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Single-cell genomics is rapidly advancing our knowledge of the diversity of cell phenotypes, including both cell types and

cell states. Driven by single-cell/-nucleus RNA sequencing (scRNA-seq), comprehensive cell atlas projects characterizing a

wide range of organisms and tissues are currently underway. As a result, it is critical that the transcriptional phenotypes

discovered are defined and disseminated in a consistent and concise manner. Molecular biomarkers have historically played

an important role in biological research, from defining immune cell types by surface protein expression to defining diseases

by their molecular drivers. Here, we describe a machine learning-based marker gene selection algorithm, NS-Forest version

2.0, which leverages the nonlinear attributes of random forest feature selection and a binary expression scoring approach to

discover the minimal marker gene expression combinations that optimally capture the cell type identity represented in com-

plete scRNA-seq transcriptional profiles. The marker genes selected provide an expression barcode that serves as both a

useful tool for downstream biological investigation and the necessary and sufficient characteristics for semantic cell type

definition. The use of NS-Forest to identify marker genes for human brain middle temporal gyrus cell types reveals the im-

portance of cell signaling and noncoding RNAs in neuronal cell type identity.

[Supplemental material is available for this article.]

Cells are the fundamental functional units of life. In multicellular
organisms, different cell types play different physiological roles in
the body. The identity and function of a cell—the cell phenotype
—is dictated by the subset of genes/proteins expressed in that cell
at any given point in time. Abnormalities in this expressed ge-
nome are disorders that form the physical basis of disease
(Scheuermann et al. 2009). Thus, understanding normal and ab-
normal cellular phenotypes is key for diagnosing disease and iden-
tifying therapeutic targets.

Single-cell transcriptomic technologies that measure cell
transcriptional phenotypes using single-cell/single-nucleus RNA
sequencing (scRNA-seq) are revolutionizing cell biology. The ex-
pression profiles produced by these technologies can be used to
define cell types and their states based on the genes they express.
For simplicity, throughout the text we will use the term “cell
type” to refer to these distinct cell phenotypes that include discrete
canonical cell types and distinct cell states. Numerous atlas pro-
jects designed to provide a comprehensive enumeration of normal
cell types and states are currently underway, including the Human
Cell Atlas (Regev et al. 2017), California Institute for Regenerative
Medicine (CIRM) (Darmanis et al. 2015; Enge et al. 2017;
Nowakowski et al. 2017), LungMAP (Schiller et al. 2019),

Pancreas atlas (Muraro et al. 2016), Heart atlas (Asp et al. 2019),
and NIH Brain Initiative (Mott et al. 2018). By leveraging these at-
lases of normal cell types defined using specimens from healthy
patients as references, the role of expression deviations in disease
are now being investigated (Levitin et al. 2018; Chaudhry et al.
2019; Al-Dalahmah et al. 2020).

Despite the incredible promise of single-cell transcriptomic
analysis, representations of these cell type clusters and their tran-
scriptional phenotypes have not been adequately formalized in a
standardized way to ensure effective dissemination in accordance
with FAIR principles (Wilkinson et al. 2016). One approach for for-
malizing this type of knowledge representation and dissemination
is to use the semantic framework provided by biomedical ontolo-
gies. For cell types defined by single-cell transcriptomics, the Cell
Ontology (CL) is an established biomedical ontology that could
be used to address FAIR-compliant cell phenotype dissemination
(Bard et al. 2005; Diehl et al. 2011; Meehan et al. 2011; Bakken
et al. 2017). With the rapid expansion in both data sets and cell
types being defined using scRNA-seq, the challenge will be to
make the generation of these semantic knowledge representations
scalable.

Toward a scalable dissemination solution, we previously pro-
posed to define cell types based on the minimum combination of
necessary and sufficient features that capture cell type identity and
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uniquely characterize a discrete cell phenotype (Bakken et al.
2017). In the case of cell types identified by scRNA-seq experi-
ments, these features would correspond to the combination
of marker genes unique to a given gene expression cluster that
provides high sensitivity and high specificity for cell type
classification.

In this regard, determiningmarker gene combinations for cell
type clusters is different from differential expression analysis (DE).
Commonly used scRNA-seq analysis tools—Seurat (Stuart et al.
2019) and SCANPY (Wolf et al. 2018)—are often used for differen-
tial gene analysis. After cluster analysis, genes are evaluated by
comparing expression in cells in a target cluster versus expression
in all other cells using, for example, the Wilcoxon rank-sum test.
However, the resulting ranked set of genes cannot be used to deter-
mine the best individual marker or the best marker combinations
from either the P-value rank or fold difference in expression. In
contrast, marker gene determination should explicitly test for clas-
sification power and ability to discriminate a gene expression clus-
ter of interest.

The ideal marker gene would show a “binary expression” pat-
tern. These are markers that are expressed at high levels in all indi-
vidual cells of a given cell type and not expressed in the cells of any
other cell type. These binary expression markers are particularly
useful in many downstream assays such as RT-PCR (Aevermann
et al. 2021) or spatial transcriptomics where low level expression
in nontarget cells could be problematic. However, candidatemark-
er genes identified by traditional differential expression analysis
do not necessarily enrich for binary expression. Candidate marker
genes produced by these approaches are often expressed at high

levels in the target cluster and lower but measurable levels in off-
target clusters. We refer to these markers as quantitative markers
as their discriminatory power is derived from specific expression
level thresholds, and so their utility would be dependent on the
analytical sensitivity of the assay performed. In other cases, a sin-
gle binary marker may not be available for the cell type cluster in
question, requiring the identification of marker combinations
for optimal classification.

Here, we describe Necessary and Sufficient Forest (NS-Forest)
version 2.0, which improves on the simple approach to feature
selection implemented in the initial version of NS-Forest
(Aevermann et al. 2018). By leveraging the nonlinear attributes
of random forest feature selection, NS-Forest v2.0 identifies opti-
mal combinations of markers for classification while simultane-
ously enriching for genes with binary expression patterns.

Results

User driven development of NS-Forest

NS-Forest v2.0 was developed in close collaboration with the neu-
roscience user community. The primary goal was to further opti-
mize the NS-Forest method in order to discover marker genes
that can be better used for both unique cell type definition and
downstream experimental investigation (Fig. 1). In order to ac-
complish this, several major changes were made to NS-Forest
v1.3 (Table 1). First, negative markers were removed by imple-
menting a positive expression level filter (Fig. 1C). A negative
marker is defined as a gene that is not expressed in the target
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Figure 1. NS-Forest version 2.0 workflow. The method begins with a cell-by-gene expression matrix with cluster assignments for each cell (A). This clus-
tered expressionmatrix is used to generate binary classificationmodels for each cell cluster using the random forestmachine learningmethod. Features are
extracted from the model and ranked by Gini Index (B). Top features are filtered by expression level to remove negative markers (C) before being reranked
by Binary Expression Score (D,E). Decision branch expression level cutoffs are derived from decision tree analysis for the most binary features (F ) and F-beta
score used as an objective function to evaluate the discriminatory power of all permutations of selected markers (G).
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cluster while having expression in off-target clusters. These mark-
ers are not optimal for many downstream assays or definitional
purposes. These genes are now filtered out by applying a cluster
median expression threshold, with a default setting of zero.

