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Alternative polyadenylation (APA) is a major mechanism of post-transcriptional regulation in various cellular processes in-

cluding cell proliferation anddifferentiation, but theAPAheterogeneity among single cells remains largely unknown. Single-

cell RNAsequencing (scRNA-seq) has been extensively used todefine cell subpopulations at the transcription level. Yet,most

scRNA-seq data have not been analyzed in an “APA-aware”manner. Here, we introduce dynamic analysis of APA from sin-

gle-cell RNA-seq (scDaPars), a bioinformatics algorithm to accurately quantify APA events at both single-cell and single-

gene resolution using either 3′-end (10x Chromium) or full-length (Smart-seq2) scRNA-seq data. Validations in both real

and simulated data indicate that scDaPars can robustly recover missing APA events caused by the low amounts of mRNA

sequenced in single cells. When applied to cancer and human endoderm differentiation data, scDaPars not only revealed

cell-type-specific APA regulation but also identified cell subpopulations that are otherwise invisible to conventional gene

expression analysis. Thus, scDaPars will enable us to understand cellular heterogeneity at the post-transcriptional APA level.

[Supplemental material is available for this article.]

Alternative polyadenylation (APA) is a major mechanism of post-
transcriptional regulation under diverse physiological and patho-
logical conditions (Elkon et al. 2013; Tian and Manley 2017).
The process of polyadenylation involves endonucleolytic cleavage
of the nascent RNA followed by synthesis of a poly(A) tail on the
3′ terminus (Tian andManley 2017). By using different polyadeny-
lation sites [poly(A) sites], which are defined by flanking RNA
sequence motifs, APA can generate mRNA isoforms with various
3′ untranslated regions (3′ UTRs) in the majority of human genes
(Derti et al. 2012; Tian and Manley 2017). Although APA in most
cases does not alter the protein-coding regions in those mRNA iso-
forms, it disrupts important cis-regulatory elements located in the
3′ UTRs, including adenylate-uridylate-rich elements (AREs) and
binding sites ofmiRNAs and RNA-binding proteins, resulting in al-
tered mRNA stability, localization, and translation efficiency
(Garneau et al. 2007; An et al. 2008; Hoffman et al. 2016).

High-throughput sequencing technologies have revolution-
ized our understanding of APA over the last decade, illustrating
both the pervasiveness of dynamic APA events and complexity
of the APA regulatory processes. Recently, multiple studies have
shed light on the global regulation of APA in response to changes
in cell proliferation and cell differentiation in human diseases, in-
cluding cancer (Tian andManley 2017; Gruber and Zavolan 2019).
Both proliferating cells and transformed cells often express a mul-
titude of alternative mRNA isoforms with shortened 3′ UTRs
through APA (Sandberg et al. 2008), leading to the activation of
several proto-oncogenes such as CCND1, by escaping miRNA-me-
diated repression (Mayr and Bartel 2009). On the other hand, 3′

UTR lengthening is more prevalent in cell differentiation (Ji et al.
2009; Ji and Tian 2009). For example, progressive 3′ UTR lengthen-

ing is observed during mouse embryonic development (Ji et al.
2009), and the generation of induced pluripotent stem cells
(iPSCs; dedifferentiation) is accompanied by global 3′ UTR short-
ening (Ji and Tian 2009). Besides regulating cognate transcripts
in cis, APA-induced 3′ UTR changes can also disrupt competing en-
dogenous RNA (ceRNA) regulation in trans, thus repressing several
crucial tumor suppressors such as PTEN in breast cancer (Park et al.
2018). Although these observations imply a possible cell-state- or
cell-type-dependent manner of APA regulation, the variability of
APA among individual cells and the utility of APA in revealing nov-
el cell subpopulations remain largely unknown.

Single-cell RNA sequencing (scRNA-seq) has become one of
the most widely used technologies in biomedical research by pro-
viding an unprecedented opportunity to quantify the abundance
of diverse transcript isoforms among individual cells (Shapiro et al.
2013; Saliba et al. 2014). However, methods to quantify relative
APA usage across single cells remain underdeveloped. Recently,
Velten et al. (2015) developed an experimental protocol, BATseq,
to quantify various 3′UTR isoforms at the single-cell resolution.
By integrating the standard scRNA-seq protocol and the 3′ en-
riched bulk RNA-seq protocol, Velten et al. (2015) found that cell
types can be well separated based exclusively on their 3′ UTR iso-
form usage, indicating that APA is a molecular feature intrinsic
to cell states. Although a compelling method, BATseq is hampered
by its low sensitivity (∼5%) andhigh procedural complexity (Chen
et al. 2017), thereby not being widely adopted in practice. In con-
trast, standard scRNA-seq data are widely available, yet most of the
scRNA-seq data have not been analyzed in an “APA-aware” man-
ner. Because scRNA-seq only captures a small fraction (typically
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5%–15%) of the total mRNAs in each cell
(Stegle et al. 2015), it can falsely quantify
genes, especially lowly expressed ones,
as unexpressed; this phenomenon is
termed as “dropout.” Existing bulk
RNA-seq-based APA methods such as
DaPars (Xia et al. 2014) cannot overcome
this vexing challenge when applied
directly to scRNA-seq data, as they would
lead to a high degree of sparsity in the re-
sulting APA profiles. To address this spar-
sity, recently published computational
approaches such as scDAPA (Ye et al.
2020) and scAPA (Shulman and Elkon
2019) extract and combine reads from
cells aggregated based on predefined
cell types. Alternatively, another study
(Kim et al. 2019) aggregates individual
genes into “metagenes” with reference
to common functionality. Although
these strategies cope with the problem
of sparsity to some extent, they fail to re-
tain the single-cell or single-gene resolu-
tion (Supplemental Table S1).

