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Direct comparison of bulk gene expression profiles is complicated by distinct cell type mixtures in each sample that obscure
whether observed differences are actually caused by changes in the expression levels themselves or are simply a result of
differing cell type compositions. Single-cell technology has made it possible to measure gene expression in individual cells,
achieving higher resolution at the expense of increased noise. If carefully incorporated, such single-cell data can be used to
deconvolve bulk samples to yield accurate estimates of the true cell type proportions, thus enabling one to disentangle the
effects of differential expression and cell type mixtures. Here, we propose a generative model and a likelihood-based infer-
ence method that uses asymptotic statistical theory and a novel optimization procedure to perform deconvolution of bulk
RNA-seq data to produce accurate cell type proportion estimates. We show the effectiveness of our method, called RNA-
Sieve, across a diverse array of scenarios involving real data and discuss extensions made uniquely possible by our proba-
bilistic framework, including a demonstration of well-calibrated confidence intervals.

[Supplemental material is available for this article.]

Bulk RNA sequencing (RNA-seq) has proven a useful tool to inves-
tigate transcriptomic variation across organs, individuals, and var-
ious other biological conditions (Melé et al. 2015; Sudmant et al.
2015). Despite many successes, this technology’s full potential is
inherently limited because each experiment measures the average
gene expression among a large group of cells, the composition of
which is unknown. Thus, despite the reduction in technical and
biological variability attained by averaging, bulk experiments
may be confounded by cell type proportions when considering
heterogeneous cell mixtures (Lowe and Rakyan 2014; Shiwa
et al. 2016). Such confounding impedes the direct comparison of
samples, possibly leading to the spurious or missed inference of
biologically relevant genes when attempting to identify clinically
important differences. Moreover, cell type compositions are often
independently informative of biological processes including organ
function (Cabrera et al. 2006; Kalisky et al. 2013; Yu and He 2017;
Hagenauer et al. 2018) and development (Hu et al. 2017;
Hagenauer et al. 2018). For example, cell type infiltration has
been found to correlate with disease progression, disease status,
and complex phenomena such as aging (Funada et al. 2003;
Bremnes et al. 2016; Bense et al. 2017; Stout et al. 2017; Zhou
et al. 2019). Unlike bulk experiments, single-cell technologies al-
low us to query the transcriptome at the resolution of individual
cells. Resulting analyses often seek to characterize the heterogene-
ity within, or the differences between, specified cell types (Saliba
et al. 2014). By isolating the expression patterns of measured cell
types, single-cell gene expression data can provide a reference to
aid the inference of the cell type compositions of bulk samples;
this process is known as deconvolution.

Computational rather than experimental estimation of cell
type compositions is attractive for several reasons. Single-cell ex-

periments aremore expensive than their bulk counterparts and re-
quire heightened technical expertise to perform, often rendering
the large-scale generation of single-cell gene expression data infea-
sible (Goldman et al. 2019). Furthermore, even when performed
correctly, many protocols fail to capture cell types in an unbiased
fashion, meaning empirical cell type proportions often are not re-
liable estimators of true organ/tissue compositions (Trapnell
2015). Finally, deconvolution can be applied to the deep compen-
dium of available bulk RNA-seq data to refine earlier analyses and
probe previously unanswerable or heretofore unformulated ques-
tions. Consequently, the computational deconvolution problem
has become a topic of intensemethodological research, as detailed
inAvilaCobos et al. (2018). Theproblemmaybe representedmath-
ematically as

Ma = b, (1)

where M is a gene-by-cell type matrix of cell type–specific gene ex-
pression averages, α is a vector of cell type mixing proportions,
and b is a vector of gene expression values in a bulk RNA-seq exper-
iment. Depending on which ofM, α, and b are measured, different
approaches are appropriate. We focus on the case in which both M
and b have been observed, albeit noisily, and it remains to infer α;
this is known as supervised deconvolution. Early approaches fre-
quently used predefinedmarker genes for well-studied cell types, re-
stricting their applicability. More recent methods formulate the
problem as a regression task to be solved by variants of non-negative
least squares, for example, MuSiC (Wang et al. 2019), DWLS
(Tsoucas et al. 2019), SCDC (Dong et al. 2021), and Bisque (Jew
et al. 2020), or with more sophisticated machine learning tech-
niques, such as CIBERSORTx (Newman et al. 2019) and Scaden
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(Menden et al. 2020). Although each paradigm presents its own
strengths, both fail to replicate the benefits of explicit generative
modeling. The resulting algorithms may perform well, but often
lack the flexibility to extend beyond the estimation of cell type
proportions.

We hence propose RNA-Sieve, a method that uses asymptotic
theory and a novel optimization procedure to solve a probabilistic
model of deconvolution via maximum likelihood estimation. We
show its highly capable performance across a diverse array of sce-
narios, including different organs, cell types, and practical chal-
lenges. We then highlight newly opened avenues for continued
development made feasible by our generative framework, includ-
ing confidence regions.

Results

Method overview

Although a single run of bulk RNA-seq produces a solitary gene ex-
pression vector, myriad cells contribute to this measurement. The
obtained profile is thus a composite snapshot of the gene expres-
sion levels of numerous individual, putatively independent cells.
Under an assumption that cells of the same type behave similarly,
this largenumberof cells permits the applicationof the central lim-
it theorem (CLT) and its contingent wealth of asymptotic normal
approximations. This renders the marginal gene expression distri-
bution for an arbitrary cell in the bulk sample as a straightforward
mixture distribution (see Equation 2 in Methods). The resulting
CLT-derived likelihood only depends on the cell type proportions
in the bulk sample and each cell type’s gene expression means
and variances. To estimate the requisite cell type–specific mo-
ments, RNA-Sieve uses gene expression measurements from
scRNA-seq experiments. We further model the estimation error of
these computed quantities by again in-
voking theCLT, building a full composite
likelihood using normal distributions.
To infer cell type proportions, we imple-
ment a customized maximum likeli-
hood estimation procedure designed to
ensure accurate and robust results.Our al-
ternating optimization scheme is split
into two components to better avoid
suboptimal local minima, and a final
projection step avoids slow convergence.
We also incorporate a gene filtering
procedure explicitly devised to improve
cross-protocol stability, a crucial concern
given that single-cell and bulk experi-
ments areperformedusingdifferent tech-
nologies. Our algorithm also performs
joint deconvolutions, leveraging multi-
ple samples to producemore reliable esti-
mates while parallelizing much of the
optimization. In this setting, each bulk
sample denoises the single-cell reference
regardless of its mixture proportions,
leading to improved statistical perfor-
mance. Finally, our likelihood-based
model allows us to pursue extensions
that are infeasibleusingpriorapproaches.
A notable example includes confidence
regions for estimates (see “Extension to

confidence regions”), among others (Discussion). We present full
mathematical and computational details in Methods, and Figure
1 displays a schematic.