Next, the way genes are ranked after random forest selection
was refined. Genes selected by random forest have an expression
level threshold that is optimized to distinguish between target
and off-target clusters. Often the genes selected discriminate based
on a specific expression value resulting in quantitative expression
markers. Although these quantitative markers may be good for
classification, they are less useful in many downstream biological
assays. To address this issue, we modified NS-Forest v2.0 to enrich
for selection of binary expression markers. Binary expression
markers are characterized by having expression within the target
cell type while being expressed at low or negligible levels in other
cell types. We accomplished this by developing a new Binary
Expression Score metric with subsequent reranking of the candi-
date markers produced by random forest feature selection based
on this score (Fig. 1D,E).

Last, the marker gene evaluation framework was redesigned.
In the initial NS-Forest version, top-ranked genes were evaluated
using an unweighted F1 score in an additive fashion. Candidate
genes produced by random forest were ranked by unweighted F1
and the top gene selected.Next, the second-ranked genewas added
to the top-ranked gene to determine if an improvement in the F-
score was obtained. This stepwise additive process continued until
the F-score plateaued or the selected number of top-rank genes
were all tested.

In NS-Forest v2.0, all permutations of the selected top-ranked
genes are tested and their performance assessed using theweighted
F-beta score. The F-beta score contains a weighting term, beta, that
allows for emphasizing either precision or recall. By weighting for
precision (the contributions of false positives) versus recall (the
contributions of false negatives), we limit the impact of zero infla-
tion (or drop-out), a known technical artifact with scRNA-seq data,
on marker gene assessment. In addition, by testing all permuta-
tions of candidate marker genes, local optima resulting from
gene ranking can be avoided. These adjustments result in better fi-
nal marker gene combinations given the known limitations of
scRNA-seq analysis (Fig. 1F,G).

Performance testing of the Binary Expression Score approach

Simulation testing of the NS-Forest Binary Expression Score was
performed to evaluate the impact of different data characteristics
on reranking behavior. First, anticipated marker gene expression
patterns were themselves ranked in order of theoretical preference
(Fig. 2A). The highest preference was given to a marker gene that
shows a binary expression pattern and is only expressed in the tar-
get cluster (Fig. 2A[a] ,B). The next highest preference is given to a

marker gene that shows binary expression and is only expressed in
the target cluster and a limited number of off-target clusters (Fig.
2A[b]). This is followed by quantitative markers that have high ex-
pression in the target cluster and lower expression in off-target
clusters (Fig. 2A[c],C) or high expression in the target cluster and
a limited number of off-target clusters (Fig. 2A[d]). The least pre-
ferred pattern is when the marker is expressed at only slightly dif-
ferent levels between the target and off-target clusters (Fig. 2A[e],
D). The Binary Expression Score developed (see Methods section)
was designed to quantify this order of expression pattern prefer-
ence, with a range of 0 (least desirable) to 1 (most desirable).

Simulations varying the binary expression pattern and level
of zero inflation (Fig. 2E) were then generated to test the perfor-
mance of the Binary Expression Score developed. First, the ideal
scenario of binary expression only in the target cluster produced
a simulated Binary Expression Score of 1 (Fig. 2E, red). When the
candidate marker gene was expressed in one (Fig. 2E, green) or
four (Fig. 2E, blue) off-target clusters, the Binary Expression Score
decreased to 0.95 and 0.80, respectively. These scores were robust
to high zero inflation proportions, demonstrating no decrease in
Binary Expression Score up to 45% zero values.

Next, quantitative marker expression patterns were added to
the simulation (Fig. 2F,G) by varying the number of off-target clus-
terswithhigh expression levels and addingmoderate expression to
other off-target clusters. In all cases in which quantitative differ-
ences in expression were simulated, the Binary Expression Scores
was reduced accordingly (Fig. 2F). In the best case, where only
the target cluster had high expression and the off-target clusters
have moderate expression, the Binary Expression Score was 0.52.
Further Binary Expression Score reductions were found when the
high expression levels were present in additional off-target clus-
ters. Adjusting the level of zero inflation for these scenarios
showed that these Binary Expression Scores were also robust to in-
creasing zero inflation levels until they dropped dramatically
above 35% zero values.

Finally, simulations were performed to again test how a high-
expressing marker is affected by the addition of 1 or 4 high-ex-
pressing off-target clusters together with increasing expression lev-
els in the remaining off-target clusters from low (2) to high (8)
expression (Fig. 2G). With the remaining off-target clusters held
at low expression levels, these three scenarios returned high
Binary Expression Scores (0.7–0.85), but these Binary Expression
Scores quickly decreased with increasing levels of off-target expres-
sion. For example, when the off-target expression level was set to 6,
all three high-expressing off-target scenarios returned Binary
Expression Scores below 0.5. In the worst case, where the candi-
date marker had relatively high expression in all off-target clusters,
the Binary Expression Score was less than 0.2.

These simulations demonstrate that the Binary Expression
Score value produced by the algorithm recapitulates the preferred

Table 1. Major changes between NS-Forest v1.3 and v2.0

Workflow step NS-Forest v1.3 NS-Forest v2.0

Feature selection (Fig. 1A,B) Random Forest selection of candidate features No change
Feature filtering (Fig. 1C) None Filtering of negative markers
Feature ranking (Fig. 1D,E) Gini index only Gini index and Binary Expression Score reranking
Expression threshold determination

(Fig.1F)
Thresholds determined by median cluster expression Thresholds determined by decision tree analysis

Minimum feature determination (Fig.
1G)

F1-score optimization by stepwise addition of ranked
genes

F1 beta-score of all permutations of top ranked
genes

NS-Forest: a machine learning method

Genome Research 1769
www.genome.org



expression pattern ranking order (Fig. 2A). In all simulations test-
ed, the Binary Expression Scores decreased with the addition of
marker expression in off-target clusters and were robust to zero
inflation.