To fill this knowledge gap, we
developed dynamic analysis of alterna-
tive polyadenylation from scRNA-seq
(scDaPars), a bioinformatics algorithm
for quantifying and recovering APA us-
age at the single-cell and single-gene res-
olution using standard scRNA-seq data.
Because APA is reported to be regulated
in a cell-state- or cell-type-specific man-
ner, scDaPars uses a regression model
that enables sharing of APA information
across related cells to tackle the sparsity, achieving considerable ro-
bustness when applied to noisy scRNA-seq data. In addition, un-
like scDAPA and scAPA, which are only applicable to 3′-end
scRNA-seq data sets, scDaPars can be applied to both 3′-end and
full-length scRNA-seq data. To the best of our knowledge, scDaPars
is the first single-cell- and single-gene-level APA quantification
method for analyzing standard scRNA-seq data.

Results

Overview of the scDaPars algorithm

Figure 1 presents a schematic illustration of the scDaPars algorithm
(for detailed definition and computational procedures, see Meth-
ods). Given a scRNA-seq data set, scDaPars first calculates raw rela-
tive APA usage, measured by the percentage of distal poly(A) site
usage index (PDUI), based on the two-poly(A)-site model intro-
duced in DaPars (Xia et al. 2014). scDaPars takes scRNA-seq ge-
nome coverage data as input and forms a linear regression model
to jointly infer the exact location of proximal poly(A) sites bymin-
imizing the deviation between the observed read density and the
expected read density in all single cells. The relative APA usage is
then quantified as the proportion of the estimated abundances
of transcripts with distal poly(A) sites (longer 3′ UTRs) out of all
transcripts (longer and shorter 3′ UTRs), and therefore, genes favor-
ing distal poly(A) site usage (long 3′ UTRs) will have PDUI values
near one, whereas genes favoring proximal poly(A) site usage

(short 3′ UTRs) will have PDUI values near zero. This step (step I)
will generate a PDUI matrix with rows representing genes and col-
umns representing single cells. Of note, the raw PDUI values can
only be estimated for genes with sufficient read coverages (default
coverage of five reads per base), which automatically separates
genes into robust genes (genes unaffected by dropout events)
and dropout genes for further analysis. Because of the intrinsically
low coverage of scRNA-seq data (Brennecke et al. 2013), the result-
ing PDUI matrix from step I is overly sparse with widespread miss-
ing data. To further recover the complete PDUI matrix
independent of gene expression, we develop a new imputation
method by sharing APA information across different cells. For a
given cell, scDaPars begins by constructing a nearest neighbor
graph based on the sparse PDUI matrix generated in step I (Fig.
1) to identify a pool of candidate neighboring cells that have sim-
ilar APA profiles (step II). Finally, scDaPars uses a nonnegative least
square (NNLS) regression model to refine neighboring cells based
on robust genes and then borrow APA information in these neigh-
boring cells to impute PDUIs of dropout genes in each cell (step III).

Evaluation of the accuracy and robustness of scDaPars

To quantitatively evaluate the accuracy of imputed APA usage by
scDaPars, we used 384 scRNA-seq libraries of individual humanpe-
ripheral blood cells (PBMCs) sequenced by a Smart-seq2 (Picelli
et al. 2013) protocol and a matched bulk RNA-seq library from a
benchmark study by Ding et al. (2020). Because we can estimate

Figure 1. A schematic illustration of the scDaPars algorithm. (I) scDaPars predicts both distal and prox-
imal poly(A) sites by joint analysis of all single-cell samples and quantifies the raw relative APA usage by
the proportion of estimated abundances of transcripts with distal poly(A) sites (long isoform). (II)
scDaPars determines potential neighboring cells by applying community detection methods in APA pro-
files generated in step I. (III) scDaPars uses the NNLS regression model to refine neighboring cells and
impute missing values by borrowing APA information from neighboring cells.
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poly(A) sites and quantify differential poly(A) sites usagewith high
sensitivity and specificity in bulk RNA-seq data sets (Xia et al.
2014), we treated the results from the matched bulk sample as
the pseudo-gold-standard for the following evaluation.

First, we showed that scDaPars reliably identified the location
of proximal poly(A) sites in single cells. We found that ∼84% of
poly(A) sites predicted from scRNA-seq data are within 100 bp of
those predicted in bulk, whereas only ∼44% of randomly selected
sites from3′ UTR regions arewithin 100 bp of bulk predictions (Fig.
2A). We found that ∼66.2% of poly(A) sites predicted from scRNA-
seq data also overlapped with annotated poly(A) sites complied
from RefSeq, Ensembl, UCSC gene models, and poly(A)_DB
(Wang et al. 2018) within 100 bp, and this overlap showed an ap-
proximately fivefold enrichment compared with random sites
(Fig. 2B). In addition, canonical poly(A) signal (PAS) AATAAA
was successfully identified by de novo motif analysis (Bailey
2011) within the upstream (−100 bp) sequence of single-cell pre-
dicted poly(A) sites with a P-value (P= 1.2 ×10−44) similar to that
of bulk samples (P=5.4 ×10−48) (Fig. 2C; Supplemental Fig. S1),
supporting the validity of scDaPars’s prediction of poly(A) sites.

Next, we showed that scDaPars was able to recover APA usage
for genes affected by dropouts in scRNA-seq data. APA is found to
be uniquely regulated in distinct immune cell types in PBMCs
(Kim et al. 2019). Yet the median Pearson’s correlation between
APA (PDUI values) of single-cell pairs in the same B cell cluster is
only 0.46 when PDUI values were calculated by DaPars (our previ-
ous method for bulk RNA-seq) owing to dropout effects (Fig. 2D).

