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Annotating cell identities is a common bottleneck in the analysis of single-cell genomics experiments. Here, we present
scNym, a semisupervised, adversarial neural network that learns to transfer cell identity annotations from one experiment
to another. scNym takes advantage of information in both labeled data sets and new, unlabeled data sets to learn rich rep-
resentations of cell identity that enable effective annotation transfer. We show that scNym effectively transfers annotations
across experiments despite biological and technical differences, achieving performance superior to existing methods. We
also show that scNym models can synthesize information from multiple training and target data sets to improve perfor-
mance. We show that in addition to high accuracy, scNym models are well calibrated and interpretable with saliency
methods.

[Supplemental material is available for this article.]

Single-cell genomics allows for simultaneous molecular profiling
of thousands of diverse cells and has advanced our understand-
ing of development (Trapnell 2015), aging (Angelidis et al. 2019;
Kimmel et al. 2019; Ma et al. 2020), and disease (Tanay and
Regev 2017). To derive biological insight from these data, each sin-
gle-cell molecular profile must be annotated with a cell identity,
such as a cell type or state label. Traditionally, this task has been
performedmanually by domain expert biologists. Manual annota-
tion is time-consuming, somewhat subjective, and error prone.
Annotations influence the results of nearly all downstream analy-
ses, motivating more robust algorithmic approaches for cell type
annotation.

Automated classification tools have been proposed to transfer
annotations across data sets (Kiselev et al. 2018; Abdelaal et al.
2019; Alquicira-Hernandez et al. 2019; de Kanter et al. 2019;
Pliner et al. 2019; Tan and Cahan 2019; Zhang et al. 2019).
These existing tools learn relationships between cell identity and
molecular features from a training set with existing labels without
considering the unlabeled target data set in the learning process.
However, results from the field of semisupervised representation
learning suggest that incorporating information from the target
data during training can improve the performance of prediction
models (Kingma et al. 2014; Oliver et al. 2018; Berthelot et al.
2019; Verma et al. 2019). This approach is especially beneficial
when there are systematic differences—a domain shift—between
the training and target data sets. Domain shifts are commonly in-
troduced between single-cell genomics experiments when cells are
profiled in different experimental conditions or with different se-
quencing technologies.

A growing family of representation learning techniques en-
courages classificationmodels to provide consistent interpolations
between data points as an auxiliary training task to improve perfor-
mance (Berthelot et al. 2019; Verma et al. 2019). In the semisuper-
vised setting, the MixMatch approach implements this idea by
“mixing” observations and their labels with simple weighted aver-
ages. Mixed observations from the training and target data sets

form a bridge in feature space, encouraging the model to learn a
smooth interpolation across the domains. Another family of tech-
niques seeks to improve classification performance in the presence
of domain shifts by encouraging the model to learn a representa-
tion in which observations from different domains are embedded
nearby, rather than occupying distinct regions of a latent space
(Wilson and Cook 2020). One successful approach uses a “domain
adversary” to encourage the classification model to learn a repre-
sentation that is invariant to data set–specific features (Ganin
et al. 2016). Both interpolation consistency and domain invari-
ance are desirable in the single-cell genomic setting, in which
domain shifts are common and complex gene expression bound-
aries separate cell types.

Here, we introduce a cell type classification model that uses
semisupervised and adversarial machine learning techniques to
take advantage of both labeled and unlabeled single-cell data
sets.We show that thismodel offers superior performance to exist-
ing methods and effectively transfers annotations across different
animal ages, perturbation conditions, and sequencing technolo-
gies. Additionally, we show that our model learns biologically in-
terpretable representations and offers well-calibrated metrics of
annotation confidence that can be used to make new cell type
discoveries.

Results

scNym

In the typical supervised learning framework, the model touches
the target unlabeled data set to predict labels only after training
has concluded. In contrast, our semisupervised learning frame-
work trains the model parameters on both the labeled and unla-
beled data in order to leverage the structure in the target data set,
the measurements of which may have been influenced by myriad
sources of biological and technical bias and batch effects.
Although ourmodel uses observed cell profiles from the unlabeled
target data set, at no point does the model access ground truth la-
bels for the target data. Ground truth labels on the target data set
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are used exclusively to evaluate model performance. Some single-
cell classification methods require manual marker gene specifica-
tion before model training. scNym requires no prior manual spec-
ification ofmarker genes but rather learns relevant gene expression
features from the data.

scNym uses the unlabeled target data through a combina-
tion of MixMatch semisupervision (Berthelot et al. 2019) and
by training a domain adversary (Ganin et al. 2016) in an iterative
learning process (Methods) (Fig. 1A). The MixMatch semisupervi-
sion approach combines MixUp data augmentations (Zhang et al.
2018; Thulasidasan et al. 2019) with pseudolabeling of the target
data (Lee 2013; Verma et al. 2019) to improve generalization
across the training and target domains. At each training iteration,
we “pseudolabel” unlabeled cells using predictions from the clas-
sification model and then augment each cell profile using a bi-
ased weighted average of gene expression and labels with
another randomly chosen cell (Fig. 1B). The resulting mixed pro-
files are dominated by a single cell, adjusted modestly to more
closely resemble another. As part of MixMatch, we mix profiles
across the training and unlabeled data so that some of the result-
ing mixed profiles are interpolations between the two data sets.
We fit the model parameters to minimize cell type classification
error on these mixed profiles, encouraging the model to learn a
general representation that allows for interpolation between ob-
served cell states.

The scNym classifier learns a repre-
sentation of cell identity in the hidden
neural network layers where cell types
are linearly separable. Alongside,we train
an adversarial model to predict the
domain of origin for each cell (e.g., train-
ing set, target set) from this learned
embedding. We train the scNym classifi-
er to compete with this adversary, updat-
ing the classifier’s embedding to make
domain prediction more difficult. At
each iteration, the adversary’s gradients
highlight features in the embedding
that discriminate the different domains.
We update the scNym classifier using
the inverse of the adversarial gradients,
reducing the amount of domain-specific
information in the embedding as train-
ing progresses. This adversarial training
procedure encourages the classification
model to learn a domain-adapted embed-
ding of the training and target data sets
that improves classification performance
(Fig. 1C). In inference mode, scNym pre-
dictions provide a probability distribu-
tion across all cell types in the training
set for each target cell.

scNym transfers cell annotations across
biological conditions

Weevaluated the performance of scNym,
transferring cell identity annotations in
11 distinct tasks. These tasks were chosen
to capture diverse kinds of technological
and biological variation that complicate
annotation transfer. Each task represents

a true cell type transfer across different experiments, in contrast to
some efforts that report within-experiment hold-out accuracy.

We first evaluated cell type annotation transfer between ani-
mals of different ages. We trained scNym models on cells from
young rats (5 mo old) from the Rat Aging Cell Atlas (Ma et al.
2020) and predicted on cells from aged rats (27 mo old) (Fig. 2A;
Methods). We found that predictions from our scNym model
trained on young cells largely matched the ground truth annota-
tions (92.2% accurate) on aged cells (Fig. 2B,C).