Marker gene comparison between NS-Forest versions

To evaluate the differences in results between NS-Forest v1.3 and
v2.0, we analyzed marker genes selected for cell type clusters gen-
erated from single-nuclei transcriptomes prepared from all cortical
layers (1–6) of the human middle temporal gyrus (MTG) obtained
frompostmortem and surgically resected samples. For this data set,
three broad classes of cells were initially identified: excitatory neu-
rons (10,708 nuclei), inhibitory neurons (4297 nuclei), and non-
neuronal cells (923 nuclei). The median depth of sequencing was
2.6 ±0.5 million reads per nucleus, with a median gene detection
of 9046 for neurons and 6432 for nonneuronal cells. These nuclei
were clustered iteratively by first clustering into the larger groups,

followed by subsequent reclustering within each group until 75
putative cell types were found (see Hodge et al. 2019 for more de-
tails on the data set and the iterative clustering methodology).
From left to right of the hierarchical clustering of clusters shown
at the top of both heatmaps, there are 46 inhibitory, 23 excitatory,
and six nonneuronal cell types identified (Fig. 3). Subsequent fig-
ures investigating these cell type clusters are ordered by these tax-
onomic relationships (Fig. 3C).

In total, 155 and 157 marker genes to optimally distinguish
between these 75 different cell type classes were identified by
NS-Forest v1.3 and v2.0, respectively (Supplemental Tables S1–
S3). Of these two unique sets of markers, 51 were common to
both sets (∼30%). For eachmethod, the average number ofmarkers
per cell type was just above 2 (2.4 and 2.3, respectively). This trend
of cell types requiring a combination of an average of 2–3 markers
has been seen in other data sets and other tissue types (Aevermann
et al. 2018, 2021), with cell types requiring only onemarker reflect-
ing very distinct types, such as the nonneuronal types found in
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Figure 2. Performance testing of Binary Expression Score. Gene expression data were simulated as described in the Methods section for different expres-
sion scenarios. (A) Possible marker gene expression patterns were ranked by order of preference. Panels B–D show violin plots for three different expression
scenarios: (B) binary expression only in the target cluster; (C) quantitative expression with high expression in the target cluster and one other cluster and
large differences in expression in the other off-target clusters; and (D) quantitative expression with high expression in the target cluster and four other clus-
ters, small differences in expression in the other off-target clusters, and higher levels of zero inflation. Panels E–G show line graphs of the full range of tested
simulations from three defined test cases: one cluster with high expression of the marker gene (red); two clusters with high expression of the marker gene
(green); and five clusters with high expression of the marker gene (blue). (E) Proportion of zeros was increased while maintaining off-target expression at
zero. (F ) Off-target clusters were givenmoderate levels of expression while the proportion of zeros was increased. (G) Expression levels were varied in all off-
target clusters from low (2) to high expression (8).
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this brain region. From the heat maps (Fig.3A,B), it is clear that the
selection of geneswith binary expression patterns has dramatically
improved between NS-Forest v1.3 and v2.0. The diagonal for NS-
Forest v2.0 contains more genes with high expression levels and,
importantly, the off-diagonal expression levels are closer to zero,
which demonstrates binary marker expression on a global level.
Cluster median expression for markers genes are provided in
Supplemental Tables S4 and S5.

Given the objective of the Binary Expression Score ranking
step to preferentially find marker genes with binary expression,
there are tradeoffs in both the number of genes required and the
classification power when compared to markers ranked strictly
by importance from the random forest model in NS-Forest v1. In
general, NS-Forest v2.0 requires more unique genes for a given
data set. In the case of the fullMTGdata set, the increase ismargin-
al, requiring only two additional unique genes (155 vs. 157 genes);
similar differences in the number of marker genes required have
been observed in other data sets (Aevermann et al. 2021).
Furthermore, the genes that have a high Binary Expression Score
are usually not the same genes that were ranked highest by Gini
Index in the random forest models. This suggests that, in terms

of pure classification, the markers identified by v2.0 might be ex-
pected to underperform as compared to NS-Forest v1.3. To directly
compare the F scores between these two versions of NS-Forest, an
additional analysis was run setting the beta weight of the F score
to 0.5 in v1.3, therebymaking it directly comparable to v2.0. As ex-
pected, the median F-beta score for v2.0 (0.68) was slightly lower
than for v1.3 (0.71) (Fig. 3D) and also slightly lower on a cluster-
by-cluster basis (Fig. 3E). However, the Binary Expression Scores
for the v1.3 markers were significantly lower—mean of 0.72 for
v1.3 versus 0.94 for v2.0 (Fig. 3D,E). These results show that, al-
though adding the Binary Expression Score criteria does slightly
decrease the overall classification power of the markers selected,
it dramatically increases the binary expression pattern, making
the markers more useful for many downstream experimental
applications.

To demonstrate more clearly the differences between
markers determined either by NS-Forest v1.3 or NS-Forest v2.0,
we looked at one cell type cluster from each major group (non-
neuronal, inhibitory neuron, and excitatory neuron) in the taxon-
omy (Fig. 4). For clarity, cluster labels are given along the bottom
(Fig. 4G). The expression patterns for the astrocyte cell type
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Figure 3. Comparing NS-Forest v1.3 and v2.0 marker gene sets. Heat maps of NS-Forest v1.3 (A) and v2.0 (B) markers from human middle temporal
gyrus. The taxonomy along the top of each heat map is based upon the hierarchical clustering result described in Bakken et al. (2018) and Hodge et al.
(2019). Expression values are log2 CPMclustermedians normalized by row. The colors correspond to the normalizedmedian expression level for themarker
gene (rows) for a given cell type cluster (columns), with high expression (greater than five) in red and low expression (zero to negative five) in blue/white.
(C) A blowup of the cell type labels corresponding to the heat map columns in parts A and B. (D) Box plots of F-beta and Binary Scores produced by NS-
Forest v1.3 and v2.0 for all 75 cell type marker gene combinations. (E) Correlation of F-beta and Binary Scores between NS-Forest v1.3 and v2.0.
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Astro_L1_6_FGFR3_SLC14A1 illustrates the differences in marker
gene characteristics broadly (Fig. 4A,B). NS-Forest v1.3 selects a sin-
gle marker gene to best discriminate this cluster, whereas v2.0 se-
lects two. NS-Forest v1.3 selects only the GPM6A gene, which
performs well at classifying this cell type along a quantitative
boundary at the high log2 expression level of 12.5 but also shows
intermediate expression centered around 10 in many off-target
clusters (Fig. 4A). Consequently, this quantitative marker is good
for classification onlywhen this small windowof expression differ-
ence is discernible. In contrast, version 2.0 selects LOC105376917
and SLC1A3, both of which have binary expression patterns across
clusters (Fig. 4B). LOC105376917 is highly expressed only in the
target cluster and one additional closely related off-target cluster.
Adding SLC1A3 further improves classification by discarding cells
from this off-target cluster.