In contrast, scDaPars successfully recovered PDUI values for
most of the affected dropout genes (Supplemental Fig. S2) and
increased the median cell–cell correlation by a large margin
(0.79; P< 2.2 ×10−16) (Fig. 2D). We further compared the average
APAusage of all single cells with the bulk results. The Pearson’s cor-
relation between the average PDUI values of single cells and those
of the bulk increased from 0.74 to 0.82 after scDaPars imputation
(Fig. 2E). Notably, even though the correlation increase was not
large, the regression slope increased significantly from 0.59
(DaPars) to 0.8 (scDaPars; P=4.89×10−26), indicating APA usage
quantified by scDaPars better represents the linear relationship be-
tween the average of single cells and the corresponding bulk.

Finally, we used a simulation study to illustrate scDaPars’s
ability to identify dynamic APA events (see Methods) between
two cell types.We created a synthetic PDUImatrix of naive and ac-
tivated CD4 T cells based on bulk RNA-seq data from theDICE pro-
ject (see Methods; Schmiedel et al. 2018). The naive and activated
CD4 T cells are clearly distinguishable using the reference APA pro-
files estimated from bulk samples (Fig. 3A). Additionally, the refer-
ence data showed a strong inclination of 3′ UTR shortening in
activatedCD4 T cells (P=3.8 ×10−4) (Fig. 3D), in linewith previous
reports that 3′ UTR shortening is widely observed upon activation
of T cells (Sandberg et al. 2008). However, manually introduced
dropout events obscured this differential 3′ UTR pattern, in which
only ∼38% of differential APA genes remained, and the two cell
types became less separated by their APA profiles (Fig. 3B,E). After
we applied the imputation steps of scDaPars, ∼79% of differential

APA genes are recovered, and the clear
separation of these two cell types was re-
stored (Fig. 3C,F). We further examined
the robustness of scDaPars against vary-
ing dropout rates. Even though the accu-
racy of dynamic APA events identified by
scDaPars decreased as the dropout rate in-
creased, scDaPars could still achieve a
>0.75 area under the receiver operating
characteristics (ROC) curve when the
proportion of dropout events was as
high as 70% (Supplemental Fig. S3).

scDaPars outperforms existing methods

by providing single-cell-resolution APA

quantification applicable to both 3′-end
and full-length scRNA-seq data

Several bioinformatics tools have been
developed to analyze APA usage using
scRNA-seq data (i.e., scDAPA [Ye et al.
2020] and scAPA [Shulman and Elkon
2019]), yet, unlike scDaPars, they were
not designed to quantify APA usage at
the single-cell resolution. During the
preparation of this paper, we noticed an-
other method, Sierra (Patrick et al. 2020),
that detects differential transcript usage
in scRNA-seq data may also be used for
quantifying dynamic APA events. To il-
lustrate the superiority of scDaPars over
these existing methods, we applied
scDaPars, scAPA, and Sierra to a bench-
mark 10x Chromium data set containing
902 single cells from three lung

E
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D

Figure 2. Evaluation of APA detection accuracy of scDaPars using human PBMCs data sets. (A) Fraction
of poly(A) sites predicted in matched bulk RNA-seq data recovered in single cells using scDaPars or ran-
dom control. Poly(A) sites predicted in scRNA-seq are considered true if they are located within cutoff
distance from the bulk results. The cutoffs range from 0 to 100 bp with 10-bp increments. (B)
Percentage of scDaPars predicted poly(A) sites or random control overlapped with annotated poly(A)
sites from RefSeq, Ensembl, UCSC gene models, and poly(A)_DB. The confidence interval was derived
by taking random sites 10 times. (C) The top-scoring signal identified by de novo motif analysis
(DREME) from the upstream (−100 bp) of scDaPars predicted poly(A) sites from single cells. (D) Box
plot showing Pearson’s correlations between PDUI values of B cell pairs estimated by DaPars and
scDaPars (Wilcoxon test P<2.2 ×10−16). (E) Scatter plots of PDUI values between the average of all single
cells and bulk results estimated by DaPars (left) and scDaPars (right). Red line represents the theoretical
linear relationships between bulk and average of all single-cell PDUIs, and blue represents the actual linear
relationships estimated from data.
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adenocarcinoma cell lines (see Methods; Tian et al. 2019). scDAPA
was excluded from this study because it identifies APA events by
pair-wise comparison without quantifying APA usage. scDaPars
outperformed both scAPA and Sierra by generating clear and com-
pact cell clusters according to annotated cell lines (UMAP) for visu-
alization, see Supplemental Fig. S4A–C; McInnes et al. 2018). We
used silhouette analysis to quantitatively assess the resulting clus-
ters. Compared with scAPA and Sierra, scDaPars showed higher
silhouette coefficients, which indicated the clustering results
from scDaPars are more congruent with the true cell-line labels
(Supplemental Fig. S4D–F). To further
benchmark scDaPars in more complex
biological systems, we applied scDaPars,
scAPA, and Sierra to an immune data set
containing 3362 PBMCs (see Methods;
Ding et al. 2020). Again, the APA usage
quantified by scDaPars generated com-
pact and accurate immune cell clusters
(Fig. 4A,D). In contrast, although Sierra
outperformed scAPA and was able to sep-
arate B cell and CD14+ monocytes (Fig.
4B,C), both Sierra and scAPA failed to ac-
curately distinguish the five immune cell
types (Fig. 4E,F). Besides generating accu-
rate cell clusters, scDaPars also identified
169 dynamic APA genes (genes with dif-
ferential poly(A) site usage) among the
five immune cell types, most of which
(96%) were unseen by existing methods.
For example, scDaPars identified EIF1 as a
dynamic APA gene between B cells and
CD14+ monocytes. Both cluster- and sin-
gle-cell-level coverage plots corroborated
that EIF1 shows 3′ UTR lengthening in
B cells compared with CD14+ monocytes
(Supplemental Fig. S5). However, EIF1

was not captured by previous methods
(i.e., scAPA), indicating the advantage
of scDaPars. More importantly, scDAPA,
scAPA, and Sierra rely on peak calling us-
ing 3′-end enriched reads in 10x Chromi-
um to quantify APA usage and thus are
not applicable to data generated by full-
length sequencing protocols like Smart-
seq2 that do not contain enriched peaks
in the 3′ UTR regions (Picelli et al. 2013).

