context or not. The 

e-training process is driven by the evolutionary process described 

n the previous section and responsible for selecting the best per- 

orming network models through: 

• architectural fine-tuning decisions, applied to the original 

model definitions (i.e., the layers of the original model that are 

locked and the ones to be retrained); 
• hyper-parameters optimization (HPO) of the unlocked layers. 

Q2 : To what extent does lobe-driven clustering of CT scan images 

mprove the performance of the pre-trained deep neural network clas- 

ifiers? 

This research question aims at assessing and evaluating the per- 

ormance of the best pre-trained deep neural network classifiers in 

etecting COVID-19 instances when CT scan images are clustered 

er lobe. 

RQ3 : To what extent does the integration of the datasets improve 

he performance of the pre-trained deep neural network classifiers? 

This research question investigates whether the best networks 

rained on the integrated dataset provide better classification per- 

ormance than the best networks trained on the single datasets. 

RQ4 : Is the proposed ensemble model more effective than the pre- 

rained deep neural network classifiers across the different datasets? 

This research question investigates whether the ensemble clas- 

ifier with majority voting improves the classification performance 
7 
r not. In order to answer this question the performance of the 

nsemble classifier is compared with the performance of the sin- 

le classifiers. 

.2. Datasets construction 

The dataset construction represents a critical aspect for the dif- 

usion and improvement of DL approaches for detecting COVID-19 

atients exploiting CT images of the chest [8,11] . However, the pub- 

icly available datasets usually collect CT images having different 

ormats, quality (several studies used images scanned by scientific 

apers or websites), and generated in a different way (i.e., real data 

nd augmented data). Moreover, some studies [8] show that the 

erformance of the existing approaches strongly depends on the 

dopted dataset, causing a reduced generalization of the obtained 

esearch results. These considerations motivated our idea to gener- 

te a new dataset as an integration of some existing ones. 

The integration process consists of the following main steps: 

1. selection of proper datasets; 

2. cleaning and filtering of the selected datasets; 

3. merging and balancing of the datasets. 

The first step entails the selection of the datasets to integrate 

n the basis of their characteristics. According to this, a study of 

he publicly available existing datasets and a rigorous data acquisi- 

ion process were performed. In particular, all the datasets contain- 

ng artificially generated images were discarded, while we selected 

nly datasets containing, for all the considered patients (those af- 

ected by COVID-19 and those not affected by the disease), the 

T images for all the lung segments. Basing on the above criteria, 

wo datasets, namely the Extensive COVID-19 X-Ray and CT Chest 

mages Dataset 3 and the Coronavirus (COVID-19) CC-19 dataset 4 , 

ere selected. 

The first dataset contains both X-Ray and CT scan gray-scale im- 

ges and its samples were increased through different augmenta- 

ion techniques. The second dataset features only CT scan images 

oming from 89 subjects, 68 positive to COVI D − 9 and 21 neg- 

tive. The images are gray-scale and both 2D and 3D; moreover, 

hey were collected in the earlier days of the epidemic from var- 

ous hospitals in Chengdu, the capital city of Sichuan. For both 

atasets, we considered only CT scans acquired in the cranio- 

audal direction, with the patients lying in the supine position. 

ome examples of the considered images are reported in Fig. 5 , 

herein the inner dark cavities correspond to hypodense regions, 

.e., the lungs, whereas the surrounding white hyperdense struc- 

ures are soft tissues. The dark upper part of the images is the air, 

hile the structures in the bottom part of the images represent 

he couch where the subject is lying down. 

The pre-processing encompassed cleaning and filtering activi- 

ies. Moreover, all the images having low quality were removed 

nd all patients having a reduced or incomplete number of CT im- 

ges (i.e., not all the lobes were shown) were removed, together 

ith their corresponding CT scans. 

The cleaned versions of the aforementioned datasets (here- 

nafter called D 1 and D 2 ) were then merged into an integrated 

ataset ( D J , joint dataset). To ensure that the integrated dataset 

as well balanced, a reduced number of patients from the larger 

ataset is used. As a matter of fact, D J contains 23,398 images, 

hereof 14,074 are labeled as COVID-19 and 9324 as non-COVID-19, 

espectively. 