In the case of the inhibitory neuron Inh_L1_2_PAX6_
CDH12, both v1.3 and v2.0 select two marker genes; however,
their characteristics are very different (Fig. 4C,D). NS-Forest v1.3
again foundmarkers that classified along quantitative boundaries.
DDR2 is expressed in all the related clusters in the taxonomy and
in some glial clusters at the far end of the taxonomy. The addition

of IL1RAPL2 removes the glial clusters and improves the classifica-
tion; however, IL1RAPL2 is another example of a quantitative
marker, as it separates the target cluster from the related cluster
by narrow differences in expression. NS-Forest v2.0 selected two
highly binary markers: TGFBR2, which is very specific to only
two clusters, the target cluster and a nonneuronal type at the other
end of the taxonomy; the addition of the LOC101927870 gene
eliminates cells in the nonneuronal cluster to refine the
classification.

Lastly, the excitatory neuron Exc_L5_6_RORB_TTC12 re-
quired threemarkers by both NS-Forest versions to optimize classi-
fication (Fig. 4E,F). Again,NS-Forest v1.3 identified genes that used
a quantitative boundary for classification, whereas NS-Forest v2.0
discovered binary markers. A more detailed look at these binary
markers provides a clear demonstration of the combinatorics cap-
tured by NS-Forest v2.0. Within the target cluster, demarcated by
the arrow, all three markers have high expression; however, the
off-target excitatory clusters marked as 1 and 2 also express some
but not all these markers. By leveraging the combinatorics of the
three-marker combination, a highly discriminative solution is ob-
tained. Gene LOC105371833 is the most binary marker; however,
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Figure 4. Marker gene expression for representative cell type clusters of the three major taxonomy classes: nonneuronal, inhibitory neurons, and excit-
atory neurons. Panels A, C, and E (red) showmarkers determined by NS-Forest v2.0; panels B,D, and F (blue) showmarkers fromNS-Forest v1.3. Expression
level violin plots are log2 CPMswith cell types enumerated along the x-axis in taxonomic order. Expression thresholds are demarcated by light blue lines and
cutoff values are given on the right. Thresholds for NS-Forest v2.0were determined by decision tree split points, whereas, for NS-Forest v1.3, theywere fixed
for a given gene at the expression level where 75% of cells had expression within the target cluster. (G) Taxonomy ordered labels corresponding to the x-
axis of all violin plots.
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it has high expression in a number of off-target cells in clusters 1
and 2. The addition of the NPFFR2 gene removes most of the false
positives in cluster 1, whereas adding theTNNT2 gene removes the
false positives from cluster 2. Together, this combination of three
marker genes discriminates Exc_L5_6_RORB_TTC12 from other
excitatory cell types.

Comparison with previous MTG marker genes

To understand how the NS-Forest marker genes compare to previ-
ously publishedmarkers for the humanmiddle temporal gyrus, we
compared the NS-Forest markers to those reported in Hodge et al.
(2019) using a different binary expression approach used for cell
cluster naming. In addition to a broad marker determined by the
taxonomy and prior knowledge (such as GAD1 or SST), a single
marker gene per cell type cluster was assigned in Hodge et al.
Sixteen of the 75 Hodge markers overlapped with the NS-Forest

markers [BAGE2, GGH, CASC6, NPY, HPGD, STK32A, ADGRG6,
TH, MEPE, PENK, CARM1P1, TWIST2, IL26, SULF1, ADAMTSL1,
PDGFRA]. These 16 were spread across the taxonomy, representing
cell type clusters from all three major cell type lineages. Unscaled
heat maps of mean gene expression per cluster for both the
Hodge and NS-Forest marker sets (Fig. 5A) demonstrate that both
are characterized by largely binary expression patterns, having a
higher expression along the diagonal versus off-diagonal.
However, the Hodge markers have an overall lower mean expres-
sion level of 4.8 log2 CPM in comparison with the mean expres-
sion for the NS-Forest markers of 7.0 log2 CPM.

One major difference between these two approaches is that
the Hodge marker set contains a single marker per cluster, selected
to label a distinct cluster phenotype, whereas NS-Forest selects
combinations of markers that optimize classification power. By
running the Hodge markers through NS-forest v2.0, we estimated
F-beta scores for the single Hodge markers in order to compare

B
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Figure 5. Comparison of Hodge et al. (2019) markers with NS-Forest v2.0 for the full MTG. (A) Unscaled heat map for both sets of markers where the
values are themean expression per gene. (B) F-beta scores (y-axis) for the single Hodgemarker gene (blue), the best NS-Forest singlemarker gene (orange),
and the combination of marker genes found by NS-Forest (gray). (C) An example violin plot of a binary expression pattern selected by the method used by
Hodge et al. (2019) for cluster Exc_L2_4_LINC00507_GLP2R, with expression given as log2 CPMs. For all panels, cell type clusters are listed along the x-axis
in taxonomic order. (D) Taxonomy ordered labels corresponding to the x-axis of the heat maps in A and also the violin plot in C.
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their classification power to the best single NS-Forest markers and
the NS-Forest marker combinations (Fig. 5B). Overall, the trend
lines show that the F-beta scores for single markers (blue and or-
ange lines) follow a similar trajectory, with some clusters being
more difficult to classify than others, that is, having lower F-beta
scores. However, the NS-Forest marker combinations (gray line)
provide a uniformly higher power of discrimination over either
single marker, regardless of how the single best marker is chosen.

When evaluating the F-beta scores for the Hodge markers, it
became clear that many had elevated false positive rates. To
directly compare the two sets of markers, we computed the false
discovery rate (FDR=FP/FP+TP) for each cell type and averaged
across the entire set. The Hodge markers had an average FDR of
0.7 versus 0.14 for the NS-Forest markers. GLP2R, which is a
marker for Exc_L2_4_LINC00507_GLP2R, offers a good visual ex-
ample (Fig. 5C). This gene is expressed in the target cluster but
also the nearest cell types within the LINC00507 group. NS-
Forest also has difficulty finding markers for this cell cluster phe-
notype, requiring three markers in total; however, in combina-
tion these markers helped reduce the FDR rate from 0.89 to
0.11. For clarity, cluster labels for the x-axis are given along the
bottom (Fig. 5D).

NS-Forest markers as cell type barcode

From the complete panel of NS-Forest marker genes for a given
data set, it is possible to generate a “transcriptional barcode” for
each cell type. As an illustration, barcodes randomly selected nu-
clei fromnine different cell types representing eachmajor subclass
in the taxonomy, with the 157NS-Forest v2.0markers displayed as
rows and individual nuclei as columns, as shown (Fig. 6). The
markers that are specific for the given cluster are demarcated in
pink within the blue bar along the left side of the barcode. The dis-
tinct patterns of these transcriptional barcodes are clearly apparent
and include not only distinct expression of the specific marker
genes in the target cells but also variable but distinct expression
patterns of marker genes from other clusters. Barcodes for all cell
types within the human MTG are provided in Supplemental
Figures S1–S9. These barcodes can be used as a clear visualization
of a given cell type within the context of its data set or projected
onto new data sets to demonstrate cell type similarity.