Performance in pseudobulk experiments

To establish RNA-Sieve’s effectiveness, we performed in silico ex-
periments in which we built “pseudobulks” by aggregating reads
from labeled cells in known proportions. Our scRNA-seq data
come from the Tabula Muris Senis Consortium (The Tabula Muris
Consortium 2020), and we considered 13 organs with between
two and 11 cell types per organ. Moreover, as counts were generat-
ed via both the Smart-seq2 and 10x Chromium protocols for each
organ, convenient cross-protocol comparisons are possible. These
are particularly important given that the generation of bulk and
single-cell RNA-seq samples requires different techniques. To eval-
uate RNA-Sieve, we compared its performance to that of six recent-
ly publishedmethods as well as non-negative least squares (NNLS).
Performance was assessed for each organ by computing the L1 dis-
tance (absolute difference) between inferred and true proportions
and dividing by the number of cell types present. Further details
are provided in “Benchmarking procedures.” We found that
RNA-Sieve produced the smallest mean error in both possible ref-
erence/bulk configurations (Fig. 2A,B; Table 1; for full results, see
Supplemental Table S1). To better understand performance, we
also visualized errors when aggregating by organ (i.e., the col-
umn-wise distributions of the checkerboard plots in Fig. 2C,D;
see Supplemental Fig. S1). Our strong performance across organs
regardless of the number of cell types or similarities among them
suggests that RNA-Sieve is versatile over a range of scenarios.
Finally, we directly compared each method’s errors to those of
RNA-Sieve on the same deconvolution tasks (given by the row-
wise distributions of the checkerboards in Fig. 2C,D; see

Figure 1. The RNA-Sieve pipeline. After applying a filtering procedure to scRNA-seq data, RNA-Sieve
builds reference matrices for the mean and variance of expression for each gene across cell types.
Using these estimates and bulk RNA-seq data, it performs joint deconvolution via maximum likelihood
estimation by expressly modeling noise both in the reference and bulk data, yielding cell type proportion
estimates and confidence regions for each sample.

Likelihood-based deconvolution of gene expression
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Supplemental Fig. S2). In each case, RNA-Sieve produced smaller
errors than the other methods a majority of the time.

Although RNA-Sieve’s nominal improvement in the average
per-cell-type L1 metric may initially appear minor, a typical tissue
consists of several cell types; thus the overall error may accumulate
rapidly. The constraint that mixture proportions sum to 1 means
suchreductions inerror are likely tobemeaningful; inferential errors
of the same order as common cell type proportions make it easy to
arrive at incorrect biological conclusions, especially in more com-
plex tissues with many cell types. Supplemental Figure S3 shows a
representative example of seemingly minor average per-cell-type im-
provement resulting in comparatively major individual-cell-type dif-

ferences. Other error metrics are more
sensitive to different aspects of perfor-
mance and may detect such improve-
ments more reliably, and these are
explored below (“Benchmarking proce-
dures”). Because onemust considermulti-
ple distinct algorithms, tissues, cell types,
and experimental protocols, any bench-
marking evaluationmust necessarily con-
sist of a large number of combinations.
Between these many factors and the ran-
domnature of the data, it is (even theoret-
ically) nearly impossible for any one
algorithmtodominate theothers inall sit-
uations (as is recognized and discussed in
Menden et al. 2020).We believe that eval-
uation should therefore focus on aggre-
gate measures of accuracy across many
situations. We hence supplement Table 1
and Figure 2 with Table 2, which presents
the mean ranks of all eight algorithms ag-
gregated across all (26) cross-protocol ex-
periments using the L1, L2, L∞, and KL
error quantifications to assess different as-
pects of performance (see “Benchmarking
procedures”). We find RNA-Sieve outper-
forms its nearest competitor by roughly
one-half rank regardless of error metric, a
gap that is at least as large as thosebetween
other neighboring methods (NNLS ex-
cluded). Having shown RNA-Sieve’s abili-
ty to produce accurate results in the

intended use case, we explored its performance under various set-
tings of model misspecification in which the cell types in the refer-
ence fail to match those in the bulk samples. Our experiments
confirm that, to the extent possible, RNA-Sieve produces robust
and interpretable inferences even in these settings (Supplemental
Text S1.1; Supplemental Figs. S4–S7).

Validation with real bulk RNA-seq data

In rare instances, bulk RNA-seq samples with known or experi-
mentally estimated cell type proportions are available. We consid-
ered three such data sets to evaluate RNA-Sieve under realistic

BA

C D

Figure 2. Distribution of errors for each method in pseudobulk experiments. Pseudobulk experiments
were performed in 13 different organs using data from the Tabula Muris Senis experiment. Errors were
computed as the average L1 error across cell types in each organ. (A,C) Smart-seq2 reference, 10x
Chromium pseudobulk. (B,D) 10x Chromium pseudobulk, Smart-seq2 pseudobulk. In the violin plots
(A,B), horizontal black bars correspond to the mean error and methods are ordered left to right from low-
est to greatest mean error. In the grid plots (C,D), methods and organs were ordered using SVD-induced
clustering. Roughly speaking, the methods from top to bottom are characterized by improving perfor-
mance, whereas the organs from left to right are characterized by decreasing variability in different meth-
ods’ performances. Color indicates the difference between the average error across methods in that
organ; deeper shades of red (blue) indicate poor (good) relative performance. See Supplemental
Table S2 for context regarding the cell types present in each organ.

Table 1. Summary of deconvolution errors for each considered method in pseudobulk experiments

(A) Smart-seq2 reference and 10x Chromium pseudobulk
RNA-Sieve CIBERSORTx Scaden SCDC MuSiC DWLS Bisque NNLS

Mean 6.9 8.6 8.6 8.7 10.1 11.2 12.7 30.5
Median 6.1 7.1 7.2 8.3 10.6 7.2 10.1 31.0
IQR 7.7 3.4 4.1 7.9 6.0 6.9 5.2 15.3

(B) 10x Chromium reference and Smart-seq2 pseudobulk
RNA-Sieve CIBERSORTx DWLS Scaden Bisque SCDC MuSiC NNLS

Mean 6.7 7.4 7.6 10.5 12.5 18.1 18.7 26.4
Median 8.2 6.2 5.4 10.5 11.0 15.7 15.7 16.4
IQR 9.9 7.8 6.9 4.6 8.9 12.1 4.6 17.0

Errors were computed as the L1 distance (in %) between the inferred and true proportions averaged over the number of present cell types per organ.
Single-cell RNA-seq data for the references and pseudobulks were taken from the Tabula Muris Senis experiment. The mean, median, and interquartile
range are displayed for the results in 13 different organs; see “Benchmarking procedures” for additional details. Bold values indicate the best-perform-
ing method under that summarization.
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conditions. The first is a bulk RNA-seq mixture of two human
breast cancer cell lines and fibroblasts (60% MDA-MB-468, 30%
MCF-7, 10% fibroblasts) with accompanying scRNA-seq data pub-
lished in Dong et al. (2021). As shown in Table 3, RNA-Sieve yields
highly accurate results, attaining the lowest average error among
all methods. With the exception of SCDC, other methods overes-
timated the bulk fraction of theMCF-7 cell line while significantly
underestimating the MDA-MB-468 cell line, and most methods
substantially overestimated the fibroblast proportion.

Because this single experiment contains three cell types and
one bulk sample, we sought to validate using larger data sets pos-
sessing more heterogeneous expression measurements from pe-
ripheral blood mononuclear cells (PBMCs). We used two sets of
12 bulk whole blood samples each from Newman et al. (2019)
andMonaco et al. (2019), respectively. Ground-truth cell type pro-
portions in all bulk samples were estimated using flow cytometry
and were grouped into six primary categories: B cells, CD4+ T cells,
CD8+ T cells, monocytes, natural killer (NK) cells, and neutrophils.
We then obtained two distinct scRNA-seq PBMC reference data
sets. The first, which we used with the Newman et al. (2019)
bulk samples, also comes from Newman et al. and assays one indi-
vidual. To explore the effect of multiple individuals in the refer-
ence, we downloaded two reference sets from the public
repository managed by 10x Genomics and subsequently merged
them; this reference was used with the Monaco et al. (2019) bulk
data samples. Because neutrophils are notably difficult to assay ac-
curately at the single-cell level, they were not present in either of
the original reference panels. However, given the large fractions
of neutrophils estimated by flow cytometry, particularly for the
Newman et al. data set, we identified a publicly available data set
which contains scRNA-seq data for human neutrophils (Xie et al.