We compared scNym performance on this task to state-of-
the-art single-cell identity annotation methods (Kiselev et al.
2018; Abdelaal et al. 2019; Alquicira-Hernandez et al. 2019; de
Kanter et al. 2019; Tan and Cahan 2019. We also compared
scNym to state-of-the-art unsupervised data harmonizationmeth-
ods (Korsunsky et al. 2019; Stuart et al. 2019; Tran et al. 2020; Xu
et al. 2021) followed by supervised classification with a support
vector machine, for a total of 10 baseline approaches (Methods).
scNym produced significantly improved labels over these meth-
ods, some of which could not complete this large task on our
hardware (256 GB RAM; Wilcoxon rank sums on accuracy or
κ-scores, P<0.01) (Fig. 2D; Table 1). scNym runtimes were compet-
itive with baselinemethods (Supplemental Fig. S1). We found that
some of the largest differences in accuracy between scNym and the
commonly used scmap-cell method were in the skeletal muscle.
scNym models accurately classified multiple cell types in the

B

A
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Figure 1. scNym combines semisupervised and adversarial training to learn performant single-cell
classifiers. (A) scNym takes advantage of target data during training by estimating “pseudolabels” for
each target data point using model predictions. Training and target cell profiles and their labels are
then augmented using weighted averages in the MixMatch procedure. An adversary is also trained to
discriminate training and target observations. We train model parameters using a combination of super-
vised classification, interpolation consistency, and adversarial objectives. Here, we use H(·,·) to represent
the cross-entropy function. (B) Training and target cell profiles are separated by a domain shift in gene
expression space. scNym pseudolabels target profiles and generates mixed cell profiles (arrows) by ran-
domly pairing cells. Mixed profiles form a bridge between training and target data sets. (C) scNymmod-
els learn a discriminative representation of cell state in a hidden embedding layer. Train and target cell
profiles initially segregate in this representation. During training, adversarial gradients (colored arrows)
encourage cells of the same type to mix in the scNym embedding.
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muscle that were confused by scmap-cell (Fig. 2E), showing that
the increased accuracy of scNym is meaningful for downstream
analyses.

We next tested the ability of scNym to classify cell identities
after perturbation. We trained on unstimulated human peripheral
blood mononuclear cells (PBMCs) and predicted on PBMCs
after stimulation with IFNB1 (Fig. 3A; Kang et al. 2018). scNym
achieved high accuracy (>91%), superior to baseline methods
(Fig. 3C; Table 1). The common scmap-cluster method frequently
confused monocyte subtypes, whereas scNym did not (Fig. 3B).

Cross-species annotation transfer is another context in which
distinct biology creates a domain shift across training and target
domains. To evaluate if scNym could transfer labels across species,
we trained on mouse cells with either rat or human cells as target
data and observed high performance (Supplemental Fig. S2).

scNym models learn biologically meaningful cell type
representations

To interpret the classification decisions of our scNym models, we
developed integrated gradient analysis tools to identify genes
that influence model decisions (Methods) (Sundararajan et al.
2017). The integrated gradient method attributes the prediction
of a deep network to its input features while satisfying desirable ax-
ioms of interpretability that simplermethods like raw gradients do
not. For the PBMC cross-stimulation task, we found that salient
genes included known markers of specific cell types such as
CD79A for B cells and GNLY for NK cells. Integrated gradient anal-
ysis also revealed specific cell typemarker genes that may not have

been selected a priori, such asNCOA4 for megakaryocytes (Fig. 3D,
E; Supplemental Fig. S3). We also performed integrated gradient
analysis for a cross-technology mouse cell atlas experiment (de-
scribed below) and found that marker genes chosen using
scNym-integrated gradients were superior tomarkers chosen using
SVM feature importance scores based on Gene Ontology enrich-
ment (Supplemental Fig. S4). These results suggest that ourmodels
learned biologicallymeaningful representations that aremore gen-
eralizable to unseen cell profiles, regardless of condition or
technology.

We also used integrated gradient analysis to understand
why the scNym model misclassified some FCGR3A+ monocytes
as CD14+ monocytes in the PBMC cross-stimulation task
(Methods). This analysis revealed genes driving these incorrect
classifications, including some CD14+ monocyte marker genes
that are elevated in a subset of FCGR3A+ monocytes (Fig. 3F).
Domain experts may use integrated gradient analysis to under-
stand and review model decisions for ambiguous cells.

scNym transfers annotations across single-cell sequencing
technologies

To evaluate the ability of scNym to transfer labels across different
experimental technologies, we trained on single-cell profiles from
10 mouse tissues in the Tabula Muris captured using the 10x
Chromium technology and predicted labels for cells from the
same compendium captured using Smart-seq2 (The Tabula Muris
Consortium 2018). We found that scNym predictions were highly
accurate (>90%) and superior to baseline methods (Supplemental
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D

Figure 2. scNym transfers cell identity annotations between young and aged rat cells. (A) Young and aged cells from a rat aging cell atlas displayed in a
UMAP projection (Ma et al. 2020). Some cell types show a domain shift between young and aged cells. scNym models were trained on young cells in the
atlas and used to predict labels for aged cells. (B) Ground truth cell type annotations for the aged cells of the Rat Aging Cell Atlas shown in a UMAP pro-
jection. (C) scNym predicted cell types in the target aged cells. scNym predictions match ground truth annotation in the majority (>90%) of cases. (D)
Accuracy (left) and κ-scores (right) for scNym and other state of the art classification models. scNym yields significantly greater accuracy and κ-scores
than baseline methods (P<0.01, Wilcoxon rank sums). Note that multiple existing methods could not complete this large task. (E) Aged skeletal muscle
cells labeledwith ground truth annotations (left) and the relative accuracy of scNym and scmap-cell (right) projectedwith UMAP. scNym accurately predicts
multiple cell types that are confused by scmap-cell (arrows).

Semisupervised single-cell classification

Genome Research 1783
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.268581.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.268581.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.268581.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.268581.120/-/DC1


T
ab

le
1
.