Comparison with other marker gene selection approaches

In order to assess the performance of NS-Forest v2.0 for marker
gene selection, we compared it to two other marker gene selection

Figure 6. Molecular barcode examples for representative cell types. A representative cell type was selected from each of the major cell type subclasses in
the taxonomy from left to right: LAMP5, VIP, SST, PVALB, RORB, THEMIS, FEZF2, astrocytes, and oligodendrocytes. Each cell type is represented by 30 indi-
vidual cells selected at random (columns) with the heat map color-coded by log2 CPM expression values for each marker gene (rows).
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tools—COMET (Delaney et al. 2019) and RANKCORR (Vargo and
Gilbert 2020). These three tools were evaluated using an indepen-
dent monocyte/dendritic cell data set produced by Villani et al.
(2017). For the eight clusters produced by reprocessing these
data (Fig. 7A), NS-Forest v2.0, COMET, and RANKCORR required
17, 16, and 28markers, respectively, to produce optimal classifica-
tion results. When comparing F-beta scores and Binary Scores (Fig.
7B), NS-Forest v2.0 was found to outperform both COMET and
RANKCORR. Although there was a significant overlap of 10 genes
between NS-Forest v2.0 and RANKCORR, none were shared with
COMET. Given the overlap, it is not surprising to find that both
the F-beta scores and Binary Scores are close between NS-Forest
v2.0 and RANKCORR. The median F-beta scores were [0.92>0.84
>0.69] for NS-Forest v2.0 >RANKCORR>COMET, and themedian
Binary Scores were [0.97>0.95>0.62] for NS-Forest v2.0 >
RANKCORR>COMET.

Clusteringwas also performed after removal of themonocytes,
which resulted in six clusters corresponding to the DC1-DC6 types
as characterized in the original study (Fig. 7C). For the six clusters
produced by reprocessing these data, NS-Forest v2.0, COMET, and
RANKCORR required 9, 12, and 19markers, respectively, to produce
optimal classification results (Fig. 7D). Threemarkerswere shared by
all methods and four markers shared between NS-Forest v2.0 and
COMET and between NS-Forest v2.0 and RANKCORR. Again, NS-
Forest v2.0 outperformed both COMET and RANKCORR, but the
F-beta score results were more comparable with these clusters. The
median F-beta scores were [0.95>0.89>0.86] for NS-Forest v2.0>
RANKCORR>COMET, and the average Binary Scores were [0.979
>0.978>0.78] for NS-Forest v2.0>RANKCORR>COMET.

In general, these results show that NS-Forest v2.0 outperforms
these other marker gene identification methods. However, it
should be noted that these other methods were not designed for
the purpose of selecting the minimum set of marker genes.
COMET may have underperformed because its XL-mHG frame-
work, that uses the X and L parameters, optimizes for the true pos-
itives and false positives, whereas NS-Forest v2.0 and its associated
metrics are more focused on false positives only. In addition, al-
though RANKCORR performance is comparable to NS-Forest
v2.0, it required substantially more marker genes for optimal per-
formance. Thus, NS-Forest v2.0 appears to be optimal for the spe-
cific use case of finding the minimal set of markers for maximal
classification accuracy. Marker genes identified by each method
are given in Supplemental Figure S10.

Of the three methods, NS-Forest v2.0 was the most time-in-
tensive. Both COMET and RANKCORR completed in under 3
min when analyzing both the monocyte/dendritic cell and den-
dritic cells-only data set, whereas NS-Forest v2.0 took 45 min at
the default settings. To investigate the performance of NS-Forest
v2.0 further, the dendritic cell data set was run while varying the
parameters (Supplemental Fig. S11). Whereas the number of trees
used during the random forestmodeling step did not have a signif-
icant impact on the run time, the number of genes tested for all
permutations was the limiting step. We found that running 1–4
genes resulted in run times under 4min, using five genes increased
this to 7 min, and using the default of six genes resulted in a 45-
min run time. Looking at the resulting F-beta scores for each
run, we can see clear improvement in marker determination up
to the five-gene selection and only a slight improvement

B

A C

D

Figure 7. Results frommarker gene set determination for monocyte and dendritic cell types described in Villani et al. (2017). (A) Louvain clustering result
for all monocytes and dendritic cell types with labels indicating the cell types defined in Villani et al. (2017). In comparison with the original result derived
from iterative clustering,monocyte 1 and 3 and dendritic type DC2 andDC3 have beenmerged in this clustering result. (B) Box plots showing F-beta scores
and Binary Scores for markers determined for the clusters in panel A by NS-Forest v2.0, COMET, and RANKCORR. (C ) Louvain clustering results of dendritic
cells only with labels indicating the cell type defined in Villani et al. (2017). (D) Box plots showing F-beta scores and Binary Scores formarkers determined for
the cell type clusters in panel C by NS-Forest v2.0, COMET, and RANKCORR.
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thereafter. Consequently, itmaybe advisable to change the default
to five genes in situations where time is a limiting factor.

Validation of human MTG NS-Forest v2.0 markers

The ground truth for neuron types and their marker genes in hu-
manMTG is not known as this is currently an active area of inves-
tigation. Consequently, a true biological validation of the marker
genes is not possible. As an alternative, we asked the question,
does the minimum set of marker genes selected by NS-Forest cap-
ture the underlying diversity of cell type identity reflected in the
entire expressed transcriptome? To do this, we generated t-SNE
plots using the complete set of 5574 variable genes used for the
original MTG clustering, the minimum set of 157 NS-Forest v2.0
marker genes, and sets of 157 genes randomly selected from the
complete variable genes list. These embeddings were then painted
using the cell type assignments from the MTG taxonomy. From
the t-SNEplots, it is clear that theNS-Forestmarkers closely recapit-
ulate the clustering and embedding structure of the complete var-
iable genes set, much better than the randomly selected genes (Fig.
8A). For example, in the bottom of the complete variable genes t-
SNE, there are light salmon- and dark salmon-colored groups of
clusters; these two clusters are nicely preserved in the right-hand
side of the NS-Forest marker t-SNE, whereas, in the t-SNE from
the randomly selected variable genes, these two clusters are spread
out and a third brown cluster is nowmerged with the light salmon
cluster. Examples like this can be seen throughout the three em-
beddings. A more quantitative analysis of these t-SNE embeddings
using the Nearest-Neighbor Preservation metric showed that both
the precision and recall are higher using the 157NS-Forestmarkers
compared with 50 samplings of 157 genes randomly selected from
the variable gene set (Supplemental Fig. S12).