scDaPars revealed intrinsic tumor APA

variations and immune cell

subpopulations in primary breast cancer

Global-scale coordinated APA events are
commonly observed in cancers (Xia
et al. 2014), and APA-induced 3′ UTR
shortening was shown to be associated
with tumor aggressiveness and poor sur-
vival of cancer patients (Lembo et al.
2012; Xia et al. 2014). However, knowl-
edge of APA regulations in cancer has
been largely derived from bulk RNA-seq
studies. Therefore, although global APA
variations between tumor and normal

cells have been well characterized, little is known about the inter-
tumoral APA heterogeneity at the single-cell resolution. To illus-
trate scDaPars’ capacity of characterizing single-cell APA
variations in cancers, we applied scDaPars to a Smart-seq2 (Picelli
et al. 2013) scRNA-seq data set containing 563 single cells from
11 breast cancer patients (Chung et al. 2017). In consistent with
bulk results, 3′ UTRs were shortened in tumor cells compared
with normal cells (P<2.2 ×10−16) (Fig. 5A). Even PDUI values be-
fore scDaPars imputation could separate tumor cells from nontu-
mor cells with an effectiveness comparable with that of gene
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Figure 3. Evaluation of scDaPars in identifying dynamic APA events between two cell types using naive
and activated CD4 T cells. (A–C ) Scatter plots showing UMAP results of 54 naive CD4 T cells and 31 ac-
tivated CD4 T cells based on reference APA profiles (A), dropout events introduced APA profiles (B), or
scDaPars corrected APA profiles (C). (D–F ) Heat maps showing APA profiles of 136 differential APA genes
(FDR≤0.05 and PDUI differences ≥0.2) in the reference data (D), dropout events introduced data (E),
and scDaPars corrected data (F). Rows represent differential APA genes and columns represent cells.
Eighty-eight out of 136 differential APA genes have shorter 3′ UTRs in activated CD4 T cells in the refer-
ence data.
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Figure 4. scDaPars outperforms existing methods by quantifying APA usage at single-cell resolution.
(A–C) Scatter plots showing UMAP results of 3362 PBMCs based on scDaPars quantified APA usage
(A), scAPA quantified APA usage (B) or Sierra quantified APA usage (C). (D–F) Silhouette plots for cluster-
ing results from scDaPars (D), scAPA (E), and Sierra (F ). The x-axis represents cells, and y-axis is the cor-
responding silhouette coefficient Si for each cell. The silhouette coefficient measures how similar a cell is
to its own cluster compared with other clusters; therefore, a higher silhouette coefficient indicates a bet-
ter clustering result, and a negative coefficient may suggest the cell is assigned to the wrong cluster. The
red dashed line is the average Si for all cells.
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expression values (Supplemental Fig. S6A), suggesting an impor-
tant role of dynamic APA events in breast cancer progression. As
expected, scDaPars-imputed APA profiles showed a better separa-
tion between tumor and nontumor groups (Fig. 5B; Supplemental
Fig.S7).

To further elucidate APA variations among cell subgroups, we
analyzed APA profiles of tumor and nontumor cells separately. On
the one hand, contrary to a previous single-cell APA analysis per-
formed on aggregated “metagenes” in the same breast cancer
data set (Chung et al. 2017), which showed that no differences

in APA were associated with cancer subtypes or patients (Kim
et al. 2019), we found that tumor cells were not only separated
into patient-specific clusters based on scDaPars-imputed APA pro-
files (Fig. 5C) but also further classified into different molecular
subtypes (Supplemental Fig. S8), showing evidence of both inter-
tumoral and cancer-subtype-specific APA heterogeneity, as well
as scDaPars’s advantage over the existing method. On the other
hand, nontumor cells, which were derived from the same group
of patients as tumor cells, were clustered mainly according to their
cell types (B cells,myeloid cells, and T cells) instead of patients (Fig.
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Figure 5. scDaPars reveals tumor-specific and immune-cell-type-specific APA landscape in primary breast cancer. (A) Scatter plot of PDUI values in tumor
and normal cells. For each gene, the mean PDUI values in tumor cells (y-axis) are plotted against that in normal cells (x-axis). Genes with shortened or
lengthened 3′ UTR (FDR≤0.05 and PDUI difference ≥0.2) in tumor cells are shown in red and blue. Bar plot shows the number of shortening genes or
lengthening genes in tumor cells, and P-value is calculated using a single-tailed binomial test. (B) Scatter plot gives UMAP results calculated from
scDaPars-restored APA profiles. Each dot represents a cell, and cells are labeled based on cell index provided in the original publication. (C) Scatter plot
of UMAP results of tumor cells. Cells are labeled by patient information. (D) Scatter plot of UMAP results of immune cells. Cells are labeled by cell type
information. (E) Scatter plot of UMAP results of B cells based on scDaPars results. (F ) Scatter plot of PDUI values in group 1 B cells and group 2 B cells.
For each gene, the mean PDUI values in group 2 B cells (y-axis) are plotted against that in group 1 B cells (x-axis). Genes with shortened or lengthened
3′ UTR (FDR≤0.05 and PDUI difference ≥0.2) in group 2 B cells are shown in red and blue. Bar plot shows the number of shortening genes or lengthening
genes in group 2 cells.

Gao et al.

1860 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271346.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271346.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271346.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271346.120/-/DC1


5D; Supplemental Fig. S6B). This result not only reaffirmed that
dynamic APA events are cell-type-specific characteristics of im-
mune cells but also indicated that the patient-specific APA profiles
observed in tumor cells were unlikely owing to batch effects in pa-
tient samples but rather reflected true intertumoral variations
in APA.