C
o
m
p
ar
is
o
n
o
f
m
o
d
el

p
er
fo
rm

an
ce

ac
ro
ss

ta
sk
s

sc
m
ap

-c
el
l

sc
m
ap

-c
el
l-

ex
ac
t

sc
m
ap

-
cl
us
te
r

SV
M

Si
n
g
le
C
el
lN

et
sc
Pr
ed

C
H
ET

A
H

H
ar
m
o
n
y-

SV
M

LI
G
ER

-S
V
M

sc
A
N
V
I

sc
N
ym

Yo
un

g
to

ol
d

ra
t

84
.8

±
0.
00

2
87

.2
±
0.
00

1
79

.0
±
0.
01

6
91

.7
±
0.
0

89
.1

±
0.
0

O
O
M

70
.9

±
0.
01

2
86

.6
±
0.
00

3
O
O
M

82
.1

±
0.
00

6
9
2
.2

±
0
.0
0
1

hP
BM

C
C
ro
ss
-

St
im

63
.8

±
0.
01

1
41

.6
±
0.
01

6
80

.5
±
0.
00

2
85

.8
±
0.
00

4
90

.8
±
0.
00

1
63

.4
±
0.
00

3
56

.7
±
0.
01

7
91

.6
±
0.
00

2
91

.8
±
0.
00

1
82

.6
±
0.
01

9
2
.6

±
0
.0
0
1

TM
10

x
to

M
C
A

83
.6

±
0.
00

5
89

.7
±
0.
00

1
87

.3
±
0.
00

1
88

.4
±
0.
00

1
80

.5
±
0.
00

5
61

.2
±
0.
02

5
84

.7
±
0.
00

6
87

.3
±
0.
00

7
38

.4
±
0.
00

6
85

.9
±
0.
00

2
9
1
.4

±
0
.0
0
1

TM
10

x
to

SS
2

62
.4

±
0.
00

5
92

.3
±
0.
00

1
80

.9
±
0.
00

2
93

.1
±
0.
0

85
.9

±
0.
00

4
70

.1
±
0.
00

4
86

.9
±
0.
00

2
78

.1
±
0.
00

5
79

.4
±
0.
01

5
88

.9
±
0.
00

4
9
3
.6

±
0
.0
0
1

Sp
at
ia
lT

xn
72

.2
±
0.
00

5
81

.8
±
0.
03

8
83

.0
±
0.
00

1
9
2
.1

±
0
.0
0
1

87
.6

±
0.
00

2
92

.3
±
0.
00

1
56

.6
±
0.
00

5
89

.8
±
0.
00

5
9
2
.5

±
0
.0
0
1

84
.3

±
0.
00

7
91

.6
±
0.
00

2
Ki
dn

ey
ce
ll
to

N
uc

80
.0

±
0.
00

3
89

.6
±
0.
0

79
.6

±
0.
00

4
88

.4
±
0.
00

3
86

.2
±
0.
00

1
66

.9
±
0.
02

7
86

.0
±
0.
00

5
9
1
.6

±
0
.0
0
3

90
.3

±
0.
00

1
25

.5
±
0.
00

6
9
0
.9

±
0
.0
0
2

Ki
dn

ey
N
uc

to
ce
ll

75
.6

±
0.
00

2
63

.8
±
0.
00

2
83

.5
±
0.
00

1
86

.3
±
0.
00

1
82

.1
±
0.
00

1
83

.3
±
0.
00

2
23

.9
±
0.
00

4
83

.4
±
0.
01

2
84

.8
±
0.
00

4
24

.3
±
0.
00

8
8
9
.1

±
0
.0
0
1

C
or
te
x
SS

2
63

.4
±
0.
00

5
8
6
.4

±
0
.0
0
1

81
.4

±
0.
00

2
86

.1
±
0.
00

1
84

.3
±
0.
00

2
73

.7
±
0.
00

6
84

.8
±
0.
00

1
85

.7
±
0.
00

1
85

.6
±
0.
00

1
69

.3
±
0.
00

9
8
6
.0

±
0
.0
0
2

C
or
te
x
10

x
83

.5
±
0.
00

5
91

.1
±
0.
00

2
87

.4
±
0.
00

3
91

.3
±
0.
00

2
89

.0
±
0.
00

2
90

.5
±
0.
00

9
93

.1
±
0.
00

2
91

.2
±
0.
00

5
91

.1
±
0.
00

3
77

.1
±
0.
02

1
9
4
.5

±
0
.0
0
2

C
or
te
x
D
ro
N
c

69
.2

±
0.
00

3
71

.3
±
0.
00

7
77

.0
±
0.
00

3
81

.5
±
0.
00

4
83

.3
±
0.
00

2
80

.3
±
0.
01

1
83

.3
±
0.
00

1
82

.2
±
0.
00

9
87

.7
±
0.
01

56
.4

±
0.
01

3
8
9
.4

±
0
.0
0
2

C
or
te
x
sc
i-s
eq

82
.8

±
0.
00

2
78

.0
±
0.
00

1
79

.3
±
0.
00

1
8
5
.2

±
0
.0
0
1

83
.6

±
0.
00

1
83

.8
±
0.
00

2
83

.0
±
0.
00

1
83

.9
±
0.
00

3
84

.8
±
0.
00

7
60

.9
±
0.
01

4
84

.1
±
0.
00

2

M
ea
n
ac
cu

ra
cy

±
st
an

da
rd

er
ro
r
ac
ro
ss

a
fiv
ef
ol
d
tr
ai
ni
ng

sp
lit

is
re
po

rt
ed

.B
ol
d
te
xt

m
ar
ks

be
st
m
od

el
s
pe

r
ta
sk

(P
<
0.
05

,r
an

k
su
m
s
te
st
).
M
ul
tip

le
bo

ld
ed

m
od

el
s
in
di
ca
te

st
at
is
tic

al
ly
in
si
gn

ifi
ca
nt

di
f-

fe
re
nc

es
be

tw
ee
n
th
e
bo

ld
ed

m
od

el
s.
O
O
M

in
di
ca
te
s
th
at

th
e
m
et
ho

d
en

co
un

te
re
d
an

ou
t-
of
-m

em
or
y
er
ro
r
on

ou
r
ha

rd
w
ar
e
(2
56

G
B
RA

M
).
sc
N
ym

is
th
e
to
p-
ra
nk

ed
m
od

el
ac
ro
ss

ta
sk
s.

Kimmel and Kelley

1784 Genome Research
www.genome.org



Fig. S5A–C). scNym models accurately classified monocyte sub-
types, whereas baseline methods frequently confused these cells
(Supplemental Fig. S5D,E).

In a second cross-technology task, we trained scNym on
mouse lung data from the Tabula Muris and predicted on lung
data from the Mouse Cell Atlas, a separate experimental effort
that used microwell-seq technology (Han et al. 2018). We found
that scNym yielded high classification accuracy (>90%), superior
to baselinemethods, despite experimental batch effects and differ-
ences in the sequencing technologies (Supplemental Fig. S6). We
also trained scNym models to transfer regional identity annota-
tions in spatial transcriptomics data and found performance com-
petitive with baseline methods (Supplemental Fig. S7). Together,
these results show that scNym models can effectively transfer
cell type annotations across technologies and experimental
environments.

Multidomain training allows integration of multiple reference
data sets

The number of public single-cell data sets is increasing rapidly
(Svensson et al. 2018). Integrating information across multiple ref-
erence data sets may improve annotation transfer performance on
challenging tasks. The domain adversarial training framework in
scNym naturally extends to training across multiple reference
data sets. We hypothesized that a multidomain training approach
would allow for more general representations that improve anno-
tation transfer. To test this hypothesis, we evaluated the perfor-
mance of scNym to transfer annotations between single-cell and
single-nucleus RNA-seq experiments in the mouse kidney. These
data contained six different single-cell preparation methods and
three different single-nucleus methods, capturing a range of tech-

nical variation in nine distinct domains (Fig. 4A,B; Denisenko et al.
2020).

scNym achieved significantly greater accuracy than baseline
methods transferring labels from single-nucleus to single-cell
experiments using multidomain training. This result was also
achieved for the inverse transfer task, transferring annotations
from single-cell to single-nucleus experiments (tied with best base-
line) (Fig. 4C; Table 1). We found that scNym deliveredmore accu-
rate annotations for multiple cell types in the cell-to-nucleus
transfer task, including mesangial cells and tubule cell types
(Fig. 4D,E). These improved annotations highlight that the perfor-
mance advantages of scNym are meaningful for downstream
analysis and biological interpretation. We found that multido-
main scNym models achieved greater accuracy than any single-
domain model on both tasks and effectively synthesized informa-
tion from single-domain training sets of varying quality (Fig. 4F;
Supplemental Fig. S8). We performed a similar experiment using
data from mouse cortex nuclei profiled with four distinct single-
cell sequencing methods, training on three methods at a time
and predicting annotations for the held-out fourth method for a
total of four unique tasks. scNym was the top-ranked method
across tasks (Supplemental Fig. S9).

scNym confidence scores enable expert review and allow new cell
type discoveries

Calibrated predictions, in which the classification probability re-
turned by the model precisely reflects the probability it is correct,
enablemore effective interaction of the human researcherwith the
model output. We investigated scNym calibration by comparing
the prediction confidence scores to prediction accuracy
(Methods). We found that semisupervised adversarial training im-
proved model calibration, such that high-confidence predictions