2020). These data were then incorporated into both references to
produce more effective comparisons. Because the Newman et al.
scRNA-seq reference was relatively small (tens to hundreds of cells
per cell type) and only had one individual present, we subsampled
the neutrophil data down to 250 cells from one individual to be
consistent with the other cell types. Conversely, because the 10x
Genomics PBMC reference hadmore cells (hundreds to thousands
of cells per cell type) and multiple individuals, we subsampled
1250 neutrophils in total from three individuals for use in the ref-
erence (see “Benchmarking procedures”).

Subsequent deconvolutions showed that RNA-Sieve per-
formed the best of all methods as measured by the mean absolute
deviation (L1 error) when aggregating across both analyses (Table
4). The presence of neutrophils presented a challenge for several
methods, perhaps because they came from a different experiment
or because of their uniquely low RNA counts. For example, in the
bulk data from Newman et al. (2019) (Fig. 3A), neutrophils were
strongly underestimated by CIBERSORTx, Scaden, and SCDC
with most of that mass being allocated to either monocytes,
CD4+ T cells, or B cells, respectively. RNA-Sieve and DWLS both
performed well on these bulk samples, although RNA-Sieve slight-
ly underestimated neutrophils in favor of monocytes and DWLS
had minor difficulty distinguishing between CD4+ and CD8+ T
cells. A similar story emerged for the Monaco et al. (2019) data
(Fig. 3B), with CIBERSORTx, DWLS, Scaden, and, to a lesser extent,
RNA-Sieve underestimating neutrophil and CD8+ T cell propor-
tions while overweighting monocytes or CD4+ T cells. In contrast,
Bisque, SCDC, andMuSiC strongly overweighted neutrophils (and
sometimes natural killer cells) at the expense of other cell types. To
produce a more formal and comprehensive comparison, we com-
puted summary statistics in the same manner as Table 2 using
the 24 bulk samples comprising the two data sets. RNA-Sieve
achieves the best performance among all considered methods
(Table 5) in each metric as it shows strong performance for both
data sources. DWLS performs well on the Newman et al. data but
fails to attain that level of accuracy on the Monaco et al. data.

Keeping with the convention of several previous works, we
also analyzed pancreatic islets data in which qualitative relation-
ships between cell types are known rather than cell type propor-
tions. RNA-Sieve is among the well-performing methods, and a
full description can be found in Supplemental Text S1.2 and
Supplemental Figure S8. A summary of runtimes for the different
methods in these deconvolution tasks is available in
Supplemental Text S1.3.

Analysis of real bulk organ samples

We next applied RNA-Sieve to real bulk RNA-seq data to analyze
patterns in organ composition. We chose to continue working
with the Tabula Muris Senis data set because it contains many
bulk RNA-seq samples in addition to the scRNA-seq data

Table 2. Mean ranking of algorithms under various error metrics

RNA-Sieve DWLS CIBERSORTx Scaden Bisque SCDC MuSiC NNLS

L1 2.9 3.4 3.6 3.9 4.5 5.0 5.3 7.4
L2 3.0 3.5 3.5 4.0 4.5 4.8 5.2 7.4
L∞ 3.0 3.7 3.5 4.0 4.4 4.8 5.2 7.3
KL 2.9 3.3 3.8 3.8 4.5 4.9 5.3 7.5

All eight methods were ranked 1 (best) to 8 (worst) on all 26 cross-protocol deconvolutions using the L1, L2, L∞, and KL (KL divergence) metrics, and
their mean ranks were computed. Bold values indicate the best-performing method under that summarization.

Table 3. Inferred proportions from different methods in cell line
mixture experiments

Method

Estimated proportions (%)

Mean L1
error

60% MDA-
MB-468

30%
MCF-7

10%
Fibroblasts

RNA-Sieve 62 26 13 3
SCDC 60 19 21 4
Scaden 35 44 21 17
CIBERSORTx 32 52 16 19
DWLS 26 48 27 23
NNLS 22 56 21 25

Data from Dong et al. (2021) with known cell type proportions was
used to evaluate each applicable method (displayed proportions may
not sum precisely to 1 owing to rounding). Bisque and MuSiC are not in-
tended for use with only one individual in the bulk data and/or single-
cell reference and were thus not included. SCDC was run in tree mode
for this deconvolution.

Likelihood-based deconvolution of gene expression
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previously described. Owing to its expansive experimental design
across organs and ages, this resource is uniquely suited to interro-
gate changes in cell type compositions associated with the process
of aging. In general, aging represents one of the more complicated
biological processes, and one which occurs in every person or or-
ganism. Because of its ubiquity and significant effects on quality
of life, improved understanding of the etiologies underlying age-
associated functional deficits holds great potential therapeutic val-
ue, andwe hope to identify changes in the balance of cell classes at
different stages of life. Degradation of the musculoskeletal and im-
mune systems are among themost apparent trends inmammalian
aging. Here, we highlight results from three organs with roles in
these bodily systems—the limb muscle in the former, and the
spleen and bone marrow in the latter.

In limb muscle, we observed a noticeable increase in skeletal
muscle satellite cells and a substantial decrease in the mesenchy-
mal stem cell proportion in older mice (Fig. 4A). These trends are
present, albeit fairly gradual, until around 21 mo old with more
suddenchanges apparent thereafter. Therewas also an apparent in-
crease in macrophage proportions up until 15 mo of age, followed
by a slowdecline for the remainder of life.
Each of these three cell types has been
shown to function in muscle fiber repair
through different mechanisms (Snijders
et al. 2015). This pattern in cell type com-
position may thus indicate changes in
the relative use of different regenerative
pathways as individuals age.

The rich combination of cell types
present in the marrow, ranging from
stem cells to more mature cell classes
(Gurkan and Akkus 2008), yielded sever-
al age-associated trends in cell type com-
position (Fig. 4B), andwe choose to focus
on two. First, an effectively linear growth
in the number of hematopoietic stem
cells was observed with increasing age.
Although this may seem surprising given
reduced adaptive immunity with age,
this exact phenomenon has been previ-
ously observed in bothmice and humans

(Pang et al. 2011), and it is accompanied by a decrease in function-
ality of these cells. Conversely, granulocyte proportion appeared
to decrease after roughly 9 mo of age. Further examination reveals
that the granulocyte fraction tends to mirror that of granulocyto-
poietic cells, but with an increasing deficit between the two as
age increases. Such a pattern is suggestive of the reduced potency
of granulocytopoiesis that we would expect with age. Hence, in
the marrow we are able to identify known patterns of cell type
composition variation despite the presence of many transcrip-
tomically similar cell types.

The population of splenic immune cells primarily consists of
B and T cells, with smaller quantities of other cell types (Hensel
et al. 2019). Among these are different categories of progenitor
cells, which are difficult to separate in their early stages, making
it possible that several varieties are labeled together as proerythro-
blasts. We found that inferred proportions for B and T cells
matched accepted ranges (Hensel et al. 2019) and noticed an unex-
pected and transient spike in the proportion of proerythroblasts
peaking at roughly 9 mo of age (Fig. 4C). This increase is observed
in all four of the 9-mo-old individuals and is thus not an artifact of
outlying samples. Mice at this age are roughly analogous to hu-
mans of between 30 and 40 yr of age, and hematopoiesis is gener-
ally restricted to the marrow at this age except under stress
conditions. This may indicate a programmed hematopoietic pro-
cess or the behavior of a cell type not enumerated in the reference
set and is a candidate for replication and follow-up.