The overall dataset (the joint one and the two sub-datasets, D 1 

nd D ) is freely available at this link 5 . The link contains also part

https://doi.org/10.17632/8h65ywD2jr.3
https://github.com/abdkhanstd/COVID-19
https://bit.ly/34QJUSd
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Fig. 7. Gray-scale profile of two images extracted from the two considered dataset ( D 1 on the left and D 2 on the right) as regards COVID-19 patients and the medium lobes 

of a lung. 

Table 1 

Main characteristics of the considered datasets of CT scan images. 

Datasets 

Statistics D 1 D 2 D 3 D J 

Number of images 14,312 9086 2481 23,398 

Date of publication 2020 2020 2020 2021 

COVID-19 images 7980 6094 1252 14,074 

Non-COVID-19 images 6332 2992 1229 9324 
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f an additional dataset, namely SARS-COV-2 Ct-Scan Dataset 6 , se- 

ected from the Web, which is used to test the performance on a 

ataset never used in the training phase and re-named, in its re- 

uced form, as D 3 . This dataset contains 1252 CT scans of patients 

hat are positive for SARS-CoV-2 infection and 1229 for patients 

on-infected by SARS-CoV-2, collected from real patients in hospi- 

als from São Paulo, Brazil, in 2020. Table 1 summarizes the main 

umerical characteristics of all considered datasets. For all the con- 

idered datasets the image format and resolution is the same, that 

s, jpeg format with a resolution of 512 × 512 pixels. 

Finally, in Fig. 7 we show the gray-scale profile of two images 

xtracted from D 1 (left) and D 2 (right) as regards the medium 

obes of COVID-19 patients. The similarity of the profiles, after they 

ere normalized, was measured through the correlation coefficient 

nd the chi-square distance, which resulted to be 0.4822 (with per- 

ect similarity equal to 1.0) and 11.37 (with exact similarity equal 

o 0.0), respectively. 

.3. Experimental setting 

A set of experiments was performed to answer each research 

uestion introduced in Section 5.1 . 

Referring to RQ1, the performance of the VGG, Xception, and 

esNet networks was evaluated by considering different combina- 

ions of the train and test sets: ( D 1 , D 1 ), ( D 1 , D 2 ), ( D 2 , D 1 ), and

 D 2 , D 2 ). The genetic algorithm, previously mentioned, was used 

or identifying the optimal pre-trained network models with the 

ptimization of the hyper-parameters in the training step. 

We tested different architectures of the basic component classi- 

er considering the following ranges for the solution parameters: 

• Final blocks training specifiers (FBTS): A three character string 

specifying an L or a T for each block to leave locked or to set

as trainable; 
6 https://www.kaggle.com/plameneduardo/sarscov2- ctscan- dataset 

8 
• FC number of layers : the number of layers for the final fully con- 

nected block varies in the range [2,6]; 
• FC neurons scheme : the number of neurons for each layer, rang- 

ing in the interval [1, 256]; 
• FC dropout scheme : in this study it is changing in the interval 

[0:10; 0:25]; 
• Optimizer : the Stochastic Gradient Descent (SGD) with Nes- 

terov’s accelerated gradient [40] , RMSProp, and Nadam opti- 

mization algorithms were considered. 

RQ2 was explored by comparing the performance of the VGG, 

ception, and ResNet networks trained on the clustered datasets 

ith respect to their performance when they are trained on not 

lustered CT scans images. 

In order to answer RQ3, the performance of VGG, Xception, and 

esNet networks was evaluated and compared by considering dif- 

erent combinations of train and test sets: ( D 1 , D 1 ), ( D 1 , D 2 ), ( D 2 ,

 1 ), ( D 2 , D 2 ), ( D J , D 1 ), ( D J , D 2 ), ( D 1 , D J ), ( D 2 , D J ). 

Finally, for answering RQ4, the performance of the ensemble 

lassifier for all the combinations of train and test datasets (as 

isted for RQ3) was compared with the one obtained to answer 

Q3. 

Moreover, as an additional experiment, the performance of the 

ingle and the ensemble classifiers was evaluated and compared 

hen the testing is performed on an additional dataset ( D 3 ), never 

sed for the training. 

As for the deep neural network classifiers, they have trained for 

 changing number of layers and a varying number of epochs with 

inary cross-entropy as a loss function. The deep neural network 

lassifiers were implemented using Tensorflow 

7 , an open platform 

or machine learning tasks, and Keras 8 , an open source neural net- 

ork library written in Python. Similarly, the multiple ensemble 

lassifier was developed using the Python programming language 

s well. 