E F

BA

C D

Figure 3. scNym transfers annotations from unstimulated immune cells to stimulated immune cells. (A) UMAP projection of unstimulated PBMC training
data and stimulated PBMC target data with stimulation condition labels. (B) UMAP projections of ground truth cell type labels (left), scmap-cluster predic-
tions (center), and scNym predictions for both CD14+ and FCGR3A+ monocytes. scmap-cluster confuses these populations (arrow). (C) Classification ac-
curacy for scNym and baseline cell identity classification methods. scNym is significantly more accurate than other approaches (P<0.01, Wilcoxon rank
sums). (D) Integrated gradient analysis reveals genes that drive correct classification decisions. We recover known marker genes of many cell types
(e.g., CD79A for B cells, PPBP for megakaryocytes). (E) Cell type specificity of the top salient genes in a UMAP projection of gene expression (log normalized
counts per million). (F) Integrated gradient analysis reveals genes that drive incorrect classification of some FCGR3A+ monocytes as CD14+ monocytes.
Several of the top 15 salient genes for misclassification are CD14+ markers that are up-regulated in incorrectly classified FCGR3A+ cells.
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are more likely to be correct (Fig. 5A,B; Supplemental Figs. S10A,B,
S11). scNym confidence scores can therefore be used to highlight
cells that may benefit from manual review (Supplemental Figs.
S10C, S11B), further improving the annotation exercise when it
contains a domain expert in the loop.

scNym confidence scores can also highlight new, unseen cell
types in the target data set using an optional pseudolabel thresh-
olding procedure during training, inspired by FixMatch
(Methods) (Sohn et al. 2020). The semisupervised and adversarial
components of scNym encourage the model to find a matching
identity for cells in the target data set. Pseudolabel thresholding al-
lows scNym to exclude cells with low-confidence pseudolabels
from the semisupervised and adversarial components of training,
stopping these components from mismatching unseen cell types
and resulting in correctly uncertain predictions.

To test this approach, we simulated two experiments in
which we “discover”multiple cell types by predicting annotations
on the Tabula Muris brain cell data using models trained on non-
brain tissues (Methods) (Fig. 5A,B). We first used pretrained
scNym models to predict labels for new cell types not present in
the original training or target sets, and scNym correctly marked
these cells with low-confidence scores (Supplemental Fig. S12).
In the second experiment, we included new cell types in the target
set during training and found that scNym models with pseudola-
bel thresholding correctly provided low-confidence scores to new
cell types, highlighting these cells as potential cell type discoveries
for manual inspection (Fig. 5C,D; Supplemental Fig. S13).

We found that scNym embeddings capture cell type differ-
ences even within the low-confidence cell population, such that
clustering these cells in the scNym embedding can provide a

E F

BA C

D

Figure 4. Multidomain training improves cross-technology annotation transfer in the mouse kidney. Cell type (A) and sequencing protocol annotations
(B) in a UMAP projection of single-cell and nucleus RNA-seq profiles from the mouse kidney (Denisenko et al. 2020). Each protocol represents a unique
training domain that captures technical variation. (C ) Performance of scNym and baseline approaches on single-cell–to–nucleus and single-nucleus–
to–cell annotation transfer. Methods are rank ordered by performance across tasks. scNym is superior to each baseline method on at least one task
(Wilcoxon rank sums, P<0.05). (D) Single-nucleus target data labeled with true cell types (left) or the relative accuracy of scNym and baseline methods
(right) for the single-cell–to–single-nucleus task. scNym achieves more accurate labeling of mesangial cells and tubule cell types (arrows). (E) Kidney tubule
cells from D visualized independently with true and predicted labels. scNym offers the closest match to true annotations. All methods make notable errors
on this difficult task. (F) Comparison of scNym performance when trained on individual training data sets (1-domain) versusmultidomain training across all
available data sets. We found that multidomain training improves performance on both the cells-to-nuclei and nuclei-to-cells transfer tasks (Wilcoxon rank
sums, P=0.073 and P<0.01, respectively).

BA

DC

Figure 5. scNym confidence scores highlight unseen cell types. (A)
scNym calibration error for models trained on the human PBMC cross-
stimulation task. Semisupervised and adversarial training significantly re-
duced calibration error relative to models trained with only supervised
methods (Base, MixUp). (B) Calibration curves capturing the relationship
between model confidence and empirical accuracy for models in A. (C)
scNym models were trained to transfer annotations from a mouse atlas
without brain cell types to data frommouse brain tissue. We desire amodel
that provides low-confidence scores to the new cell types and high-confi-
dence scores for endothelial cells seen in other tissues. (D) scNym confi-
dence scores for target brain cells. New cell types receive low-confidence
scores as desired (dashed outlines).
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hypothesis for how many new cell types might be present
(Supplemental Fig. S14). We also found that putative new cell
types could be discriminated from other low-confidence cells,
like prediction errors on a cell type boundary (Supplemental Fig.
S15). These results show that scNym confidence scores can high-
light target cell types that were absent in the training data, poten-
tially enabling new cell type discoveries.

Semisupervised and adversarial training components improve
annotation transfer

We ablated different components of scNym to determine which
features were responsible for high performance. We found that
semisupervision with MixMatch and training with a domain ad-
versary improved model performance across multiple tasks (Fig.
6B; Supplemental Fig. S16). We hypothesized that scNym models
might benefit from domain adaptation through the adversarial
model by integrating the cells into a latent space more effectively.
Supporting this hypothesis, we found that training and target do-
mains were significantly more mixed in scNym embeddings
(Supplemental Fig. S17). These results suggest that semisupervi-
sion and adversarial training improve the accuracy of cell type
classifications.

scNym is robust to hyperparameter selection

Hyperparameter selection can be an important determinant of
classification model performance. In all tasks presented here, we
have used the same set of default scNym parameters derived

from past recommendations in the representation learning litera-
ture (Methods). To determine how sensitive scNym performance
is to these hyperparameter choices, we trained scNym models on
the hPBMC cross-stimulation task across a grid of hyperparameter
values.We found that scNym is robust to hyperparameter changes
within an order of magnitude of the default values, showing that
our defaults are not “overfit” to the benchmark tasks presented
here (Supplemental Fig. S18). We also performed hyperparameter
optimization using reverse fivefold cross-validation for the top
three baseline methods (SVM, SingleCellNet, scmap-cell-exact) to
determine if an optimized baseline was superior to scNym across
four benchmarking tasks (Methods).We found that scNymperfor-
mance using default parameters was superior to the performance
of baseline methods after hyperparameter tuning (Supplemental
Table S3; Supplemental Fig. S19).

Discussion
Single-cell genomics experiments have become more accessible
owing to commercial technologies, enabling a rapid increase in
the use of thesemethods (Svensson et al. 2020). Cell identity anno-
tation is an essential step in the analysis of these experiments,
motivating the development of high-performance, automated
annotation methods that can take advantage of diverse data sets.
Here, we introduced a semisupervised adversarial neural network
model that learns to transfer annotations from one experiment
to another, taking advantage of information in both labeled train-
ing sets and an unlabeled target data set.

Our benchmark experiments show that scNym models pro-
vide high performance across a range of cell identity classification
tasks, including cross-age, cross-perturbation, and cross-technolo-
gy scenarios. scNym performs better in these varied conditions
than 10 state-of-the-art baseline methods, including three unsu-
pervised data integration approaches paired with supervised classi-
fiers (Fig. 6A; Table 1). The superiority of scNym is consistent
across diverse performance metrics, including accuracy, Cohen’s
κ-score, and the multiclass receiver operating characteristic
(MCROC) (Supplemental Fig. S20; Supplemental Tables S1, S2).