Extension to confidence regions

The generative framework of RNA-Sieve permits extensions that re-
main out of reach using prior approaches to deconvolution. One
such possibility is the computation of confidence regions for in-
ferred cell type proportions. Despite its clear importance, error
quantification in deconvolution is challenging and has received
relatively scant attention, leaving users to only guess at the reliabil-
ity of their results. Because deconvolution is sometimes performed
upstream of tasks such as differential expression or eQTL detec-
tion, it is critical to understand the precision of estimated propor-
tions. Because RNA-Sieve infers these proportions via maximum
likelihood estimation, we can directly use the wide array of theory
on asymptotic confidence bounds. Specifically, we construct

Table 4. Average L1 errors with PBMC data and ground-truth cell
proportions from flow cytometry

Method

Average L1 error (%)

Aggregate Newman et al. data Monaco et al. data

RNA-Sieve 4.8 4.8 4.7
DWLS 7.2 4.7 9.7
Scaden 9.4 11.3 7.6
CIBERSORTx 14.4 17.7 11.2
SCDC 19.3 17.2 21.3
NNLS 25.2 27.7 22.7
Bisque n/a n/a 17.3
MuSiC n/a n/a 22.7

The first two columns display average L1 errors for the two PBMC data
sets individually, whereas the last column aggregates L1 errors across
both data sets. Bold values indicate the best-performing method in the
indicated deconvolutions. Bisque and MuSiC do not provide proportion
estimates for the Newman et al. (2019) data because only one individual
is present for all reference cell types. CIBERSORTx was run in B-mode per
their recommendation with a UMI-based scRNA-seq reference.

BA

Figure 3. Deconvolution biases for PBMC data with known ground-truth proportions. Average differ-
ences between inferred and true proportions were computed within each cell type across the 12 bulk
samples present in each scenario. Consistent overestimation of a cell type’s abundance results in darker
blue squares, whereas red corresponds to chronic underestimation. Methods are ordered left to right by
overall performance. (A) Deconvolution using Newman et al. (2019) data. (B) Deconvolution using
Monaco et al. (2019) data.
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confidence regions for inferred propor-
tion values through numerical computa-
tion of the inverse empirical Godambe
information matrix (see “Confidence in-
tervals” in Methods). We show RNA-
Sieve’s ability to produce well-calibrated
confidence regions in pseudobulk decon-
volutions usingTabulaMuris Senis data as
well as with both real PBMC bulk data
sets in “Validation with real bulk RNA-
seq data.”

We began with within-protocol
comparisons in which all modeling as-
sumptions are generically met. As shown
in Figure 5A and Supplemental Figure
S9A, we obtain narrow, yet well-calibrat-
ed, confidence intervals. However, the
typical deconvolution setting will pre-
sent complications in the form of proto-
col differences in the scRNA-seq
reference and bulk RNA-seq data. Under
mild and plausible assumptions on these
distributional shifts, our MLE framework
is robust to such model misspecification
(see “Confidence intervals”), and we still
achieve good performance despite proto-
col mismatch (Fig. 5B; Supplemental Fig.
S9B). Aggregating across runs, our 95%-
confidence intervals contain the true
cell type proportions 96.7% and 91.8%
of the time in the within- and across-pro-
tocol deconvolutions, respectively.

To ensure that we obtain sensible re-
sults with real bulk RNA-seq data, we also
generated confidence intervals for the
whole blood samples analyzed in “Vali-
dation with real bulk RNA-seq data.”
We again obtain calibrated and sensible
results, with our confidence intervals
containing the truth 90.3% of the time
in theNewman et al. (2019) bulk samples
(Fig. 6A) and 95.8% of the time in the
Monaco et al. (2019) bulk samples (Fig.
6B). Although assessing their accuracy is
impossible absent ground-truth propor-
tions, we also computed confidence in-
tervals for the real bulks deconvolved in
“Analysis of real bulk organ samples” to

verify that RNA-Sieve’s confidence intervals were reasonable in tis-
sues besides whole blood. We found that these interval widths
were similar to thosewe obtained in our other trials (Supplemental
Fig. S10). The distributions of confidence interval half-widths for
cell type proportions were also generally consistent across samples
(Supplemental Fig. S11). We note that MuSiC presents a quantity
that seemingly corresponds to the variance in proportion esti-
mates, although it was not emphasized in their manuscript
(Wang et al. 2019), and we generally found the produced values
to be overly small in practice.

In principle, confidence interval widths should depend on
the number of cells and genes in the reference, the similarity

Table 5. Mean ranking of algorithms under various error metrics
combined across the two PBMC deconvolutions

RNA-Sieve DWLS Scaden CIBERSORTx SCDC NNLS

L1 1.3 2.2 2.7 4.1 4.8 6.0
L2 1.3 2.2 2.7 4.1 4.8 6.0
L∞ 1.2 2.7 2.8 3.6 4.9 5.9
KL 1.3 2.5 2.4 4.0 5.0 5.9

All six applicable methods were ranked 1 (best) to 6 (worst) across 24
bulk samples from the Newman et al. (2019) and Monaco et al. (2019)
data using the L1, L2, L∞, and KL (KL divergence) metrics, and their mean
ranks were computed. Bold values indicate the best-performing method
in the indicated deconvolutions.

B

A

C

Figure 4. Deconvolution results for real bulks from the TabulaMuris Senis. Roughly 40 real bulk samples
across 10 ages were deconvolved using RNA-Sieve in each of the limb muscle (A), bone marrow (B), and
spleen (C). In all cases, Smart-seq2 data were used as the reference. Each point represents the inferred
proportion for a given cell type in a bulk sample. Lines display the smoothed trend of proportions as a
function of age, with uncertainty shown by the shaded intervals.
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among cell types in the reference, and the agreement between ref-
erence and bulk measurements. Our empirical results suggest that
these factors indeed drive the widths of our intervals. For example,
the confidence intervals in cross-protocol deconvolutions are wid-
er than their within-protocol counterparts owing to our adaptive
procedure’s conservative nature when the reference and bulkmea-
surements differ. This arises in part because we deem fewer genes
reliable when compared to within-protocol experiments.
Evidence of the contribution of reference sample size is present
in a few organs, most notably the lung with its many low-frequen-
cy cell types.

Discussion
Here, we have introduced ourmethod for supervised bulk gene ex-
pression deconvolution, RNA-Sieve, and illustrated its robust per-
formance in a variety of settings. Unlike methods that rely on
variants of least squares or the application of complex machine
learning algorithms, we place the deconvolution problem into a

generative probabilistic framework that
models random noise in both the refer-
ence panel and bulk samples by relying
on asymptotic theory. Through simula-
tions and applications to real data, we
showed the broad applicability of our
method and its utility to investigate bio-
logical questions of interest.