In addition, consistent with prior knowledge of two B cell
subclasses (proliferating and naive/memory B cells) in this data
set, we observed that B cells were classified into two cell subgroups
based on scDaPars-imputed APA profiles (Fig. 5E) with group 2 B
cells showing global 3′ UTR shortening compared with group 1 B
cells (P= 2×10−3) (Fig. 5F). We found that most B cell proliferation
signature genes from the literature (Chung et al. 2017)were up-reg-
ulated in group 2 B cells compared with group 1 B cells (Supple-
mental Fig. S9; Supplemental Table S2), suggesting that group 2
B cells may represent proliferating B cells. Indeed, the proliferating
and naive/memory B cells determined by the expression of B cell
proliferating marker genes are highly congruent with scDaPars-de-
rived cell subgroups (Supplemental Fig. S10A,B). These results are
also in linewith previous reports that proliferating cells (i.e., group
2 cells) expressmore isoformswith shortened 3′ UTRs throughAPA
(Sandberg et al. 2008). However, expression analysis of all genes
failed to identify these B cell subgroups (Supplemental Fig.
S10C), revealing the potential benefits of APA analysis in
delineating cell subpopulations. In summary, scDaPars improves
the characterization of APA variations and cell subpopulations in
single cells.

scDaPars enables identification of novel cell subpopulations

invisible to conventional gene expression analysis in endoderm

differentiation

As APA patterns appear to be globally regulated in cell differentia-
tion (i.e., decreased proximal poly(A) site usage in more differenti-
ated states of embryonic development) (Ji et al. 2009; Tian and
Manley 2017), we hypothesized that they could provide a new as-
pect to identify cell subpopulations during differentiation. To test
this hypothesis, we applied scDaPars to a time course Smart-seq2
(Picelli et al. 2013) scRNA-seq data set containing 758 cells se-
quenced at 0, 12, 24, 36, 72, and 96 h of differentiation during hu-
man definitive endoderm (DE) emergence (Chu et al. 2016).
scDaPars revealed clear and accurate cell clusters from each time
point along the differentiation process (Fig. 6A). Dimension 2 of
the UMAP projection of raw PDUI values reconstructed single-
cell ordersmatching the true differentiation time points, reflecting
the global APA dynamics during cell differentiation (Supplemental
Fig. S11).

Next, we investigated whether APA could help delineate nov-
el cell subpopulations invisible to gene expression analysis alone.
Imputation based on observed gene expression has been shown to
enhance the identification of cell subpopulations (Li and Li 2018).
Therefore, to ensure APA is providing additional information be-
yond expression, we first recovered plausible single-cell gene ex-
pression data using scImpute (Li and Li 2018), a state-of-the-art
gene expression imputation method. Notably, although the im-
puted gene expression profile outputs more compact clusters
than the raw-expression, single cells collected from 72 and 96 h
of differentiation were still largely overlapped (Supplemental Fig.
S12). To characterize additional cellular heterogeneity, we inte-
grated APA information with imputed gene expression using sim-
ilarity network fusion (SNF) (Wang et al. 2014). By creating and
converging separate similarity networks for APA and gene expres-

sion, SNF reduced noisy intercluster similarities among cells in 12
and 24 h of differentiation and enhanced intracluster similarities
observed in one or both similarity networks (Fig. 6B). We then
quantitatively compared the clustering results by using a spectral
clustering algorithm (Ng et al. 2002) on different similarity net-
works with the number of clusters k=6. The clustering results are
evaluated by normalized mutual information (NMI) (Witten
et al. 2016), where NMI=1 indicates a perfect match between
the clustering results and the known differentiation time points.
Although gene expression imputation increased NMI from 0.76
to 0.85, integration of APA usages with imputed gene expression
further increased NMI from 0.85 to 0.89, suggesting the benefits
of adding APA information.

Besides unifying the clustering results of APA and gene ex-
pression, the fused similarity network also revealed novel and po-
tentially meaningful subpopulations. For example, cells at 96 h of
differentiation were divided into two previously unidentified sub-
populations (Fig. 6B). Through analyzing APA and gene expression
between the two subpopulations, we found that APA usage
alone can accurately separate the two subpopulations (Fig. 6C;
Supplemental Fig. S13), and subpopulation 2, whichwasmore dis-
tinct from cells in 72 h of differentiation than subpopulation 1,
showed global 3′ UTR lengthening compared with subpopulation
1 (P=3.64×10−8) (Fig. 6D), whereas the imputed gene expression
profile alone failed to distinguish the two subpopulations (Fig.
6C). The APA profile quantified by DaPars also failed to identify
the two subgroups (Supplemental Fig. S14), indicating the superi-
ority of scDaPars.

Because subpopulation 2 showed global 3′ UTR lengthening,
we hypothesized it may represent a more differentiated cell sub-
group. To test our hypothesis, we performed differential gene ex-
pression analysis between subpopulation 1 and 2 using DESeq2
(Love et al. 2014). As a result, subpopulation 2 was characterized
by higher expression of endoderm development marker genes, in-
cluding GATA6, EOMES, and SOX17 (Fig. 6F; Supplemental Table
S3; Chu et al. 2016). In addition, the transcriptional profile of sub-
population 2 also included significantly up-regulated endoderm-
development-related genes like LHX1, which is important for renal
development (Reidy and Rosenblum 2009), and HMGA2, which is
required for epithelium differentiation during embryonic lung de-
velopment (Singh et al. 2014), suggesting subpopulation 2 has a
more differentiated phenotype than subpopulation 1. To further
elucidate the global biological differences between the two sub-
populations, we performed Gene Ontology (GO) analysis (Luo
et al. 2009).We found that several endoderm-development-related
GO terms were highly enriched in the up-regulated genes in sub-
population 2 (Fig. 6E). Furthermore, using the expression of differ-
ential APA genes, we were able to separate the two subpopulations
(Supplemental Fig. S15), indicating that some biologically mean-
ingful subpopulations were masked by overall gene expression
analysis. Finally, we conducted a trajectory analysis by STREAM
(Chen et al. 2019) to independently show the validity of the iden-
tified subpopulations. Using cells at 0 h of differentiation as a nat-
ural starting point (root), we found that most cells are projected
onto the inferred branches according to their corresponding differ-
entiation time points (Supplemental Fig. S16A,B), and the derived
pseudotime progression corroborated that cells in subpopulation 2
are more differentiated than those in subpopulation 1 (Fig. 6G;
Supplemental Fig. S16C). Considered collectively, scDaPars-calcu-
lated APA usage offered an additional layer of information in char-
acterizing cellular heterogeneity that was otherwise invisible in
gene expression analysis.
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Discussion