The key idea that differentiates scNym fromprevious cell clas-
sification approaches is the use of semisupervised (Berthelot et al.
2019) and adversarial training (Ganin et al. 2016) to extract infor-
mation from the unlabeled, target experiment we wish to anno-
tate. Through ablation experiments, we showed that these
training strategies improve the performance of our models.
Performance improvements were most pronounced when there
were large, systematic differences between the training and target
data sets (Fig. 3). Semisupervision and adversarial training also al-
low scNym to integrate information across multiple training and
target data sets, improving performance (Fig. 4). As large-scale sin-
gle-cell perturbation experiments become more common (Dixit
et al. 2016; Srivatsan et al. 2020) and multiple cell atlases are re-
leased for common model systems, our method’s ability to adapt
across distinct biological and technical conditions will only in-
crease in value.

Most downstream biological analyses rely upon cell identity
annotations, so it is important that researchers are able to interpret
themolecular features that drivemodel decisions.We showed that
backpropagation-based saliency analysis methods are able to re-
cover specific cell type markers, confirming that scNym models
learn interpretable, biologically relevant features of cell type. In fu-
ture work, we hope to extend upon these interpretability methods

A

B

Figure 6. Comparison of semisupervised scNym to other single-cell clas-
sification methods and ablated scNym variants. (A) We assign each meth-
od a rank order (rank 1 is best) based on performance for each benchmark
task. scNym is the top-ranked method across tasks and ranks highly on all
tasks. A support vector machine (SVM) baseline is the next best method,
consistent with a previous benchmarking study (Abdelaal et al. 2019).
(B) Ablation experiments comparing simplified supervised scNym models
(Base) against the full scNym model with semisupervised and adversarial
training (SSL +Adv.). We found that semisupervised and adversarial train-
ing significantly improved scNym performance across diverse tasks (all
tasks shown, Wilcoxon rank sums, P<0.05).
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to infer perturbations that alter cell identity programs using the
informative representations learned by scNym.

Methods

scNym model

Our scNym model fu consists of a neural network with an input
layer; two hidden layers, each with 256 nodes; and an output layer
with a node for each class. The first three layers are paired with
batch normalization (Ioffe and Szegedy 2015), rectified linear
unit activation, and dropout (Srivastava et al. 2014). The final layer
is paired with a softmax activation to transform real number out-
puts of the neural network into a vector of class probabilities.
The model maps cell profile vectors x to probability distributions
p(y|x) over cell identity classes y:

p(y|x) = fu(x).

We train scNym to map cell profiles in a gene expression
matrix x∈XCells×Genes to paired cell identity annotations y∈ y.
Transcript counts in the gene expression matrix are normalized
to counts per million (CPM) and log-transformed after addition
of a pseudocount (log(CPM+1)). During training, we randomly
mask 10% of genes in each cell with zero values and then renorm-
alize to obtain an augmented profile.

We use the Adadelta adaptive stochastic gradient descent
method (Zeiler 2012) with an initial learning rate of η=1.0 to up-
date model parameters on minibatches of cells, with batch sizes of
256. We apply a weight decay term of λWD=10−4 for regulariza-
tion. We train scNym models to minimize a standard cross-entro-
py loss function for supervised training:

LCE(X, fu) = E(x,y)�(X,y) −
∑K
k=1

y(k) log ( fu(x))k

[ ]
,

where y(k) is an indicator variable for the membership of x in class
k, and k∈K represents class indicators.

We fit all scNym models for a maximum of 400 epochs and
selected the optimal set of weights using early stopping on a vali-
dation set consisting of 10% of the training data. We initiate early
stopping after training has completed at least 5% of the total ep-
ochs to avoid premature termination.

Before passing each minibatch to the network, we perform
dynamic data augmentation with the “MixUp” operation (Zhang
et al. 2018). MixUp computes a weighted average of two samples
x and x

′
where theweights λ are randomly sampled from a beta dis-

tribution with a symmetric shape parameter α:

Mixl(x, x′) = lx+ (1− l)x′; l � Beta(a, a).

For all experiments here, we set α=0.3 based on performance
in the natural image domain (Zhang et al. 2018). Forcingmodels to
interpolate predictions smoothly between samples shifts the deci-
sion boundary away from high-density regions of the input distri-
bution, improving generalization. This procedure has been shown
to improve classifier performance on multiple tasks (Zhang et al.
2018). Model calibration—the correctness of a model’s confidence
scores for each class—is generally also improved by this augmenta-
tion scheme (Thulasidasan et al. 2019).

Semisupervision with MixMatch

We train semisupervised scNym models using the MixMatch
framework (Berthelot et al. 2019), treating the target data set as un-
labeled data U. At each iteration, MixMatch samples minibatches
from both the labeled data set (X, y) � D and unlabeled data set

U � U. We generate “pseudolabels” (Lee 2013) using model pre-
dictions for each observation in the unlabeled minibatch
(Supplemental Methods):

ui � U; zi = fu(ui).

We next “sharpen” the pseudolabels using a “temperature
scaling” procedure (Hinton et al. 2015; Guo et al. 2017) with the
temperature parameter T=0.5 as a form of entropy minimization
(Supplemental Methods). This entropy minimization encourages
unlabeled examples to belong to one of the described classes.

We then randomlymix each observation and label/pseudola-
bel pair in both the labeled and unlabeled minibatches with an-
other observation using MixUp (Zhang et al. 2018). We allow
labeled and unlabeled observations to mix together during this
procedure (Supplemental Methods):

l � Beta(a, a),

wm = Mixl(wi, wj); qm = Mixl(qi, qj),

where (wi, qi) is either a labeled observation and ground truth label
(xi, yi) or an unlabeled observation and the pseudolabel (ui, zi). This
procedure yields aminibatchX

′
ofmixed labeled observations and

a minibatch U
′
of mixed unlabeled observations.

We introduce a semisupervised interpolation consistency
penalty during training in addition to the standard supervised
loss. For observations and pseudolabels in the mixed unlabeled
minibatch U

′
, we penalize the mean squared error (MSE) between

the mixed pseudolabels and the model prediction for the mixed
observation (Supplemental Methods):

LSSL(U ′, fu) = Eum ,zm�U ′ ‖ fu(um)− zm ‖22 .

This encourages the model to provide smooth interpolations
between observations and their ground truth or pseudolabels, gen-
eralizing thedecisionboundaryof themodel.Weweight this unsu-
pervised loss relative to the supervised cross-entropy loss using the
weighting function λSSL (t) → [0, 1].We initialize this coefficient to
λSSL = 0 and increase the weight to a final value of λSSL = 1 over 100
epochs using a sigmoid schedule (Supplemental Methods):

L(X′, U ′, fu, t) = LCE(X′, fu)+ lSSL(t)LSSL(U ′, fu).

Domain adaptation with domain adversarial networks

We use domain adversarial networks (DANs) as an additional ap-
proach to incorporate information from the target data set during
training (Ganin et al. 2016). TheDANmethod encourages the clas-
sification model to embed cells from the training and target data
set with similar coordinates, such that training and target data
sets are well mixed in the embedding. By encouraging the training
and target data set to be well mixed, we take advantage of the in-
ductive bias that cell identity classes in each data set are similar,
despite technical variation or differences in conditions
(Supplemental Methods).