It is valuable to understand how
RNA-Sieve differs from other approaches
and to consider the consequences of
these divergent design choices. Least-
squares-based solutions such as MuSiC
(Wang et al. 2019), SCDC (Dong et al.
2021), and DWLS (Tsoucas et al. 2019)
devise their own implementations of
weighted non-negative least squares
(W-NNLS). Thesemethods aim to handle
heteroskedasticity across genes by
reweighting them according to their var-
iability and specificity, allowing genes
that are more informative to carry in-
creased importance in the regression
task. Alternatively, Bisque (Jew et al.
2020) uses NNLS after applying a trans-
formation to bring the reference and
bulk data into better distributional agree-
ment. From a modeling perspective,
least-squares-based solutions generally
address uncertainty in the bulk, leaving
stochasticity in the single-cell reference
unaccounted for. Rather than devising
a specialized gene-weighting scheme,
RNA-Sieve naturally emphasizes some
genes more than others via variances re-
sulting froman explicit generativemodel
incorporating noise in both single cells
and the bulk. We also do not directly at-
tempt to bring reference and bulk data
into better agreement a là Bisque, instead
filtering genes that display significant de-
viations from our assumptions. Integrat-

ing an explicit transformation remains an interesting possibility
for RNA-Sieve. Other methods use machine learning techniques,
such as CIBERSORTx (Newman et al. 2019), which uses ν-support
vector regression, and Scaden (Menden et al. 2020), which uses
deep neural networks. Despite continuing advances in explain-
ability techniques, these approaches can be opaque to the user
because of their reliance on high-complexity algorithms that often
lack theoretical guarantees of optimality and provably accurate in-
ference. Comparatively, our formulation of RNA-Sieve as the MLE
of an explicit generativemodel is transparent in bothparameter in-
terpretation and performance guarantees. The parameters updated
during optimization have explicit biological meanings and tracing
their values allows for a deeper interrogation of the predictions
RNA-Sieve generates. This is a useful feature when providing con-
text to inferred cell type proportions as well as exploring the theo-
retical limits of deconvolution as a function of cell type properties.
Like MuSiC, SCDC, Bisque, and Scaden, we do not select marker
genes in RNA-Sieve. This helps us maintain computational effi-
ciency while simultaneously providing robustness with respect
to outlier fluctuations in gene expression. We also parallelize our

B

A

Figure 5. RNA-Sieve results with confidence intervals in pseudobulk experiments. Inferred cell type
proportions in pseudobulk experiments using data from the Tabula Muris Senis experiment for within-
protocol (Smart-seq2 for both reference and pseudobulk) (A) and across-protocol (Smart-seq2 reference
and 10x Chromium pseudobulk) (B) experiments. The black error bars on inferred proportions show the
marginal 95% confidence intervals computed from the estimated Godambe information produced by
RNA-Sieve. See “Confidence intervals” for mathematical details. Supplemental Table S2 contains the
cell types in each organ, which could not be displayed because of space constraints.
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optimization steps and jointly update parameters when decon-
volvingmultiple bulk samples. This yields significant speedups rel-
ative to serial runs and allows us to share statistical strength across
all bulks.

RNA-Sieve is embedded in a flexible generative framework,
which can be adapted to a variety of situations to make deconvo-
lution performance more effective. One of these is the modeling
of further sources of variation. For instance, if gene expression
distributions are expected to differ drastically across individuals

from which samples are taken, this knowledge can be explicitly
incorporated into our likelihood. Without such modification,
RNA-Sieve implicitly follows the paradigm of MuSiC, SCDC,
and Bisque in penalizing genes of large inter-individual variance
via the marginal variances resulting from estimation of the refer-
ence panel. A similar notion applies to mitigating potential batch
effects or effectively combining disparate references. Currently,
different reference matrices that are believed to have the same ex-
pression distributions can be averaged together to increase

B

A

Figure 6. RNA-Sieve results with confidence intervals for whole blood bulk samples with known cell type proportions. Inferred cell type proportions in
deconvolutions using PBMC references and whole blood bulks as described in “Validation with real bulk RNA-seq data”: (A) Newman et al. (2019) data; (B)
Monaco et al. (2019) data. True proportions as estimated by flow cytometry are in black, and RNA-Sieve’s inferred proportions are in red. The black error
bars on inferred proportions show themarginal 95% confidence intervals as produced by RNA-Sieve. Confidence intervals capture true proportions 90.3%
and 95.8% of the time in the respective scenarios. See “Confidence intervals” for mathematical details.
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statistical power without further modification of our present
implementation.

A principal motivation of this work was to expand the scope
of accessible questions in the deconvolution setting. Our likeli-
hood-based approach facilitates extensions that are intractable
with current algorithms. As a first step, we have chosen to show
our ability to explicitly construct confidence regions for inferred
proportions, producing a mathematically rigorous quantification
of the uncertainty in our estimates. The necessity of these bounds
is plainly substantiated by the use of deconvolution upstream of
tasks ranging from cell type–specific differential expression to
eQTL detection using heterogeneous RNA-seq organ samples.
The credibility of any such analyses is predicated on the accuracy
of deconvolution, because any errors in this initial step will prop-
agate through to the final result. Consequently, we anticipate that
our confidence regions will encourage improved assessment of the
reliability of results obtained through these types of analyses. Our
confidence intervals are also of obvious inherent valuewhen using
deconvolution results to infer differences in cell type composition
between samples, whether a result of disease status or other factors.
Beyond error quantification via confidence intervals, potent possi-
bilities lie in hypothesis testing. Currently, CIBERSORTx does pro-
pose one type of test, although our understanding is that it tests
whether any of the bulk cell types were found in the reference.
This is rather restrictive, so we hope to develop procedures with
broader utility. One example with clinical impact is a test to deter-
mine whether the reference panel is missing cell types present in
the bulk sample. Although we have shown that RNA-Sieve is ro-
bust with respect to such misspecification (see “Performance in
pseudobulk experiments”), it is nonetheless beneficial to know
whether the deconvolution performed was sufficiently valid using
a principled approach. Such a test can be directly developed in our
framework by examining the residuals produced by ourmaximum
likelihood estimate, and work in this direction is underway.

Despite the flurry of recently developed methods, the ques-
tion of statistical deconvolution of gene expression data remains
far from solved. RNA-Sieve illustrates the efficacy, adaptability, as
well as promise of generative modeling in this setting, and we
hope it spurs continued development within other methodologi-
cal paradigms. In particular, notions of error quantification and
hypothesis testing merit further attention.

Methods
Here, we present the mathematical details of RNA-Sieve. For the
reader interested in high-level guidance on the use RNA-Sieve
and preprocessing steps, we compiled Supplemental Table S3 as
an overview.

Notation

To ease the parsing of equations, we introduce our notation here.
We generally refer to vector quantities with boldfaced lowercase
letters, and plain lowercase and uppercase symbols are reserved
for scalars (or scalar functions) and matrices, respectively. The
kth column vector of a matrix A= (aij)ij is written as ak, and inner
products between vectors v,w are typically denoted v,w〈 〉. To dis-
tinguish observed, random quantities from the underlying deter-
ministic, ground-truth objects, we add tildes to the former and
asterisks to the latter; for example, b̃ are observed bulk gene ex-
pressions and b∗ are the true bulk gene expression means.
Estimates of latent parameters carry hats; for example, â is the vec-
tor of mixture weights inferred by our deconvolution procedure.

Finally, we denote by [n] the set of n elements {1, …, n}, and by
DK−1 = {x [ RK: ‖ x ‖1= 1 and xk ≥ 0 for all k} the K−1 dimen-
sional simplex.