The metrics used to evaluate the training performance have 

een the Accuracy and the Loss . The loss function gives information 

n how well the dataset is modeled by the network. High values 

f loss mean that the predictions are totally wrong. On the other 

and, if the loss is low, the prediction is performing well. The ac- 

uracy and loss function are inversely proportional: when accuracy 

s getting better, the loss is getting worse, and viceversa. 

On the other hand, the classification results were evaluated us- 

ng Accuracy, Precision (P), Recall (R), F1-score (F1), and ROC Area. 
7 https://www.tensorflow.org/ 
8 https://keras.io/ 

https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
https://www.tensorflow.org/
https://keras.io/
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Table 2 

The best three results obtained by GA execution, trained and tested on the considered datasets. 

Train Base Model FBTS #FC Layers FC Neuron Scheme FC Dropout 

Scheme 

Optimizer Test P R F1 

D 1 0.993 0.994 0.994 

D 2 0.691 0.683 0.687 D 1 VGG19 LLT 6 208 - 136 - 122 - 

80 - 64 - 30 

0.15 - N - 0.12 

- N - 0.10 - N 

NADAM 

D J 0.894 0.888 0.891 

D 1 0.741 0.743 0.742 

D 2 0.996 0.993 0.995 D 2 VGG19 LLT 6 258 - 156 - 112 - 

92 - 54 - 32 

0.15 - 0.15 - 

0.10 - 0.10 - 

0.10 - 0.10 

NADAM 

D J 0.893 0.894 0.894 

D 1 0.864 0.867 0.865 

D 2 0.895 0.893 0.894 D J RESNET50 LLL 4 122 - 118 - 64 - 24 0.18 - N - 0.12 

- 0.10 

SGD 

D J 0.968 0.970 0.969 

D 1 0.977 0.974 0.975 

D 2 0.626 0.618 0.622 D 1 VGG19 TTT 5 202 - 106 - 88 - 

48 - 28 

0.25 - N - 0.15 

- 0.15 - 0.10 

NADAM 

D J 0.839 0.842 0.841 

D 1 0.691 0.688 0.689 

D 2 0.972 0.974 0.973 D 2 XCEPTION LLT 5 214 - 104 - 55 - 

55 - 32 

0.25 - 0.10 - 

0.14 - 0.13 - N 

SGD 

D J 0.886 0.881 0.883 

D 1 0.864 0.865 0.864 

D 2 0.755 0.758 0.756 D J VGG19 LLT 6 188 - 162 - 142 - 

117 - 60 - 32 

0.15 - N - 0.12 

- N - 0.10 - N 

NADAM 

D J 0.965 0.964 0.964 

D 1 0.962 0.959 0.961 

D 2 0.594 0.596 0.595 D 1 RESNET50 LLL 4 112 - 118 - 84 - 31 0.18 - N - 0.12 

- N 

NADAM 

D J 0.720 0.720 0.720 

D 1 0.594 0.595 05.95 

D 2 0.918 0.921 0.920 D 2 RESNET50 LLL 4 94 - 48 - 44 - 32 0.25 - 0.10 - 

0.10 - 0.10 

RMSProp 

D J 0.770 0.763 0.766 

D 1 0.836 0.831 0.833 

D 2 0.641 0.636 0.638 D J VGG19 LLT 6 202 - 132 - 102 - 

64 - 48 - 24 

0.15 - N - 0.12 

- N - 0.10 - N 

RMSProp 

D J 0.951 0.952 0.952 
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hey are computed as follows: 

ccuracy = 
t p + t n 

t p + t n + f p + f n 

, 

 = 
t p 

t p + f p 
, 

 = 
t p 

t p + f n 

, 

 1 = 2 

P × R 

P + R 

, 

here tp (true positives) is the number of correctly detected rel- 

vant instances, fp (false positive) is the number of irrelevant in- 

tances wrongly detected as relevant, fn (false negatives) is the 

umber of relevant instances wrongly detected as irrelevant, tn 

true negatives) is the number of irrelevant instances, correctly not 

etected. 

Finally, the ROC Area (AUC) measures the probability that a rel- 

vant instance randomly selected is classified above a not relevant 

ne. 