We introduce this technique into scNym by adding an adver-
sarial domain classification network, gf. We implement gf as a
two-layer neural network with a single hidden layer of 256 units
and a rectified linear unit activation, followed by a classification
layer with one output per domain of origin and a softmax activa-
tion. This adversary attempts to predict the domain of origin d
from the penultimate classifier embedding v of each observation.
For each forward pass, it outputs a probability vector, d̂, estimating
the likelihood the observation came from the training or target
domain.

We assign a one-hot encoded domain label, d, to each molec-
ular profile based on the experiment of origin (Supplemental
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Methods). During training,we pass aminibatch of labeled observa-
tions, x∈X, and unlabeled observations, u∈U, through the
domain adversary to predict domain labels:

d̂ = gf(v) = gf( fu(x)
(l−1)),

where d̂ is the domain probability vector, and v = fu(x)
(l−1) denotes

the embedding of x from the penultimate layer of the classification
model fu.We fit the adversary using amulticlass cross-entropy loss,
as described above for the main classification loss (Supplemental
Methods).

To make use of the adversary for training the classification
model, we use the “gradient reversal” trick at each backward
pass. We update the parameters ϕ of the adversary using standard
gradient descent on the loss Ladv. At each backward pass, this opti-
mization improves the adversarial domain classifier (Supplemental
Methods). We update the parameters θ of the classification model
using the inverse of the gradients computed during a backward pass
fromLadv. Using the inverse gradients encourages the classification
model fu to generate an embedding where it is difficult for the ad-
versary to predict the domain (Supplemental Methods). Our up-
date rule for the classificationmodel parameters therefore becomes

ut = ut−1 − h
∂LCE

∂u
+ lSSL(t)

∂LSSL

∂u
− ladv(t)

∂Ladv

∂u

( )
.

We increase theweight of the adversary gradients from λadv→
[0, 0.1] over the course of 20 epochs during training using a sig-
moid schedule.We scale the adversarial gradients flowing to θ, rath-
er than the adversarial loss term, so that full-magnitude gradients
are used to train a robust adversary, gf (Supplemental Methods).
Incorporating both MixMatch and the domain adversary, our
full loss function becomes

L(X, U, X′, U ′, fu, gf, t) = LCE(X′, fu)+ lSSL(t)LSSL(U ′, fu)

+ Ladv(X, U, fu, gf, t).

Pseudolabel thresholding for new cell type discovery

Entropyminimization and domain adversarial training enforce an
inductive bias that all cells in the target data set belong to a class in
the training data set. Formany cell type classification tasks, this as-
sumption is valid and useful. However, it is violated in the case in
which new, unseen cell types are present in the target data set. We
introduce an alternative training configuration to allow for quan-
titative identification of new cell types in these instances.

We have observed that new cell types will receive low-confi-
dence pseudolabels, as they do not closely resemble any of the clas-
ses in the training set (Supplemental Fig. S12). Wewish to exclude
these low-confidence pseudolabels from our entropy minimiza-
tion and domain adversarial training procedures, as thesemethods
incorrectly encourage these new cell types to receive both high-
confidence predictions and embeddings for a known cell type.
We therefore adopt a notion of “pseudolabel confidence thresh-
olding” introduced in the FixMatch method (Sohn et al. 2020).
To identify confident pseudolabels to use during training, we set
a minimum pseudolabel confidence τ=0.9 and assign all pseudo-
labels a binary confidence indicator, ci∈ {0, 1} (Supplemental
Methods).

We make two modifications to the training procedure to pre-
vent low-confidence pseudolabels from contributing to any com-
ponent of the loss function. First, we use only high-confidence
pseudolabels in the MixUp operation of the MixMatch procedure.
This prevents low-confidence pseudolabels from contributing to
the supervised classification or interpolation consistency losses
(SupplementalMethods). Second,weuse only unlabeled examples

with high-confidence pseudolabels to train the domain adversary.
These low-confidence unlabeled examples can therefore occupy a
unique region in the model embedding, even if they are easily dis-
criminated from training examples. Our adversarial loss is slightly
modified to penalize domain predictions only on confident sam-
ples in the pseudolabeled minibatch (Supplemental Methods).

We found that this pseudolabel thresholding configuration
option was essential to provide accurate, quantitative information
about the presence of new cell types in the target data set
(Supplemental Fig. S13). However, this option does modestly
decrease performance when new cell types are not present. We
therefore enable this option when the possibility of new cell types
violates the assumption that the training and target data share the
same set of cell types.Wehave provided a simple toggle in our soft-
ware implementation to allow users to enable or disable this
feature.

scNym model embeddings

We generate gene expression embeddings from our scNym model
by extracting the activations of the penultimate neural network
layer for each cell. We visualize these embeddings using UMAP
(Becht et al. 2019; McInnes et al. 2020) by constructing a near-
est-neighbor graph (k=30) in principal component space derived
from the penultimate activations. We set min_dist = 0.3 for the
UMAP minimum distance parameter.

We present single-cell experiments using a two-dimensional
representation fit using the UMAP algorithm (Becht et al. 2019).
For each experiment, we compute a PCA projection on a set of
highly variable genes after log (CPM+1) normalization. We con-
struct a nearest-neighbor graph using the first 50 principal compo-
nents and fit a UMAP projection from this nearest-neighbor graph.

Entropy of mixing

We compute the “entropy of mixing” to determine the degree of
domain adaptation between training and target data sets in an
embedding X. The entropy of mixing is defined as the entropy
of a vector of class membership in a local neighborhood of the em-
bedding:

H( pLocal) = −
∑K
k=1

pLocalk log pLocalk ,

where pLocal is a vector of class proportions in a local neighbor-
hood, and k∈K are class indices. We compute the entropy of mix-
ing for an embedding X by randomly sampling n =1000 cells and
computing the entropy of mixing on a vector of class proportions
for the 100 nearest neighbors to each point.

Integrated gradient analysis

We interpreted the predictions of our scNym models by perform-
ing integrated gradient analysis (Sundararajan et al. 2017). Given
a trainedmodel, fu, and a target class, k, we computed an integrated
gradient score IG as the sum of gradients on a class probability,
fu(x)k, with respect to an input gene expression vector, x, at M=
100 points along a linear path between the zero vector and the in-
put x. We then multiplied the sum of gradients for each gene by
the expression values in the input x. Stated formally, we computed

IG(x, k, fu) = x · 1
M

∑M
m=1

∂fu
m
M

x
( )

k

∂x
.

In the original integrated gradient formalism, this is equiva-
lent to using the zero vector as a baseline. We average the
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integrated gradients across ns cell input vectors x to obtain class-
level maps IGk, where ns=min (300, nk), and nk is the number of
cells in the target class. To identify genes that drive incorrect clas-
sifications, we computed integrated gradients with respect to some
class k for cells with true class k

′
that were incorrectly classified as

class k.

Interpretability comparison

We compared the biological relevance of features selected by
scNym and SVM as a baseline by computing cell type–specific
Gene Ontology enrichments. We trained both scNym and an
SVM to transfer labels from the Tabula Muris 10x Genomics data
set to the Tabula Muris Smart-seq2 data set. We then extracted fea-
ture importance scores from the scNym model using integrated
gradients and from the SVM model based on coefficient weights.
We selected cell type markers for each model as the top k= 100
genes with the highest integrated gradient values or SVM
coefficients.