Mathematical model

We assume that for each gene g∈ [G] and cell type k∈ [K ], there ex-
ists a distribution νg,k describing the expression of gene g in cell
type k. Because multiple cell types compose any given organ, the
expression of gene g in a cell drawn at random from an organ is
governed by the mixture distribution

rg =
∑K
k=1

a∗
kng,k, (2)

where a∗ = (a∗
k)k[[K] [ DK−1 contains the proportions of each cell

type in the organ of interest. Despite the a priori infinite-dimen-
sional setting, if G>K and ρg, {νg,k}k∈[K ] are fully known and suffi-
ciently distinct, the convex combination of Equation 2
immediately implies that α∗ can be recovered as the unique solu-
tion of the finite-dimensional problem
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︸
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, (3)

where f is any suitable linear function on the space of probability
distributions on R (i.e., f

∑
j wjmj

( )
=∑

j wjf (mj) for any convex
combination of distributions μj). Natural f to consider include
point evaluations at x∈R; that is, f (n) = Fn(x), where Fn denotes
the cumulative distribution function (CDF) of ν, or its ithmoments
f (n) = �

xin(dx), both of which enjoy a wealth of statistical theory
and proposed estimators. In experimental settings, exact gene ex-
pression distributions are not accessible and must be estimated, so
utilizing easily and robustly inferable f is crucial. In addition to a
lack of direct access to {ρg}g∈[G], any analysis is further complicated
by the fact that bulk sequencing only yields gene expression levels
overwhole samples andnot for particular cells or cell types. That is,
the output is effectively a random variable Xg =

∑n
i=1 Xg,i where

Xg,i �iid rg , which gives themeasured expression of gene g aggregated
over the n∈N individual cells composing the sample. It is thus ex-
pedient to choose an f in Equation 3 that is not only linear on the
space of probability distributions, but also for sums of random
variables. The essentially unique such f is the expectation f (ν) =
EX∼ν X, which turns Equation 3 into

Ma = b
n
, where mg,k = EY�ng,kY and bg = EXg . (4)

Incorporating the fact that we only observe noisy bulk sam-
ples Xg instead of bg directly results in

b̃
n
= (b+ 1b)

n
= Ma+ 1b

n
, (5)

where (1b)g � Xg − bg =
∑n

i=1 (Xg,i − bg/n) � N (0, n · s2
g (M, a, S))

for large n by the central limit theorem (CLT), with
s2
g (M, a, S) := Var(rg ) as a function of M, α, and S= (sg,k)g,k :=

Var(νg,k).

Incorporating the dependence of s2
g on α

If the dependence of s2
g on α is ignored, Equation 5 lends itself to a

simple (weighted) non-negative least-squares scheme solving

Ma = b̃
n
. (6)
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This yields a solution âLS with ‖ âLS ‖1≈ 1 that simply re-
quires rescaling to fit onto the simplex. This together with data-
driven modifications is the approach pursued in Dong et al.
(2021), Tsoucas et al. (2019), andWang et al. (2019), where it is ar-
gued that Equation 6 outperforms previous methods.

The first improvement of RNA-Sieve over prior approaches
stems from explicitly incorporating the dependence of s2

g on α.
More concretely, we compute

s2
g = s2

g (M, a, S) = Var(rg ) = EX�rg X
2 − (EX�rg X)

2

=
∑K
k=1

a∗
kEY�ng,kY

2

( )
− b2g

=
∑K
k=1

a∗
k[sg,k +m2

g,k]

( )
− b2g .

(7)

The likelihood of observing data b̃ then follows from the cen-
tral limit theorem:

Pa,n
M,S(b̃ [ dp) =

∏G
g=1

1�������������������
2pns2

g (M, a, S)
√ exp

−[ pg − n(Ma)g ]
2

2ns2
g (M, a, S)

{ }
. (8)

Accounting for uncertainty in the design matrix

The preceding assumes exact knowledge of the individual distribu-
tions νg,k (or rather their expectationsmg,k), which is implausible in
experimental settings. Instead, M needs to be estimated from data
through some estimator M̃, which we conveniently take to be the
sample mean of expression across cells within each cell type,

m̃g,k = 1
ck

∑ck
i=1

Ci
g,k, where Ci

g,k �
iid
ng,k, and ck denotes the number of

single cells of cell type k. With this additional correction,
Equation 5 becomes

b̃
n
= M̃a+ 1b

n
and M̃ = M + 1M (9)

where ɛM is a matrix of entries (ɛM)g,k independently following
N (0, sg,k/ck) distributions. The second major difference between
RNA-Sieve and existing tools, especially those based on least-
squares methods, is the correction of the least-squares-type likeli-
hood (Equation 8) by this stochasticity in the design matrix:

Pa,n,c
M,S (b̃[dp, M̃[dO)=

∏G
g=1

1������������������
2pns2

g (M,a,S)
√ exp

−[pg−n(Ma)g ]
2

2ns2
g (M,a,S)

{ }

×
∏

g[[G],k[[K]

1�����������
2psg,k/ck

√ exp
−(og,k−mg,k)

2

2sg,k/ck

{ }
.

(10)

Our method uses the likelihood shown in Equation 10, the
suitability of which depends on a few implicit assumptions that
are worth examining. The first is that the large number of cells as-
sayed in an experiment permits us to use asymptotic theory and
apply the classical CLT. As a result, we can write down a likelihood
for our observations using normal distributions as long as Var(νg,k)
<∞, which is true because gene expression profiles are necessarily
bounded. Second, we suppose that the errors arising from estimat-
ing b andM are independent. This is appropriate because the bulk
and single-cell experiments are performed separately. We addi-
tionally presume that expression levels in different genes are inde-
pendent, as are those in different cells. It is unclear whether the
latter is completely true in practice, although there is little evi-

dence to the contrary. On the other hand, expression levels across
genes within samples (either bulk or individual cells) are liable to
be somewhat dependent owing to expression coregulation and
the nature of the sampling process performed in RNA-seq. Given
the large number of genes assayed, the latter codependence is
apt to be fairly small. Meanwhile, coexpression estimation in sin-
gle cells remains an open problem independent of deconvolution
tasks, and so is not accounted for in RNA-Sieve. Once correlation
structure is known, however, it may be incorporated into our pro-
posed likelihood. Last, the parameter n is meaningful in within-
protocol deconvolutions butmay require additional interpretation
in cross-protocol settings. A discussion can be found in
Supplemental Text S1.4 and Supplemental Figure S12.

Joint deconvolution of multiple bulk samples

If it is known that multiple bulk gene expression vectors share
the same constituent cell type expression profiles, we can
gain statistical strength and decrease the computational burden
by inferring their mixture proportions jointly rather than individ-
ually. Assuming statistical independence of the bulk sample
observations, we simply augment the likelihood in Equation 10
by including the N−1 additional mixtures in
A = (a1, . . . , aN ) [ RK×N , B̃ = (b̃1, . . . , b̃N ) [ RG×N and n= (n1,
…, nN):

Pa,n,c
M,S (B̃ [ dP, M̃ [ dO) =

∏N
b=1

∏G
g=1

1���������������������
2pnbs2

g (M, ab, S)
√ exp

−[(pb)g − nb(Mab)g ]
2

2nbs2
g (M, ab, S)

{ }

×
∏

g[[G],k[[K]

1�����������
2psg,k/ck

√ exp
−(og,k −mg,k)

2

2sg,k/ck

{ }
.