The experiments were performed by using an Intel Core i9 

920X (18 cores), with 64GB of RAM and 2 GPUs (NVIDIA RTX 

090 24GB of RAM). 

. Results and discussion 

In this section, we report the results obtained by performing 

he set of experiments described in subsection §5.3 that we dis- 

uss, in the following, according to the research questions defined 

n subsection §5.1 . 

As regards RQ1, Table 2 reports the performance (P, R, and F1) 

btained by each pre-trained single neural network by using as 

rain and test set all the possible combinations of D 1 and D 2 (re- 

orted in the columns titled “Train” and “Test”, respectively). For 

he sake of brevity, the table reports only the results correspond- 

ng to the best combination of the hyper-parameters (indicated in 
9 
he columns from three to seven). From the table, we can observe 

hat the best performance is obtained whenever the same dataset 

s used for training and testing. However, this condition is quite far 

rom a real-world diagnostic context, wherein the test is performed 

n unknown new cases. A more realistic scenario is when different 

atasets are used for training and testing. In these conditions, we 

bserve that the performance of the classifiers is, in some cases, 

uite reduced. 

This is clear by looking at all the considered metrics in Table 2 ,

n particular focusing on the F1-score. Considering, as an example, 

he networks trained on D 1 , we can observe that when the test is 

erformed on D 1 the best F1-score is obtained for VGG19 and its 

alue is 0.994). Differently, when the test is performed on D 2 , the 

est F1-score is obtained for VGG19 and its value is 0.687. 

Similar considerations can be drawn when the training is per- 

ormed on D 2 . 

Figure 8 confirms that, generally, the best average F1-score is 

btained when training and testing are performed on the same 

ataset (a) with respect to the case where training and testing are 

erformed on different datasets (b). 

These outcomes corroborate the considerations discussed in 

11] , highlighting that the good performance obtained in several 

ecent studies is strongly influenced by the use of the same dataset 

or training and testing the neural network. 

In order to answer RQ2, some meaningful results are reported 

n Table 3 . The table shows all the possible combinations of clus- 

ered datasets used for training and testing on images from the 

ame lung lobe, as well as the relative performance obtained 

y the best considered neural network. Comparing Table 3 and 

able 2 , it emerges that the use of clustered datasets has a limited 

mpact on the classification performance when the same dataset is 

sed for training and testing. 

However, by observing Fig. 9 , it comes out that, using cluster- 

ng, the F1-score of the single classifiers, trained and tested on the 

ame dataset, is usually equal or lower compared with the best F1- 

core obtained using the corresponding non-clustered. Conversely, 

hen the train and test datasets are different, the use of clustering 
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Fig. 8. Average F1-score performance comparison for the single classifiers: (a) training and testing on the same dataset, (b) training and testing on different datasets. 

Table 3 

The results of the best performing single neural networks trained and tested on datasets D 1 , D 2 , and D J , clustered per lobe. 