Here, we developed scDaPars, a novel bioinformatics algorithm to
de novo identify and quantify single-cell dynamic APA events us-
ing standard scRNA-seq data. Manymethods have been developed
tomeasure the relative APA usages in RNA-seq data frombulk sam-
ples (Xia et al. 2014). However, the widespread dropout events in
scRNA-seq data impede these bulk-sample-based methods to
quantify APA usage among single cells (Fig. 2D,E). To address
this technical challenge in scRNA-seq, scDaPars first quantifies
raw APA usage based on the two-poly(A)-site model introduced

in DaPars (Xia et al. 2014). Because APA shows a cell-type-specific
pattern (Velten et al. 2015; Kim et al. 2019), scDaPars then clusters
cells into different cell neighbors based on their calculated rawAPA
profiles. Next, scDaPars imputes missing APA usage by borrowing
APA information of the same gene from neighboring cells.
Benchmarking on both real and simulated data shows the accuracy
of scDaPars in predicting poly(A) sites, the ability in recovering
missing APA usages, and the robustness in identifying dynamic
APA events across different cell types (Figs. 2, 3).

Previously, methods for analyzing APA usage using
scRNA-seq data mostly address the high technical noise in

E

F

BA

C

D

G

Figure 6. scDaPars helps identify novel cell subpopulations during human embryonic development. (A) Scatter plot shows UMAP results of single cells
based on scDaPars-recovered APA profiles. Cells are labeled based on cell differentiation time points given in the original publication. (B) Cell-by-cell sim-
ilarities represented by similarity matrices generated by R package SNFtool. (C) Scatter plots of UMAP results of cells in 96 h of differentiation based on
scDaPars results (left) and imputed gene expression (right). Cells are labeled by results from B. (D) Scatter plot shows mean PDUI values of genes in sub-
population 2 (x-axis) and subpopulation 1 (y-axis). Genes with 3′ UTR shortening and lengthening (FDR≤0.05 and PDUI differences≥0.2) in subpopula-
tion 2 are labeled in blue and red, respectively. Bar plot shows the number of genes with shortening or lengthening in subpopulation 2, and P-value is
calculated using single-tailed binomial test. (E) Selected GO terms enriched in the up-regulated genes in subpopulation 2. (F ) Example gene expression
levels in two subpopulations. (G) Stream plot from STREAM that shows cell density along different trajectories at a given pseudotime.
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scRNA-seq by creating pseudobulk RNA-seq data (i.e., pooled reads
from cells that are assigned to the same cell cluster) (Shulman and
Elkon 2019; Ye et al. 2020). Unlike scDaPars, even though these
methods performon scRNA-seq data, they do not quantify APAus-
age at the single-cell resolution but rathermeasure cell-cluster APA
usage, which contradicts the purpose of single-cell sequencing
(Supplemental Table S1). Additionally, previous methods are con-
fined by cell cluster assignments determined by conventional gene
expression analysis. In contrast, scDaPars quantifies single-cell
APA usage independent of gene expression, which provides an ad-
ditional layer of APA information that helps identify hidden cell
states. (Fig. 6C).

Finally, unlike existing methods, we expect scDaPars to be
widely applicable to any scRNA-seq data sets. Although the main
analysis presented in this article builds on scRNA-seq data generat-
ed by low-throughput Smart-seq2 (Picelli et al. 2013) protocol and
the accuracy of scDaPars decreases as the dropout rate increases
(Supplemental Fig. S3), scDaPars can also be applied to data sets
generated by high-throughput high-dropout-rate droplet-based
methods; for example, 10x Chromium (Zheng et al. 2017). For ex-
ample, scDaPars successfully revealed cell-type-specific APA pat-
terns in 3362 PBMCs sequenced by 10x Chromium (Fig. 4A;
Ding et al. 2020). Together, scDaPars provides an additional layer
of APA information that helps identify cell subpopulations invisi-
ble to conventional gene expression analysis.

Methods

De novo quantification of dynamic APA events

scDaPars first performs de novo identification and quantification
of dynamic APA events based on the two-poly(A)-site model intro-
duced in DaPars. The bedGraph files for each single cell were used
as input and jointly analyzed to calculate the APA usage measured
as the PDUI. For each gene, the distal poly(A) site was identified as
the end point of the longest 3′ UTR among all scRNA-seq samples,
and the proximal poly(A) site was inferred by optimizing the fol-
lowing linear regression model:

(W1,2,3,...,m
L , W1,2,3,...,m

S , �P) = argmin
W1,2,3,...,m

L ,W1,2,3,...,m
S ≥0, 1,P,L

∑m
i=1

||Ci

− ( Wi
LIL +Wi

SIP)||22,
(1)

where Wi
L and Wi

S are the abundances of transcripts with
distal and proximal poly(A) sites for cell i, Ci is the read coverage
of cell i normalized by total sequencing depth, L is the length
of the longest 3′ UTR, P is the length of the alternative
proximal 3′ UTR to be inferred, and IL and IP are two indicator func-

tions for long and short 3′ UTRs such that IL = [1, . . . , 1]
L

and

IP = 1, . . . , 1, 0, . . . , 0
P, L− P

. The optimal proximal poly(A) site is

selected by minimizing the deviation between the observed read
density Ci and the expected read densityWi