For 19 cell types with corresponding Gene Ontology terms,
we computed the enrichment of the relevant cell type–specific
Gene Ontology terms in scNym-derived and SVM-derived cell
type markers using Fisher’s exact test (Supplemental Methods).
We present a sample of the gene sets used (Supplemental Table
S4). We compared the mean odds ratio from Fisher’s exact test
across relevant Gene Ontology terms between scNym-derived
markers and SVM-derivedmarkers. To determine statistical signifi-
cance of a difference in these mean odds ratios, we performed a
paired t-test across cell types. We performed the procedure above
using k∈ {50, 100, 150} to determine the sensitivity of our results
to this parameter. We found that scNym-integrated gradients
had consistently stronger enrichments for relevant Gene
Ontology terms across cell types for all values of k.

Model calibration analysis

We evaluated scNym calibration by binning all cells in a query set
based on the softmax probability of their assigned class
—maxk (softmax( fu(x)k))—which we term the “confidence score.”
Wegrouped cells intoM=10 binsBm of equal width from [0, 1] and
computed the mean accuracy of predictions within each bin:

acc Bm( ) = 1 ŷ ; y
( )〈 〉

,

conf Bm( ) = max p̂i
〈 〉

,

where 1(a≡ b) denotes a binary equivalency operation that yields 1
if a and b are equivalent and 0 otherwise and ·〈 〉 denotes the arith-
metic average.

We computed the “expected calibration error” as previously
proposed (Thulasidasan et al. 2019):

ECE =
∑M
m=1

|Bm|
N

|acc(Bm)− conf(Bm)|.

We also computed the “overconfidence error”, which specif-
ically focuses on high confidence but incorrect predictions:

oe(Bm) = conf(Bm)max ((conf(Bm)− acc(Bm)), 0),

OE =
∑M
m=1

|Bm|
N

oe(Bm),

where N is the total number of samples, and |Bm| is the number of
samples in bin Bm.

We performed this analysis for each model trained in a five-
fold cross-validation split to estimate calibration for a givenmodel
configuration. We evaluated calibrations for baseline neural net-

work models, models with MixUp but not MixMatch, and models
with the full MixMatch procedure.

Baseline methods

As baseline methods, we used 10 cell identity classifiers: scmap-
cell, scmap-cluster (Kiselev et al. 2018; Andrews and Hemberg
2019), scmap-cell-exact (scmap-cell with exact k-NN search), a lin-
ear SVM (Abdelaal et al. 2019), scPred (Alquicira-Hernandez et al.
2019), SingleCellNet (Tan and Cahan 2021), CHETAH (de Kanter
et al. 2019), Harmony followed by an SVM (Korsunsky et al.
2019), LIGER followed by an SVM (Stuart et al. 2019), and
scANVI (Lopez et al. 2018; Xu et al. 2021). For model training,
we split data into fivefolds and trained five separate models, each
using fourfolds for training and validation data. This allowed us
to assess variation in model performance as a function of changes
in the training data. No class balancing was performed before
training, although some methods perform class balancing inter-
nally. All models, including scNym, were trained on the same five-
fold splits to ensure equitable access to information. All methods
were run with the best hyperparameters suggested by the investi-
gators unless otherwise stated for our hyperparameter optimiza-
tion comparisons (for full details, see Supplemental Methods).

We applied all baselinemethods to all benchmarking tasks. If
a method could not complete the task given 256 GB of RAM and 8
CPU cores, we reported the accuracy for that method as “undeter-
mined.” Only the scNym and scANVI models required GPU re-
sources. We trained models on Nvidia K80, GTX1080ti, Titan
RTX, or RTX8000 GPUs, using only a single GPU per model.

Performance benchmarking

For all benchmarks, we computed the mean accuracy across cells
(“accuracy”), Cohen’s κ-score, and the multiclass receiver operat-
ing characteristic (MCROC). We computed the MCROC as the
mean of ROC scores across cell types, treating each cell type as a
binary classification problem.We used external methods to gener-
ate probabilistic outputs for baseline methods where appropriate
(Platt 1999). We performed quality-control filtering and prepro-
cessing on each data set before training (Supplemental Methods).

For the Rat Aging Cell Atlas (Ma et al. 2020) benchmark, we
trained scNymmodels on single-cell RNA-seq from young, ad libi-
tum fed rats (5 mo old) and predicted on cells from aged rats (ad
libitum fed or calorically restricted). For the human PBMC stimu-
lation benchmark, we trainedmodels on unstimulated PBMCs col-
lected from multiple human donors and predicted on IFNB1-
stimulated PBMCs collected in the same experiment (Kang et al.
2018).

For theTabulaMuris cross-technology benchmark, we trained
models on the Tabula Muris 10x Genomics Chromium platform
and predicted on data generated using Smart-seq2. For the
Mouse Cell Atlas (MCA) (Han et al. 2018) benchmark, we trained
models on single-cell RNA-seq from lung tissue in the Tabula
Muris 10x Chromium data (The Tabula Muris Consortium 2018)
and predicted on MCA lung data. For the spatial transcriptomics
benchmark, we trained models on spatial transcriptomics from a
mouse sagittal–posterior brain section and predicted labels for
another brain section (data downloaded from https://www
.10xgenomics.com/resources/datasets/).

For the single-cell to single-nucleus benchmark in the mouse
kidney, we trained scNym models on all single-cell data from six
unique sequencing protocols and predicted labels for single nuclei
from three unique protocols (Denisenko et al. 2020). For the sin-
gle-nucleus to single-cell benchmark, we inverted the training
and target data sets above to train on the nuclei data sets and
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predict on the single-cell data sets.We set unique domain labels for
each protocol during training in both benchmark experiments. To
evaluate the impact ofmultidomain training, we also trainedmod-
els on only one single-cell or single-nucleus protocol using the do-
mains from the opposite technology as target data.

For the multidomain cross-technology benchmark in mouse
cortex nuclei, we generated four distinct subtasks from data gener-
ated using four distinct technologies to profile the same samples
(Ding et al. 2020).We trained scNym and baselinemethods to pre-
dict labels on one technology given the remaining three technol-
ogies as training data for all possible combinations. We used each
technology as a unique domain label for scNym.

For the cross-speciesmouse-to-rat demonstration, we selected
a set of cell types with comparable annotations in the TabulaMuris
and Rat Aging Cell Atlas (Ma et al. 2020) to allow for quantitative
evaluation. We trained scNym with mouse data as the source
domain and rat data as the target domain. We used the new iden-
tity discovery configuration to account for the potential for new
cell types in a cross-species experiment. For the cross-species
mouse-to-human demonstration, we similarly selected a set of
cell types with comparable cell annotation ontologies in the
Tabula Muris l0x lung data and human lung cells from the IPF
Cell Atlas (Habermann et al. 2020). We trained an scNym model
usingmouse data as the source domain and human data as the tar-
get, as for the mouse-to-rat demonstration.

Runtime benchmarking

We measured the runtime of scNym and each baseline classifica-
tion method using subsamples from the multidomain kidney sin-
gle-cell and single-nuclei data set (Denisenko et al. 2020). We
measured runtimes for annotation transfer from single cells to sin-
gle-nuclei labels using subsamples of size n∈ {1250, 2500, 5000,
10000, 20000, 40000} for each of the training and target data
sets. All methods were run on four cores of a 2.1-GHz Intel Xeon
Gold 6130CPU and 64GB of CPUmemory. GPU-capablemethods
(scNym, scANVI) were provided with one Nvidia Titan RTX GPU
(consumer grade CUDA compute device).