Train Base Model FBTS FC #Layers FC #Neurons Scheme FC Dropouts 

Scheme 

Optimizer Test P R F1 

D 1 I 0.968 09.69 0.969 

D 2 I 0.869 0.701 0.776 D 1 I VGG19 LLL 4 112 - 118 - 84 - 31 0.18 - N - 0.12 

- N 

SGD 

D JI 0.868 0.866 0.867 

D 1 M 0.973 0.977 0.975 

D 2 M 0.719 0.717 0.718 D 1 M XCEPTION LLT 6 244 - 128 - 92 - 64 - 

54 - 24 

0.15 - 0.15 - 

0.12 - 0.10 - 

0.10 - 0.10 

NADAM 

D JM 0.815 0.815 0.815 

D 1 S 0.956 0.956 0.956 

D 2 S 0.720 0.715 0.718 D 1 S XCEPTION LTT 5 202 - 106 - 88 - 48 - 

28 

0.14 - 0.15 - 

0.14 - 0.13 - 

0.13 

SGD 

D JS 0.864 0.864 0.864 

D 1 I 0.768 0.587 0.588 

D 2 I 0.969 0.968 0.968 D 2 I XCEPTION LLT 5 214 - 104 - 55 - 55 - 

32 

0.25 - 0.10 - 

0.14 - 0.13 - N 

NADAM 

D JI 0.647 0.649 0.648 

D 1 M 0.756 0.670 0.673 

D 2 M 0.988 0.986 0.987 D 2 M VGG19 LLT 6 210 - 133 - 112 - 66 - 

48 - 12 

0.15 - N - 0.12 

- N - 0.10 - N 

NADAM 

D JM 0.914 0.917 0.915 

D 1 S 0.744 0.655 0.658 

D 2 S 0.972 0.972 0.972 D 2 S RESNET50 LLT 6 180 - 146 - 112 - 98 - 

58 - 32 

0.13 - 0.13 - 

0.12 - 0.10 - 

0.12 - 0.10 

SGD 

D JS 0.784 0.782 0.783 

D 1 I 0.912 0.914 0.913 

D 2 I 0.893 0.892 0.892 D JI VGG19 LLT 6 216 - 137 - 124 - 64 - 

48 - 16 

0.15 - 0.15 - 

0.15 - 0.10 - 

0.12 - 0.10 

SGD 

D JI 0.947 0.951 0.949 

D 1 M 0.902 0.899 0.900 

D 2 M 0.865 0.863 0.864 D JM RESNET50 LLT 5 104 - 104 - 50 - 50 - 

20 

0.25 - 0.10 - 

0.14 - 0.13 - N 

NADAM 

D JM 0.967 0.971 0.969 

D 1 S 0.858 0.852 0.855 

D 2 S 0.880 0.875 0.877 D JS VGG19 LLL 4 122 - 118 - 64 - 24 0.18 - N - 0.12 

- 0.10 

RMSProp 

D JS 0.948 0.951 0.950 

Fig. 9. Comparison between clustering and no clustering in different training and testing scenarios of the best single neural networks. 

10 
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Fig. 10. Average F1-score for the single classifiers trained on D 1 (orange box), D 2 
(yellow box), and D J (green box). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Table 4 

Kolmogorov-Smirnov test comparing the 

statistical significance, with a confidence of 

1%, of the average F1-score distributions in 

different training and testing conditions. 

Tests p-value effect size 

D 1 D 2 > 0.01 - 

D J D 1 < 0.01 0.66 (medium) 

D J D 2 < 0.01 0.62 (medium) 
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Table 5 

Results for the ensemble classifier trained on the 

integrated dataset as well as on the single datasets. 

Training Test P R F1 

colrule D 1 D 1 0.975 0.974 0.975 

D 1 D 2 0.819 0.822 0.820 

D 1 D J 0.812 0.812 0.812 

D 2 D 1 0.797 0.795 0.796 

D 2 D 2 0.986 0.986 0.986 

D 2 D J 0.909 0.911 0.910 

D J D 1 0.975 0.975 0.975 

D J D 2 0.978 0.945 0.961 

D J D J 0.998 0.994 0.996 

Table 6 

Performance of the best single classifier and of the 

ensemble trained on D J and tested on D 3 . 

Test Classifier P R F1 

D 3 ResNet50/ D J 0.856 0.682 0.759 

D 3 Ensemble/ D J 0.893 0.913 0.903 
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9 The first dataset in the legend refers to the training, while the second one to 

the test. 
sually contributes to improve the performance of the F1-score. 

or example, looking at the classifiers trained on D 1 in Table 2 , we 

bserve that the best F1-score is 0.994, obtained when the test is 

erformed on D 1 . Looking at the classifiers trained and tested on 

he three clusters of D 1 , we obtain the best result (0.975) for the 

ombination ( D 1 M 

, D 1 M 

). 

Conversely, looking at the classifiers trained on D 1 in Table 2 , 

e observe that the best F1-score is 0.687 obtained when the test 

s performed on D 2 , but, in the case of clustering, this increases to 

.776 training on D 1 I and testing on D 2 I . This result is not surpris- 

ng since the adoption of the clustering reduces for each classifier 

he number of cases, while increasing the similarity between im- 

ges. 

Finally, the results of Table 3 confirm again that the best results 

re obtained training and testing on the same dataset. 

With reference to RQ3, Table 2 shows the performance obtained 

y the single classifiers using the integrated dataset ( D J ) for train- 

ng as well. The data show that the convolutional neural networks 

rained on D J leads, in all cases, to a better performance when dif- 

erent train and test sets are used. 