LIL +Wi
SIP in all single

cells. The APA usage is then quantified as PDUI for each gene in
each single cell, with PDUI defined as

PDUIi = Wi∗
L

Wi∗
L +Wi∗

S

, (2)

whereWi∗
L andWi∗

S are the optimal expression levels of transcripts
with the distal and proximal poly(A) site for cell i. The smaller the
PDUI is, the less distal poly(A) site is used and the shorter the 3′

UTRs. The final output is a PDUI matrix in which rows represent
genes and columns represent cells. Additionally, PDUIs can only
be calculated in this step for genes with sufficient read coverage
(default coverage of five reads per base), which automatically sep-
arates genes into robust genes and dropout genes for future analy-
sis. On average, 50% of the genes in a cell are robust genes after
quality control, and if the dropout rate in the data set is higher
(e.g., in 10x Chromium data sets), the average number of robust
genes in the data will decrease. There are overlaps between robust
genes of different cells: In the benchmark data set in Figure 2, the
overlap of robust genes between any two cells is ∼40%.

Detection of potential neighboring cells and outliers

Because APA shows alterations in different cell types and cell states
in a global scale, scDaPars recoversmissing single-cell-level APA us-
age by borrowing APA information of the same gene from neigh-
boring cells. A critical step here is to determine which cells are
from the same cell subpopulation and therefore are neighboring
cells. Instead of using observed gene expression, scDaPars uses
raw APA usage for this task because (1) APA is a feature intrinsic
to cell types or cell states, and (2) scDaPars quantifies APA usage in-
dependent of gene expression. We first performed a quantitative
comparison of clustering using raw APA usage and observed gene
expression from the hESC data set in Figure 6 (Supplemental Fig.
S17). We found that clustering of raw APA usage outperformed
that of observed gene expression (Supplemental Fig. S17C,D) part-
ly because differentiation is one of the biological processes with
the most dramatic APA changes. To further illustrate the benefits
of quantifying APA independent of gene expression, we modified
our original scDaPars algorithm so that the initial clustering is per-
formed using observed gene expression instead of raw APA usage
and requantified the APA usage of cells from the hESC data set
in Figure 6. We found that the two subpopulations identified by
original scDaPars were obscured by the modified version
(Supplemental Fig. S18), indicating the advantage of quantifying
APA independent of gene expression.

Because of the technical limitation of scRNA-seq data, it is un-
likely to completely cluster cells into true subpopulations based on
the sparse PDUI matrix generated in last step. Instead, the goal of
this step is to determine a set of potential neighboring cells that
scDaPars will fine-tune in the following imputation step.

To increase the robustness and reliability of the clustering re-
sults and to findmore plausible neighboring cells, scDaPars applies
principal component analysis (PCA) to the raw PDUI matrix.
Although the PDUI matrix is sparse, the modularity of dynamic
APA provides redundancy in gene dimensions, which can be ex-
ploited. Therefore, scDaPars selects principal components (PCs)
that can together explain at least 40% of the variance in the
data. Note that the neighboring cells are identified in these PCA di-
mensions, whereas the imputation is performed on the full PDUI
matrix:

PDUI pca = pca(PDUI, 0.4.). (3)

Next, scDaPars identifies and removes outlier cells from the
analysis. The outlier cells may be the result of technical errors or
may represent true rare biological variations; in either case,
scDaPars will not use these outlier cells to impute missing APA us-
age in other cells. We calculate the distance matrix DN×N between
cells based on the PCA-transformed data PDUIpca. For each cell m,
we define the Euclidean distance of cellm to its nearest neighbor as
dm, resulting in a setd= {d1,…, dN}. We denote the first quantile of
d as Q1 and its third quantile as Q3 and the distance between Q1

and Q3 as interquartile range IQR. The outlier cells are defined as
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cells that are separated by more than 1.5 IQR to the third
quantile Q3:

Outlier = {m : dm . Q3 + 1.5× IQR}. (4)

The remaining nonoutlier cells {1, . . . , N}\Outlier are then
clustered into subpopulations using a graph-based community
detection algorithm. The single cells are the vertices in the graph,
and community detection in graphswill identify groups of vertices
with high probability of being connected to each other than to
members of other groups.We use R package RANNwith default pa-
rameters to first identify the approximate nearest neighbors and
convert neighbor relation matrix into an adjacency matrix. We
then use igraph (Csardi andNepusz 2006) to represent the resulting
adjacency matrix as a graph and apply the walkstrap (Pons and
Latapy 2005) algorithm to identify communities of vertices (cells)
that are densely connected. Suppose scDaPars divides cells into K
subpopulations in this step, for each cellm, its potential neighbor-
ing cells Nm are the other cells in the same cell subpopulation k:

Nm = {i [ k, i = m}. (5)