(11)

The resultant increase in power depends solely on the statis-
tical independence of distinct bulk samples rather than their re-
spective cell type compositions. In fact, samples of dissimilar
compositions are preferable because they provide nonredundant
information. Conversely, bulk samples exhibiting heterogeneity
in gene expression patterns (e.g., through differential expression)
without corresponding reference matrices M amount to model
misspecification, and thus may negatively impact inference.
This impediment is a mathematically unavoidable challenge for
all deconvolution methods. In our particular applications, we
did not find a strong effect of sample heterogeneity on our re-
sults; for instance, simultaneous deconvolution with mice of dif-
ferent ages yielded highly similar results as when we stratified by
age. In the case of cell types with strong expression differences
across different phenotypes, this may not hold, however.

Data pre-processing procedure

Beyond a simple, largely standard cell filtering and normalization
scheme (Supplemental Text S1.5), we implemented two additional
gene filtering steps that improve robustness to cross-protocol dif-
ferences in gene expression measurements. The motivation be-
hind these steps is as follows:

1. As a convex combination of expression levels fromdifferent cell
types (under our generative model [Equation 10]), a gene’s true
expression bg must lie between its smallest and largest corre-
sponding expressionsmg,k across cell types k∈ [K ], which natu-
rally motivates a filtering scheme based on violations of these
constraints. Of course, these inequalities do not necessarily
hold in the presence of observational noise, which may push
a gene’s bulk expression outside of its theoretical extremes.
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However, a stochastic version exists in which

Pa,n,c
M,S d b̃g , min

k[[K]
m̃g,k, max

k[[K]
m̃g,k

[ ]( )
≥ t

[ ]
(12)

decays in t with sub-Gaussian tails (with constants depend-
ing on {σg,k}k∈[K ]), where d( p, A) = inf

a[A
| p− a| is the shortest

distance of the point p to a set A. It is thus plausible to filter
out all genes forwhichEquation 12 is sufficiently small (in prin-
ciple, computing the precise tail bounds [Equation 12] requires
access to the true parameter α, which before deconvolution is
not available; however, reasonable upper bounds of Equation
12 can be calculated independently of α).

2. Gene expression profiles often experience shifts when mea-
sured with distinct protocols. For example, mean and vari-
ance estimates of some gene expression levels may correlate
little, or even not at all, across data generated using Smart-
seq2, UMI-based, or bulk RNA-seq technologies. To identify
and remove these genes, we resort to a handful of empirically
effective filtering steps. Specifically, we remove a gene if it
presents as an outlier (as measured by median absolute devi-
ations from the median) in any of the following summary
statistics:

TM (g) = max
k[[K]

m̂g,k, TS(g) = max
k[[K]

ŝg,k,

RS/M (g) = max
k[[K]

ŝ
1
2
g,k

m̂g,k
= max

k[[K]
cV (Cg,k), Rb/M (g) = min

k[[K]

b̂g
m̂g,k

,

(13)

where cV (Cg,k) denotes the coefficient of variation associated
with expression profiles of gene g in cell type k. Although the
choice of these summary statistics was primarily guided by
empirical considerations, they do reveal intuitively plausible
and previously observed patterns: TM, TS, and RS/M reflect
the fact that severe overexpression or underexpression, or
high degrees of variability in expression are not well-pre-
served across protocols, whereas Rb/M (g) = b̂g/maxk[[K]m̂g,k

directly assesses any abnormal conversion factors between
bulk and reference protocols.

In our experience, applying these filters based on Equations
12 and 13 on top of the basic cell filter retains between 3000−
12,000 genes on which to perform deconvolution.

Optimization and estimation

We estimate α, the cell type proportions for a given bulk sample,
using the MLE that arises from maximizing Equation 10. Given
the number of free parameters (GK+K in total, corresponding to
M, α, and n) and structure of the likelihood, this is nontrivial,
with standard optimization schemes commonly failing or return-
ing suboptimal solutions. On its face, the shape of Equation 10 is
reminiscent of loss functions appearing in so-called total least-
squares formulations, for example in Golub and Van Loan
(1980), whose minimizers can typically be found through SVD-
based solutions. However, entry-wise uncertainties ɛM and the de-
pendence of ɛb on α render such spectral tools inapplicable to our
setting; indeed, the corresponding linear algebraic problem con-
sists of finding low-rank approximations to the concatenation of
M andb in a Frobenius normwith α-dependent weights, for which
no satisfactory theory exists. We thus propose an alternatingmax-
imization scheme that iteratively estimates and updates α, M, and
n (and consequently s2

g ) via a combination of quadratic program-
ming and gradient descent. Despite the increased computational
burden relative toW-NNLS or similar techniques,we find that con-

vergence times remain reasonable, requiring between 15 and 40
min on typical data sets of 10,000+ genes and six cell types using
a modern laptop computer. We sketch an overview of our optimi-
zation procedure below in Algorithm 1 (where Pa,n,c

M,S|s2(M ′ ,a′ ,S) refers
to Equation 10 with σ2 (M, α, S) kept fixed at σ2 (M

′
, α

′
, S)).

Algorithm 1: Find MLE of α

Data: Single-cell expression vectors {ỹk,i }k[[K],i[[ck ] , RG, bulk gene
expression vector b̃ [ RG

Result: Mixture proportions {âk}k[[K] of cell types in the bulk, number
of cells n̂ [ R+ in bulk, mean expression M̂ [ RG×K of cell types

1 begin

2 m̃g,k 
 1
ck

∑ck
i=1

(ỹg)k,i , sg,k

1
ck

∑ck
i=1

((ỹg)k,i − m̃g,k)
2

3 a0
argmina[RK
+

M̃a− b̃
∥∥∥ ∥∥∥2

2
,n0
 a0‖ ‖1,a0
a0/ a0‖ ‖1M0
M̃

4 while Pa j+1,n j+1,c
Mj+1,S

(dM̃, db̃)− Pa j,n j,c
Mj,S

(dM̃, db̃) . d do

5 Mj+1 
 argmaxM Pa,nj ,c
M,S|s2(Mj ,aj ,S)

(dM̃, db̃)

6 a j+1 
 argmaxa[DK−1 Pa,nj ,c
Mj+1 ,S|s2(Mj+1 ,aj ,S)

(dM̃, db̃)

7 n j+1 
 argmaxn[R+ Pa j+1 ,n,c
Mj+1 ,S

(dM̃, db̃)
8 end
9 (αℓ, Mℓ, nℓ)← Last (αj, Mj, nj) iterate returned in line 7
10 while Paℓ+1 ,nℓ+1 ,c

Mℓ+1,S
(dṼ, db̃)− Paℓ ,nℓ ,c

Mℓ,S
(dṼ, db̃) . d do

11 Mℓ+1 
 argmaxM Paℓ ,nℓ ,c
M,S (dṼ, db̃)

12 aℓ+1 
 argmaxa[DK−1 Pa,nℓ ,c
Mℓ+1,S

(dṼ, db̃)

13 nℓ+1 
 argmaxn[R+ Paℓ+1,n,c
Mℓ+1 ,S

(dM̃, db̃)
14 end
15 (â, M̂, n̂) 
 Last iterate returned in line 13

16 â 
 argmina[DK−1 M̂a− b̃
∥∥∥ ∥∥∥2

s2(M̂,â,S)

17 Return (â, M̂, n̂).
18 end

Implementations of Algorithm 1 are currently available in
Python and Mathematica. Both use standard design choices
when implementing MLEs (for details, see Supplemental Text
S1.6).