In order to better explain this result, the average F1-score is re- 

orted and compared in Fig. 10 , when D 1 , D 2 , and D J are used as

raining datasets, respectively. The box-plots show that the adop- 

ion of the integrated dataset leads to better results: training on 

 J has a better average F1-score and the least dispersion effects 

round it. In Table 4 we show the results of the non-parametric 

olmogorov-Smirnov test over the average F1-score distributions 

f the three considered cases (i.e., training on D 1 , training on D 2 , 

nd training on D J ). The results show that there is no statistical 

ifference (p-value greater than a 1% of confidence) between the 

raining on D 1 and training on D 2 experiments, whereas there is a 

tatistical difference (p-value smaller than a 1% of confidence) be- 

ween the training on D J and the training on D 1 or between the 

raining on D J and the training on D 2 . This confirms that, when 

raining on the integrated dataset D J , the resulting classifiers are 

ore robust. 
11 
Finally, concerning RQ4, Table 5 shows the performance of the 

nsemble classifier on D 1 , D 2 , and D J . The data in the table confirm 

hat the best results are obtained when the network is trained on 

 J . 

In Fig. 12 , the F1-score of the best single classifiers (as reported 

n Table 2 ) and the ensemble classifier, on different combinations 

f the train and test datasets, are compared. 

It is possible to observe that the ensemble generally outper- 

orms the best single classifier and this takes place always when- 

ver the training dataset is the integrated one. Moreover, in this 

ase, the performance of the ensemble trained on the integrated 

ataset is very stable, given that the F1-score ranges from 0.94 to 

.95. 

This is also confirmed by looking at accuracy and loss trends 

ver the training epochs: the ensemble classifier performs better 

nd reaches a higher final accuracy, also requiring fewer training 

pochs to obtain the same performance. This is clearly shown in 

ig. 11 9 , representing the comparison of Accuracy (left) and Loss 

right) versus the epochs of the ensemble and VGG19 classifiers. 

ore precisely, the figure shows i) the ensemble classifier perfor- 

ance when D J is used for both training and testing (blue curve), 

i) the ensemble classifier performance when D J is used for training 

nd D 2 for testing (red curve), iii) the VGG19 performance when 

 J is used for both training and testing (black curve). From the fig- 

re, it is evident that the ensemble classifier performs better than 

GG19 and even better whenever the integrated dataset is used for 

oth training and testing. 

In order to perform a more strict validation of the proposed 

pproach, an additional dataset D 3 was used. D 3 was not used 

or training, but just for validating the ensemble classifier results. 

herefore, Table 6 and Fig. 13 compare the performance of the best 

ingle classifier (RESNET50 in this case) and the ensemble on this 

dditional dataset used as test set. The training dataset is in both 

ases D J . It clearly emerges that when the additional dataset is 

ested, the classification performance decreases. However, this is 

ue to the fact that the new dataset has different characteristics 

i.e., resolution, format, gray-scale profile) with respect to the ones 

sed for the training. Nevertheless, also in this situation the en- 

emble classifier largely outperforms the single best classifier, with 

n F1-score equal to 0.903. This confirms that the proposed ap- 

roach provides better results when used in real contexts. 
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Fig. 11. Performance comparison among the ensemble and the best pre-trained classifiers during training: validation accuracy and loss over epochs. 

Fig. 12. F1-score of the best single classifiers compared with the ensemble classifiers on the different datasets. 

Fig. 13. F1-score of the best single classifier compared with the ensemble classifier, while testing on dataset D 3 and training on dataset D J . 
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Finally, during the preliminary set-up of the experiments, we 

lso analyzed the contributions of the individual networks to the 

esults of the ensemble approach. It emerged that the best sin- 

le classifier trained on the Medium Lobe cluster (i.e., VGG19) ob- 

ained outcomes closer to the final results of the ensemble than 

he other networks. 

For what concerns training times, they basically depend on 

hree factors: (i) the network model used as a basis for the so- 

ution; (ii) the dataset on which the model is re-trained; (iii) 

he considered re-training specification, as models with a higher 

umber of re-trained blocks require more training effort. On 

he GPUs adopted in the proposed experimentation, the aver- 

ge training time of a single configuration for 15 epochs ranges 

rom 815s ( � 15.3 min), for ResNet50 on D 2 with all layers un-
12 
ouched, to 3585s ( � 57 min) for VGG19 on D J with all layers

e-trained. 