In addition, the local embedding structures as reflected by ex-
pression gradients within a given t-SNE cluster also appear to be
well preserved (Fig. 8B). The complete variable genes t-SNE map
was painted using coordinate positioning. This yields a visual

way of comparing where individual nuclei are located within the
full t-SNE embedding versus other t-SNE embeddings. The NS-
Forest marker t-SNE was then painted using the colors derived
from the complete variable genes t-SNE. The fact that the same col-
or gradients are observed in the NS-Forest embedding demon-
strates that the positional gradients, and thus the nuclei-to-
nuclei relationships, in the NS-Forest embedding closely reflect
the positional gradients in the complete variable genes t-SNE em-
bedding. For example, in the full t-SNE, there is a long cluster of
nuclei beginning on the left in green that extends toward themid-
dle, moving into bluish green, and ending in purplish blue. This
same cluster, with the same color gradient, is preserved within
the center left cluster of the NS-Forest t-SNE.

Characterization of NS-Forest v2.0 markers

Overall, the results from NS-Forest v2.0 reflect the high quality of
the data and clustering analysis; as a supervised machine learning
method, NS-Forest v2.0 is reliant on the quality of the clustering
results. Themedian number of markers required for optimal classi-
ficationwas two, with only two clusters needing fourmarkers, pro-
ducing a mean F-beta score of 0.69. Overall, the 75 clusters
required 157 unique genes to achieve optimal classification.
Occasionally, marker genes are shared between clusters, with 11
genes that were not unique (MOXD1, MME, LOC101928196,
SULF1, NPFFR2, LINC01583, TAC1, COL15A1, LOC401478,
CPED1, TAC3).

Out of the 157 NS-Forest v2.0 marker genes, 37 (24%) were
long noncoding RNAs (lncRNAs) or uncharacterized loci (LOCs).
Noncoding RNAs have been previously found to be prevalent
when analyzing RNA-seq data from single neuronal cells or nuclei,
and, surprisingly, these noncoding RNAs had higher specificity as
markers when compared to coding genes (Bakken et al. 2018). In
particular, lncRNAs are known to show cell line–specific expres-
sion (Djebali et al. 2012). In contrast, little is known about the
LOC genes. These genes are particularly intriguing as they are

highly specific to individual cell types
and are likely important for their func-
tion. As such, they represent areas of un-
known biology discovered by scRNA-seq
and NS-Forest machine learning that
warrant further investigation.

For the characterized marker genes,
the most enriched annotations both by
adjusted P-value and number of genes in-
volved are for signaling (signal peptide,
signal, secreted), including neuropeptide
signaling (GO:0007218∼neuropeptide)
and calcium, and extracellular matrix
(glycoprotein, extracellular matrix,
GO:0005615∼extracellular space, GO:00
05578∼proteinaceous extracellular ma-
trix, GO:0030198∼extracellular matrix
organization, GO:0005576∼extracellular
region, GO:0031012∼extracellular ma-
trix), and calcium (Supplemental Table
S6; Huang et al. 2009). There are fewer
genes annotated with specific neurologi-
cal functions in the marker gene list, as
molecular neuroscience is a relatively
nascent field. However, many of genes
assessed here are known signaling

B

A

Figure 8. Validation of NS-Forest v2.0 MTG marker genes. (A) t-SNE plots generated using the full
5574 variable gene list, the 157 NS-Forest v2.0 markers, and 157 genes randomly selected from the var-
iable gene list painted by taxonomic assignment. (B) t-SNE map generated from the full 5574 variable
gene list was painted by CIELAB color space using coordinate position for each nucleus (left). t-SNE
map generated using the 157 NS-Forest markers was then painted according to the CIELAB color space
established in the complete variable genes t-SNE (right).
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peptides in other contexts and would benefit from further charac-
terization in a neurological context. Taken together, these results
suggest that specific signaling pathways and extracellular signaling
molecules are key to neuronal cell type identity.

Discussion

Here, we describe the development and performance of NS-Forest
version 2.0, a method for the identification of cell type–specific
gene expression markers from scRNA-seq data. Development was
driven by user community requirements for data-driven cell type
definitions that are testable in future investigations. To this end,
a number of changes were made after the random forest feature se-
lection step. In earlier versions of NS-Forest, negativemarkers were
occasionally found. These are marker genes that are expressed in
many off-target clusters but not the target cluster. Given that ex-
perimental testing for a gene that is not expressed is methodolog-
ically difficult, NS-Forest v2.0 was designed to avoid this category
of markers. By implementing a median expression level cutoff
greater than zero for the target cluster, all possible negativemarker
genes were removed. In addition, this cutoff also defines another
core characteristic of NS-Forest Markers: selected marker genes
must be expressed in greater than half of the individual cells with-
in the cell type cluster.

In addition to negative markers, the standard random forest
feature selection approach used in early NS-Forest versions discov-
ered quantitative markers that were good for classification but
problematic for further biological investigation. This limitation
of random forest feature selection could be shared with other ma-
chine learning methods. Consequently, a ranking step to select
marker genes with binary expression patterns was incorporated.
Simulation testing performed to assess this Binary Expression
Score ranking step demonstrated thatmarker geneswith binary ex-
pression patterns were preferentially selected and accurately
ranked according to the levels of binary expression. As a result,
NS-Forest v2.0 demonstrated clear improvement in the enrich-
ment for binary expression patterns, with a nominal impact on
the overall classification power and number ofmarker genes neces-
sary. Consequently, if a user prefers the highest level of classifica-
tion accuracy without the practical constraint imposed by many
types of downstream investigations, NS-Forest v1.3 might be pre-
ferred. However, if binary expression for downstream application
is important, NF-Forest v2.0 would be the best choice. Both ver-
sions are available as official GitHub releases.

Beyond their use for defining and investigating cell types,
necessary and sufficient marker genes also offer a dimensionality
reduction with limited loss of fidelity to the originally clustering
solution. This dimensionality reduction offers a feasible way of
representing the clustering solution with a minimal amount of in-
formation, which is ideal for data dissemination. These marker
genes can then be used to generate a reference knowledgebase
for cell types, generating expression barcodes that can be used to
identify these cell types within new data sets. Indeed, NS-Forest
marker genes have been used to facilitate reference cell typematch-
ing in the FR-Match algorithm (Zhang et al. 2020).