Imputation of missing APA usage

After potential neighboring cells Nm for each cell are determined,
we impute APA usage cell by cell. Recall that PDUIs can only be es-
timated for genes with sufficient read coverage; scDaPars thereby
automatically separates genes into robust genes and dropout genes
when calculating the PDUI matrix. Here, we denote the set of ro-
bust genes for cell m as Rm and the set of dropout genes that will
be imputed in this step as Dm. scDaPars then learns the cells’ sim-
ilarities through the robust gene set GRobust,m and impute the APA
usage of Dm by borrowing information from the same gene’s APA
usage in other neighboring cells learned from Rm. To fine-tune the
grouping of neighboring cells from Nm, we use NNLS regression:

um = argminum ||PDUIRm , m − PDUIRm , Nmum||22, um . 0, (6)

where Nm represents the indices of cells that are potential neigh-
boring cells of cell m, PDUIGenerobust,m is a vector of response vari-
ables representing Rm rows in the mth column (cell m) of the
original PDUI matrix, and PDUIRm ,Nm is a submatrix of the original
PDUI matrix with dimensions |Rm| × |Nm|. The goal is to find the
optimal coefficients um of length |Nm| that can minimize the devi-
ation between APA usage of Rm in cell m and those in potential
neighboring cells. The advantage of using NNLS is that it has the
property of leading to a sparse estimate of θm, whose components
may have exact zeros, so that true neighboring cells of cell m are
conveniently selected from Nm. Once um is computed, we have a
vector of weighted neighbors associated with each cell in our
data. scDaPars use this coefficient um estimated from the set Rm

to impute the APA usage of genes in the set Dm in cell m. All of
the above analyses are conducted in R (R Core Team 2020).

PDUIg,m = PDUIg,m, if g [ Rm

PDUIg,Nm · um, if g [ Dm

{
(7)

Differential PDUI

We used the following two criteria to define the significant differ-
ential PDUI (dynamic APA events): First, given the PDUI values for
cells in two cell types, the Benjamini–Hochberg corrected Mann–
Whitney U P-value between two cell types (FDR) is less than
0.05; second, the absolute difference of mean PDUIs in cell type
1 and cell type 2 is greater than 0.2.

FDR ≤ 0.05
|PDUIcell type 1 − PDUIcell type 2| ≥ 0.2

{
(8)

Preprocessing of scRNA-seq data

The scRNA-seq data sets used in this manuscript are all publicly
available and are summarized in Supplemental Table S4. The two
single-cell PBMC data are available at the NCBI Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under ac-
cession number GSE132044. The breast cancer data are available
at GEO under accession number GSE75688. The time course DE
data are available at GEO under accession number GSE75748.
The lung adenocarcinoma cell line data are available at GEO under
accession number GSE118767. The DICE immune data used to
generate synthetic data set were obtained from the NCBI database
of Genotypes and Phenotypes (dbGaP; https://www.ncbi.nlm.nih
.gov/gap/) under study accession number phs001703.v1.p1. For
low-throughput data sets generated by the Smart-seq2 (Picelli
et al. 2013) protocol, we downloaded the publicly available
FASTQ files from GEO database and aligned the reads using STAR
2.5.2 (Dobin et al. 2013) with default parameters, generating one
BAM file for each single cell. For high-throughput data sets gener-
ated by 10x Chromium (Zheng et al. 2017), we downloaded the
FASTQ files and aligned the reads using Cell Ranger 3.0.2. We
then selected reads with correct unique molecular identifier
(UMI) using Drop-seq tool FilterBAM (Macosko et al. 2015) and re-
move reads with duplicated UMIs using UMI-tool dedup (Smith
et al. 2017). We next merged reads originated from same cells to-
gether and generated one BAM file for each single cell. The BAM
files are used as inputs for subsequent scDaPars analysis. The aver-
age dropout rate (percentage of missing data) for Smart-seq2 data
sets is ∼50% in our study. The 10x Chromiumdata set in our study
has a dropout rate of ∼65%.

Generation of the synthetic data set

The synthetic data set was created based on bulk RNA-seq data gen-
erated from 13 immune cell types (Schmiedel et al. 2018). The dif-
ferent immune cell types are isolated so that each sample only
contains cells from one cell type. We used DaPars to estimate the
APA usage in these bulk samples and generated an APA matrix,
in which rows represent genes and columns represent samples.
Because widespread dynamic APA events were reported in naïve
and activated CD4 T cells, we selected only samples that belong
to these two cell types for the following simulation.

We down-sampled the resulting bulk APA matrix to emulate
the APAprofiles generated from single-cell data.We first calculated
the dropout rate for each gene in the benchmark immune data set
(Ding et al. 2020). Next, for each gene in the bulk APAmatrix, the
dropout rate is randomly selected from the set of real dropout rates
with replacement. Finally, we used Bernoulli distribution with P
equals to the selected dropout rate and n equals to the number
of samples to introduce dropouts into the synthetic data set. The
final dropout introduced data has a ∼50% dropout rate, which is
similar to the dropout rate of the real data sets. Notice that the gen-
eration of the synthetic data set is independent from themodels of
scDaPars, so that it can be used to evaluate scDaPars in a fair way.

Benchmark comparison of scDaPars

To illustrate the advantage of scDaPars, we applied scDaPars,
scAPA, and Sierra to two benchmark 10x Chromium data sets.
scAPA measures differential usage of poly(A) sites between differ-
ent cell types by the proximal poly(A) site usage index (proximal
PUI). Because we want to test scAPA’s ability for quantifying sin-
gle-cell-level APA usage, we input single-cell coverage into scAPA
to generate a cell-by-transcript-proximal-PUI matrix to perform
the clustering analysis. The Sierra pipeline does not yield PDUI-
like measurements. Instead, it generates a peak count matrix in
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which peak coordinates are annotated according to the genomic
features they fall on, including UTRs, exons, or introns. To calcu-
late APA usage from the peak count matrix, we first selected peaks
falling on the 3′ UTRs and only kept transcripts with more than
one peak. We then transferred the peak count matrix into an
APA matrix by calculating the relative usage of the most distal
peak. The resulting APA matrix were used for the clustering analy-
sis. Finally, we performed silhouette analysis by silhouette () in R
package cluster v2.1.0. to quantitatively evaluate the clustering ac-
curacy of the three methods.

Software availability

The source codes and the R package scDaPars are available as
Supplemental Code. scDaPars is also freely available at GitHub
(https://github.com/YiPeng-Gao/scDaPars).
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