To have a more precise picture of the impact of the pre-trained 

odels over the final performance, we studied the performance of 

he single classifiers using different types of CNNs (i.e., VGG 16/19, 

esnet 50/101/151, Xception, Inception V2/V3). Specifically, Fig. 14 

hows the performance, considering the F1-score of the best con- 

gurations produced by the evolutionary algorithm execution, in 

ecreasing order. This test was made to find out the best sub-types 

f CNNs, which resulted to be ResNet50, VGG19, and Xception as 

er the figure. Only in the case of ResNets, the performance was 

quivalent for both ResNet50 and ResNet101. Being almost equiv- 

lent in terms of performance, we selected ResNet50 for mainly 

wo reasons: ( i ) it converges to a better configuration more often 
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Fig. 14. F1-score performance over various configurations of the genetic algorithm for different types of CNNs for the single classifier. 
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han ResNet101, thus indicating a greater stability for the specific 

ask and ( ii ) it is better in terms of training time having a simpler

tructure with a lower number of layers. 

. Threats to the validity 

This section discusses the threats to the validity of the de- 

cribed study. We identified different types of threats: construct, 

nternal, and external validity. 

As regards the construct validity threats, some limitations can 

e due to the reduced number of datasets used to build the joint 

ataset: only two datasets were used for the integration process. 

n order to avoid this limitation, additional datasets should be in- 

egrated. However, at the moment of performing this study, other 

ublic datasets, which can be integrated with the two we consid- 

red, are not available. In Section 5 we listed the requirements of 

he selected datasets. 

Internal validity threats concern variables internal to our study, 

nd not considered in our experiment, that could influence our ob- 

ervations on the dependent variable. In our study, we always split 

ata into 80% training set and 20% test set. However, it is possible 

hat different splits could produce different results. Moreover, as 

ur results already confirmed, the outcomes can vary based on the 

hoice of a specific network used for the prediction. We cannot 

xclude that other models not considered in our study could ex- 

ibit different and perhaps better performance. In addition, in the 

roposed study the adopted datasets were automatically clustered 

nd labeled; therefore, we could have clustering errors. However, 

o mitigate this risk, a manual clustering for the whole integrated 

ataset was performed, in order to assess the automated clustering 

esults and obtain a more rigorous process. Moreover, it is neces- 

ary to underline that the used datasets are well documented and 

eferenced in medical studies and a domain expert was involved 

uring the manual clustering assessment. 

Finally, threats to external validity refer to the possibility to 

eneralize the obtained outcomes. We have evaluated our ap- 

roach on a relevant number of CT scan images coming from two 

xisting real-world datasets. Moreover, we have also evaluated our 

pproach on an additional dataset having different image formats, 

esolution, and colors; therefore, this type of threat should be lim- 

ted. 

. Conclusions 

In this paper, we have proposed an innovative approach that 

ims at detecting patients affected by Covid-19 using CT scan im- 
13 
ges. The approach is defined considering computerized tomogra- 

hy images clustered into three main sections of a lung (superior, 

iddle, and inferior lobe) used to train both single state-of-the-art 

onvolutional neural networks and a hierarchical multiple classifier 

omposed of them. Moreover, we have applied a genetic algorithm 

o select the best performing pre-trained models, by optimizing 

oth their hyper-parameters and the internal structure of the con- 

olutional neural networks with an automatic approach (AutoML). 

n order to validate such an approach, a large dataset has been 

onstructed through the integration of two open existing datasets. 

fter optimizing the single classifiers, implemented using a trans- 

er learning approach, we have built a hierarchical multiple classi- 

er using the majority strategy for the final voting procedure. We 

ave compared the results obtained by the single classifiers and 

he ensemble classifier demonstrating that the ensemble overall 

utperforms the best single classifiers, provided that it is trained 

n the integrated dataset. Moreover, the performance of the en- 

emble trained on the integrated dataset is very stable, given that 

he F1-score ranges only from 0.94 to 0.95. 

As highlighted in the previous section, the main limitation of 

his study is the reduced number of datasets used to build the 

oint dataset. According to this, as future work, new datasets will 

e considered and integrated to extend our investigation and to 

btain an even larger dataset. Moreover, we plan to test other al- 

ocation strategies and other voting techniques for the ensemble 

lassifier itself. 
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