As mentioned above, NS-Forest markers are optimized for
downstream experimental investigation. There are a number
of assays for which known markers could facilitate biological in-
vestigation, such as qPCR and the burgeoning field of spatial tran-
scriptomics based onmultiplex FISH. To date, a number of projects
have used NS-Forest markers for these purposes. For example,
qPCR probes based on NS-Forest markers were made to detect

genes in scRNA-seq libraries from myeloid dendritic cells (mDCs)
FACS sorted from peripheral blood in patients treated with the
hepatitis B vaccine (Aevermann et al. 2021). In a similar fashion,
gene probes were designed based on NS-Forest markers for cell
type detection using a number of spatial transcriptomic technolo-
gies. These technologies aim to resolve the location of cell types de-
rived from scRNA-seq generated taxonomies within intact tissue
specimens (Perkel 2019).

Another possible application of NS-Forest is to utilize selected
gene sets of particular interest as input to producemarker gene sets
designed to capture specific cell type properties. For example, the
input of gene sets composed of transcription factors could reveal
master regulators of developmental programs (Cui et al. 2019).
Input gene sets composed of neuropeptides and neurotransmitters
could be used to shed new light on the specific signaling properties
of different neuronal cell subsets (Smith et al. 2019). Input gene
sets composed of cell surface markers could be used to identify
markers for use in fluorescence-activated cell sorting.

As the number of experiments performed and data sets
made publicly available dramatically increase, the greater biolog-
ical community is left with the monumental task of integrating
these data into a consensus of canonical cell types. With cell
types defined by NS-Forest marker genes, we can move ahead
with the creation of a dissemination framework that defines
ontological classes based upon these molecular markers as the
necessary and sufficient criteria in an axiomatic semantic
representation compliant with FAIR principles. Ontological rep-
resentations have numerous advantages over simple vocabularies,
including the structuring of knowledge in a computationally
readable format so that findings from many experiments can
be easily accessible and “reasoning” can be performed to ensure
the consistency of the representation as the knowledge rapidly
grows. These instances of “cell type clusters” defined by NS-
Forest markers can form the basis for the instantiation of an on-
tology class for adoption into the official Cell Ontology. Progress
is already underway in developing programmatic and scalable
methods to handle the volumes of single-cell data being generat-
ed. This ontological representation can address several pressing
needs of the wider biological research community, producing
an easy, visually accessible overview of the results of many sin-
gle-cell experiments in a traversable structure while preserving
the hierarchical relationships inherent in a taxonomy of cell
types. In addition, this ontology will provide a platform for inte-
gration with other data modalities, such as cell morphology, elec-
trophysiology, and cell–cell interactions. A Provisional Cell
Ontology (pCL) generated in this manner for human middle
temporal gyrus and human, mouse, and marmoset primary mo-
tor cortex is available for exploration at https://bioportal
.bioontology.org/ontologies/PCL.

Development of NS-Forest is ongoing; a number of function-
alities are planned for near term release. One major update to NS-
Forest v2.0 will be to add the option to run marker determination
within a hierarchical framework, for example, to determine mark-
ers for a series of cluster labels that reflect a relational structure such
as a taxonomy dendrogram. Another key aspect will be to include
cross-validation or some other methodology to estimate the reli-
ability of a given marker gene for a given cell type cluster. On a
broader level, incorporating NS-Forest into the library of easily
available SCANPY plugins is a high priority. Last, we will be
increasing the number of output reports to facilitate the genera-
tion of ontological type artifacts, including OWL and RDF
representations.
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Methods

NS-Forest version 2.0

Initial feature selection

The NS-Forest v2.0 workflow (Fig. 1A,B) begins with a cell-by-gene
expression matrix, with an additional column containing cluster
membership labels, produced by any expression data clustering
method applied to single-cell/-nucleus RNA sequencing data
sets. This cluster-labeled expressionmatrix is then used to generate
random forest classification models distinguishing each target
cluster from all other clusters (binary classification) using
RandomForestClassifier scikit. RandomForestClassifier hyperpara-
meterswere left at default except that the number of treeswas set at
10,000 to give sufficient coverage of the sample and gene expres-
sion feature space; necessary coverage for a given feature space is
estimated as the square root of the number of samples (∼10,000
cells) times the square root of the number of features (∼10,000
genes). From the resulting random forest model, the average
Gini Index value is used to initially rank genes based on their fea-
ture importance. The output from the random forest model is a
ranked list of all the input features from most informative to least
informative.

Feature reranking based on positive binary expression

Reranking the features after initial random forest ranking begins
with selecting the top 15 genes ranked by Gini index. It is critical
to limit the number of genes before reranking by binary expres-
sion, as the Binary Expression Score does not necessarily correlate
to their importance in the classification context. As such, increas-
ing the number of genes for reranking would potentially lower the
overall classification power. Positive expression filtering (Fig. 1C) is
then performed by removing genes with a median cluster expres-
sion of 0 in order to exclude genes that are not expressed in the rel-
evant cluster, which we refer to as negative markers, or show high
zero inflation. The “Median_Expression_Level” parameter, default
value of 0, is tunable and can be adjusted according to the data set.

Next, genes are reranked to enrich for genes with binary ex-
pression patterns (Fig. 1D). A “Binary Expression Score”was devel-
oped to enrich for genes that showall-or-none expression patterns,
with expression in the target cluster and as few other cell type
clusters as possible. The Binary Expression Score is calculated for
each gene in the initial random forest feature list according to
the equation

ScoregT =
∑n

i=1 1− yi
yT

( )+

n− 1
,

where yi is the median gene expression level for each cluster i, yT is
themedian expression in the target cluster, and n is the number of
clusters, whereas (·)+ denotes the nonnegative value of a real num-
ber. This results in a Binary Expression Score in the range of 0–1,
with a Binary Expression Score of 1 being the ideal case where
the gene is only expressed in the target cluster (Fig. 1E). The final
list of 15 genes is ranked first on the Binary Expression Score and
then by the Gini Index value. This guarantees that any genes
with Binary Expression Score ties are ranked by informativeness
rather than lexicographically.

Estimation of expression thresholds for evaluation

After the top genes are reranked based on positive binary expres-
sion, they are then tested for their classification power individually
and in combination. First, the top M genes, a tunable parameter

“Genes_to_testing,” set to six genes by default, are used to generate
individual decision trees to determine the optimal expression level
cut-off value for each gene (Fig. 1F). The maximum leaf nodes pa-
rameter is set at two, thereby ensuring a single split point per tree.
From these trees, the optimal gene expression threshold at the split
point is extracted.

Minimum feature combination determination

To evaluate the discriminative power of a given combination of
candidate marker genes, we use the F-beta score as an objective
function

Fb = (1+ b2)
precision · recall

b2 · precision+ recall
.