Confidence intervals

As indicated in “Extension to confidence regions,” the explicit gen-
erativemodelingof Equation10 allows us tonot only computepre-
cise point estimators of α and n, but also to quantify this precision
through confidence regions.More concretely, becauseourmodel is
well-behaved in the senseof satisfyingall assumptions in, for exam-
ple, Theorem 9.14 of Keener (2011), we expect our estimates â and
n̂ to be distributed normally around the true configuration α∗, n∗

with covariance matrix given by the inverse of the Fisher informa-
tion IcM,S(a

∗, n∗) ≈ Ic
M̂,S

(â, n̂). Given such asymptotic normality, it is

straightforward to construct both marginal confidence intervals
(from the diagonal entries of [Ic

M̂,S
]−1) and K-dimensional confi-

dence regions around â. Generically, there are infinitelymanypos-
sibilities for choosing such confidence regions from Ic

M̂,S
(â, n̂), so

we provide the entire (inverse) Fisher information to the user to al-
lowcomputationof theirpreferred confidencevolume.Oneoption
is the canonical (i.e., Lebesgue volume-minimizing) q-confidence

region Cq = a [ RK−1
+ :

∑K−1
k=1 ak ≤ 1, ‖ a− â ‖2Ic

M̂,S
≤ F−1

x2K−1
(q)

{ }
,

where v‖ ‖S= v,S−1v
〈 〉

is the Mahalanobis norm of v associated

with covariance matrix Σ, Fx2K−1
denotes the CDF of a χ2 variable

with K−1 degrees of freedom, and where we reparameterize α
to account for the simplex constraint in our computation of the
Fisher information matrix; we compute this option by default.
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Confidence intervals derived in this manner are, as a conse-
quence of the aforementioned Theorem 9.14 in Keener (2011),
necessarily well-calibrated if data adhere to our generative model
(Equation 10). As observed in “Data pre-processing procedure,”
this may not hold when protocol differences in the reference
and bulk experiments induce significant distributional shifts.
Nonetheless, we can still provide conservative, yet well-calibrated,
confidence regions by generalizing the Fisher information
Ic
M̂,S

(â, n̂) to the Godambe information matrix Gc
M̂,S

(â, n̂) of the
data (Godambe 1960). If protocol mismatches result in the true
generating distribution Q of the data not lying within our model
family M = {Pa,n,c

M,S }(M,a,n)[Q, where Θ,RG·K+(K−1)+1 is the space of
all possible parameter configurations, then Gc

M̂,S
(â, n̂) describes

the Gaussian fluctuations of (â, n̂) around the KL-projection of Q
onto M; that is, (ap, np, Mp) = arg min(a,n,M)[Q KL(Q ‖ Pa,n,c

M,S ),
where KL(n ‖ m) denotes the Kullback-Leibler between two prob-
ability distributions ν and μ. Thus confidence regions for â based
on Gc

M̂,S
(â, n̂) are still well-calibrated, assuming that a∗ ≈ ap,

which is plausible given that distributional shifts induced by pro-
tocol differences appear to affect expression means (the entries of
M) primarily through global scaling. In the absence of distribu-
tional mismatches, the Godambe information matrix Gc

M̂,S
(â, n̂)

collapses to the (empirical) Fisher information matrix Ic
M̂,S

(â, n̂),
and our confidence region estimation proceeds through
Gc

M̂,S
(â, n̂) in both within- and cross-protocol settings by default,

although the user may still choose the more conservative option.
Occasionally, especially when constituent cell types are closely re-
lated to each other, the resulting covariance matrices may be near-
ly singular, making their inversion computationally difficult. To
overcome potential numerical instabilities, we subsample genes
based on their residual values. This reduces the probability of col-
linearities and produces more well-behaved confidence intervals.
Simulations both across and within protocols confirm the utility
of our confidence regions, and therefore the validity of the
ap ≈ a∗ assumption, assessed in this manner (cf. Fig. 5).

Benchmarking procedures

We used two distinct approaches to benchmark computational
deconvolution methods. The first, performing “pseudobulk” ex-
periments, is a common strategy that aggregates scRNA-seq mea-
surements across cells to construct gene expression mixtures
with known cell type proportions. For this task, we used data
from the Tabula Muris Senis Consortium, which covers many or-
gans/tissues and cell types in twodifferent single-cell experimental
protocols: Smart-seq2 and 10x Genomics Chromium. Specifically,
we used bladder, kidney, large intestine, limb muscle, liver, lung,
mammary gland,marrow, pancreas, skin, thymus, tongue, and tra-
chea in these in silico experiments (Supplemental Table S2). For
each tissue, four different deconvolutions were performed. For
cross-protocol deconvolutions, one in which the reference came
from Smart-seq2 data with 10x Chromium pseudobulk and one
in the reverse configuration. For within-protocol deconvolutions,
the reference and pseudobulk were built using (nonoverlapping)
cells from the same protocol. For all pseudobulk deconvolution
scenarios, a single reference set and pseudobulk was constructed.
All eligible cells from each protocol were used. For scRNA-seq
data from Tabula Muris Senis, the cell filtering procedure described
in “Data pre-processing procedure” was applied.

Our second approach exploited the availability of bulk RNA-
seq data sets with known cell type proportions. For the PBMC and
neutrophil scRNA-seq data sets, cells were filtered after manual in-
spection. Owing to the large number of neutrophils available, 250
cells were randomly sampled from one individual for use with the
Newman et al. (2019) reference and 1250 across three individuals

were randomly sampled for use with the 10x Genomics reference.
We considered four different scenarios:

1. Breast cancer and fibroblast cell lines and mixture from Dong
et al. (2021);

2. Reference PBMCs and neutrophils from Newman et al. (2019)
and Xie et al. (2020), respectively, with bulk whole blood
from Newman et al. (2019);

3. Reference PBMCs and neutrophils from 10x Genomics and Xie
et al. (2020), respectively, with bulk whole blood fromMonaco
et al. (2019); and

4. Pancreatic islets from Xin et al. (2016) and Fadista et al. (2014).

The same data were used for all algorithms in each deconvolution,
and all were run as described in their respective tutorials using de-
fault settings unless otherwise noted.WhenMuSiCwas run, NNLS
results were taken from MuSiC’s implementation; otherwise, the
DWLS implementation was used. The corresponding scRNA-seq
and bulk RNA-seq data files are available at the Song Laboratory
GitHub repository (https://github.com/songlab-cal/rna-sieve).

We used the L1, L2, and L∞ distances, in addition to the
Kullback-Leibler (KL) divergence, as our performance metrics for
their ease of interpretation and ability to capture different aspects
of algorithmperformance.Whereas the L1 and L2 distances, which
we further average across cell types, relate to common error no-
tions such as the mean absolute deviation and root-mean-square
error, the L∞ distance measures the largest difference between
true and inferred values across all cell types and quantifies the
worst-case performance in a deconvolution task. The KL diver-
gence is a popular manner by which to compare probability distri-
butions and naturally applies to the interpretation of cell type
proportions as sampling probabilities for an individual cell. It is
also more sensitive to rarer cell types than the other considered
metrics. We compute KL(â ‖ a∗) rather than KL(a∗ ‖ â) because
it corresponds to the false positive rate when testing H0 :α=α∗

against H1:a = â through a likelihood ratio test, making it more
relevant.

Data sets

All data used are publicly available and described in Supplemental
Table S4, with accession numbers included.

Software availability

RNA-Sieve is implemented in both Python and Mathematica and
is provided as Supplemental Code. For the most recent version of
the software, please visit the Song Laboratory GitHub repository
(https://github.com/songlab-cal/rna-sieve).
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