The F-score is the harmonic mean of precision and recall pro-
viding equal weight for these two classification measures. The F-
beta score includes a beta term that allows for the weighting of
the function toward either precision (beta<1) or recall (beta>1)
(Fig. 1G). The beta for the analysis described here was estimated em-
pirically at 0.5. In brief, the empirical selection of 0.5 was based on a
balance of the average values for the confusionmatrix across all cell
type clusterswhile varying the beta parameter. At a beta of 0.5, there
was an optimum reached in the confusion matrix while averaging
approximately two markers per cell type cluster (Supplemental
Fig. S13). This parameter should be evaluated for each data set, as
it adjusts for the amount of zero inflation within the data. Here,
we are analyzing Smart-Seq data which are known to have compar-
atively lower zero inflation versus droplet-based methodologies.

Finally, all permutations of the top-ranked genes (six genes by
default) are then evaluated at the expression levels determined ear-
lier by decision tree analysis. The F-beta scores for all permutations
arewritten to a complete results file and the gene feature combina-
tion producing the best F-beta score result selected per cluster.

Simulation testing of the Binary Expression Score

Simulation studies were conducted to investigate the properties of
the Binary Expression Score weighting using a three-component
mixture model to reflect the zero-inflation technical artifact and
the background and positive expression signals in real data distri-
butions. Denoting X as the gene expression value, our simulated
data follow a mixture distribution

P(X = x) = p1 · d0(x)+ p2 · fGamma(x)+ p3 · fNormal(x),

where δ0 (x) is the probability density function of the degenerate
distribution at 0 for the zero-inflation technical artifact, fGamma

(x) is the probability density function of a Gamma distribution
(with hyperparameters α and β) for low level background expres-
sion from off-target cells or on-target cells with low expression,
and fNormal (x) is the probability density function of a Normal
distribution (with hyperparameters μ and σ2) for positive expres-
sion signals; parameters π1, π2, and π3 are the corresponding
mixture weights for each component such that π1, π2, π3 > 0 and
π1 + π2 + π3 = 1. In our simulations, we generated 20 clusters with
300 cells in each cluster. We designed cases where the simulated
gene is expressed at high levels in one, two, or five clusters. Both
binary and quantitative markers were simulated for on-target
and off-target clusters by setting different parameters and hyper-
parameters in the mixture model.

scRNA-seq data

The scRNA-seq data evaluated here were obtained from the Allen
Institute for Brain Science (https://portal.brain-map.org/atlases-
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and-data/rnaseq). The experimental design, including tissue sam-
pling and data processing, can be found in Krishnaswami et al.
(2016) and Hodge et al. (2019). In brief, layers 1–6 of the human
middle temporal gyrus) were vibratome-sectioned, and nuclei
were extracted and labeled for NeuN expression. Nuclei were
then FACS-sorted and libraries were generated using the Smart-
Seq v4 andNextera XT chemistries. Data processing and clustering
were then performed as detailed in Bakken et al. (2018).

NS-Forest v2.0 was run using the cluster assignments given in
Hodge et al. (2019). Nuclei not assigned to a cluster were removed
from the analysis. CPM expression values were log2 (x +1) trans-
formed and genes with a sum of zero median expression across
all clusters were removed. After filtering, 15,928 nuclei and
13,946 genes remained. Given the size of the input matrix, we in-
creased the number of trees in the random forest model from the
default of 10,000 to 50,000.

Marker validation

In order to demonstrate the preservation of the cell type clustering
characteristics using NS-Forest marker genes, t-SNE embeddings
were generated using Cytosplore (Höllt et al. 2016; van Unen
et al. 2017). The original clustering solution is represented by an
embedding generated from the 5574 variable genes used for the it-
erative clustering originally performed (Hodge et al. 2019).
Additional embeddings were made using the combined set of
157 marker genes for all cell type clusters determined by NS-
Forest v2.0 and a set of 157 genes chosen at random from the orig-
inal 5574 genes. Figures were generated using two different paint-
ing strategies. The first painted cells based upon the cluster
assignment given in the taxonomy. The second painted using a
CIELAB color space on the coordinate positioning, giving a visual
way of comparing the relative location of individual nuclei be-
tween the full t-SNE embedding and other t-SNE embeddings.

In addition, a more quantitative analysis of these t-SNE em-
beddings using the Nearest-Neighbor Preservation metric was per-
formed. In brief, this is computed as follows: for each data point,
the K-Nearest-Neighborhood (KNN) in the high-dimensional
space is compared with the KNN in the reduced-dimensional
space. Average precision/recall curves are generated by taking
into account high-dimensional neighborhoods of increasing size
up to Kmax=50. The True-Positive (TP) number is the intersection
between the high-dimensional and low-dimensional neighbor-
hoods based on the 157 selected genes. The precision is computed
as TP/K and the recall as TP/Kmax (Venna et al. 2010; Ingram and
Munzner 2015; Pezzotti et al. 2020).

Comparison to other marker gene methodologies

Comparisons of marker gene methodologies was performed using
the monocyte/dendritic cell data set detailed in Villani et al.
(2017). This data set was chosen because it is well characterized
in the associated publication and offers a range of defined cell
types that vary in their difficulty to classify. Raw data were ob-
tained from the NCBI Gene Expression Omnibus (GEO; https
://www.ncbi.nlm.nih.gov/geo/) using accession number
GSE94820 and then processed using a standard Seurat analysis
(Stuart et al. 2019) in two ways: first, the entire data set was pro-
cessed and clustered; and second themonocytes were removed fol-
lowed by processing and clustering of the dendritic cell
populations only. These analyses were independent and not itera-
tive. For both analyses, cells were filtered that had less than 1000
genes and the top 2500 variable genes were selected. The complete
data set had a total of 1103 cells whereas the dendritic cell data set

had 750 cells. After processing, the resulting data sets were ana-
lyzed by Louvain clustering and visualized by UMAP embedding.

Clustering assignments and expression matrices containing
the top 10,000 variable genes were used to perform marker deter-
mination using NS-Forest v2.0, COMET (Delaney et al. 2019),
and RANKCORR (Vargo and Gilbert 2020). All three methods
were run using default parameters, with COMET being run using
http://www.cometsc.com/comet web submission. To compare
the resultingmarker gene sets, NS-Forest v2.0 was used to compute
the Binary Score and F-beta score for all results.

To benchmark NS-Forest v2.0, the dendritic-only data set was
used to estimate the computations time. Two different parameters
were tested: the number of trees used in the random forest model
generation and the number of top genes for which all permuta-
tions were tested.

Software availability

NS-Forest version 2.0 is available at GitHub (https://github.com/
JCVenterInstitute/NSForest) under an open-source MIT license.
Source code is also available with this manuscript labeled “NS_
Forest_v2.ipynb”. Protocol is available at protocols.io: dx.doi
.org/10.17504/protocols.io.un7evhn.
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