Hyperparameter optimization experiments

We performed hyperparameter optimization across four tasks for
the top three baseline methods: the SVM, SingleCellNet, and
scmap-cell-exact. For the SVM, we optimized the regularization
strength parameter C at 12 values (C [ 10k ∀k [ [−6, 5]) with
and without class weighting. For class weighting, we set class
weights as either uniform or inversely proportional to the number
of cells in each class to enforce class balancing (wk = 1/ nk, where
wk is the weight for class k, and nk is the number of cells for that
class). For scmap-cell-exact, we optimized (1) the number of
nearest neighbors (k∈ {5, 10, 30, 50, 100}), (2) the distance metric
(d(·,·)∈ {cosine, euclidean}), and (3) the number of features to select
with M3Drop (nf∈ {500, 1000, 2000, 5000}). For SingleCellNet, we
optimized with nTopGenes∈ {10, 20}, nRand∈ {35, 70, 140},
nTrees∈ {100, 1000, 2000}, and nTopGenePairs∈ {12, 25}.

We optimized scNym for two of the four tasks, owing to com-
putational expense and superiority of default parameters relative
to baseline methods. For scNym, we optimized (1) weight decay
(λw∈10−5, 10−4, 10−3), (2) batch size (M∈ {128, 256}), (3) the num-
ber of hidden units (h∈ {256, 512}), (4) the maximum MixMatch
weight (λSSL∈ {0.01, 0.1, 1.0}), and (5) the maximum DAN weight
(λadv∈ {0.01, 0.1, 0.2}). We did not optimize weight decay for the
PBMC cross-stimulation task. We performed a grid search for all
methods.

Hyperparameter optimization is nontrivial in the context of a
domain shift between the training and test set. Traditional optimi-
zation using cross-validation on the training set alone may overfit
parameters to the training domain, leading to suboptimal out-
comes. This failure mode is especially problematic for domain ad-
aptation models, in which decreasing the strength of domain
adaptation regularizers may improve performance within the
training data while actually decreasing performance on the target
data.

In light of these concerns, we adopted a procedure known as
reverse cross-validation to evaluate each hyperparameter set
(Zhong et al. 2010). Reverse cross-validation uses both the training
and target data sets during training to account for the effect of
hyperparameters on the effectiveness of transferring labels across
domains. Formally, we first split the labeled training data D into
a training set, validation set, and held-out test set D′, Dy, D∗.
We use 10% of the training data set for the validation set and
10% for the held-out test set. We then train a model, fu:x 	 ŷ, to
transfer labels from the training set D′ to the target data U. We
use the validation set Dv for early stopping with scNym and con-
catenate it into the training set for other methods that do not
use a validation set. We treat the predictions ŷ = fu(u) as pseudola-
bels for the unlabeled data set and subsequently train a second
model, ff:u 	 ỹ, to transfer annotations from the “pseudolabeled”
data set U back to the labeled data setD. We then evaluate the “re-
verse accuracy” as the accuracy of the labels ỹ for the held-out test
portion of the labeled data set D∗.

We performed this procedure using a standard fivefold split
for each parameter set. We computed the mean reverse cross-vali-
dation accuracy as the performancemetric for robustness. For each
method that we optimized, we selected the optimal set of hyper-
parameters as the set with the top reverse cross-validation
accuracy.

New cell type discovery experiments

New cell type discovery with pretrained models

We evaluated the ability of scNym to highlight new cell types, un-
seen in the training data by predicting cell type annotations in the
Tabula Muris brain data (Smart-seq2) using models trained on the
10x Genomics data from the 10 tissues noted above with the
Smart-seq2 data as a corresponding target data set. No neurons
or gliawere present in the training or target set for this experiment.
This experiment simulates the scenario inwhich a pretrainedmod-
el has been fit to transfer across technologies (10x to Smart-seq2)
and is later used to predict cell types in a new tissue, unseen in
the original training or target data.

We computed scNym confidence scores for each cell as ci=
max pi, where pi is the model prediction probability vector for
cell i as noted above. To highlight potential cell type discoveries,
we set a simple threshold on these confidence scores, di= ci≤0.5,
where di∈ {0, 1} is a binary indicator variable. We found that
scNymassigned low confidence to themajority of cells fromnewly
“discovered” types unseen in the training set using this method.

New cell type discovery with semisupervised training

Wealso evaluated the ability of scNym to discover new cell types in
a scenario in which new cell types are present in the target data
used for semisupervised training. We used the same training data
and target data as the experiment above, but we now introduce
the Tabula Muris brain data (Smart-seq2) into the target data set
during semisupervised training.Weperformed this experiment us-
ing our default scNym training procedure, as well as the modified
new cell type discovery procedure described above.

Semisupervised single-cell classification
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As above, we computed confidence scores for each cell and set
a threshold of di= ci≤0.5 to identify potential new cell type discov-
eries. We found that scNymmodels trained with the new cell type
discovery procedure provided low-confidence scores to the new
cell types, suitable for identification of these new cells. We consid-
ered all new cell type predictions to be incorrect when computing
accuracy for the new cell type discovery task.

Clustering candidate new cell types

We used a community detection procedure in the scNym embed-
ding to suggest the number of distinct cell states represented by
low-confidence cells. First, we identify cells with a confidence
score lower than a threshold tconf to highlight putative cell type
discoveries, di= ci< tconf. We then extract the scNym penultimate
embedding activations for these low-confidence cells and con-
struct a nearest-neighbor graph using the k=15 nearest neighbors
for each cell.We compute a Leiden community detection partition
for a range of different resolution parameters, r∈ {0.1, 0.2, 0.3, 0.5,
1.0}, and compute the Calinski–Harabasz score for each partition
(Calinski and Harabasz 1974). We select the optimal partition in
the scNym embedding as the partition generated with the maxi-
mum Calinski–Harabasz score and suggest that communities in
this partition may each represent a distinct cell state.

Discriminating candidate new cell types from other low-confidence predictions

Cells may receive low-confidence predictions for multiple reasons,
including (1) a cell is on the boundary between two cell types, (2) a
cell has very little training data for the predicted class, and (3) the
cell represents a new cell type unseen in the training data set. To
discriminate between these possibilities, we use a heuristic similar
to the one we use for proposing a number of new cell types that
might be present. First, we extract the scNym embedding coordi-
nates from the penultimate layer activations for all cells and build
a nearest-neighbor graph.We then optimize a Leiden cluster parti-
tion by scanning different resolution parameters to maximize the
Calinksi–Harabasz score. We then compute the average prediction
confidence across all cells in each of the resulting clusters. We also
visualize the number of cells present in the training data for each
predicted cell type.

We consider cells with low prediction scores within an other-
wise high-confidence cluster to be on the boundary between cell
types. These cells may benefit from domain expert review of the
specific criteria to use when discriminating between very similar
cell identities. We consider low-confidence cell clusters with few
training examples for the predicted class to warrant further
domain expert review. Low-confidence clusters that are predicted
to be a class with ample training data may represent new cell types
and also warrant further review.

Software availability

Open-source code for our software and preprocessed reference data
sets analyzed in this study are available in the scNym repository
(https://github.com/calico/scnym) and as Supplemental Code.

Competing interest statement
J.C.K. and D.R.K. are paid employees of Calico Life Sciences, LLC.

Acknowledgments
We thank Zhenghao Chen, Amoolya H. Singh, and Han Yuan for
helpful discussions and comments. Funding for this studywas pro-
vided by Calico Life Sciences, LLC.

Author contributions: J.C.K. conceived the study, implemented
software, conducted experiments, and wrote the paper. D.R.K.
conceived the study and wrote the paper.

References
Abdelaal T, Michielsen L, Cats D, Hoogduin D, Mei H, Reinders MJT,

Mahfouz A. 2019. A comparison of automatic cell identification meth-
ods for single-cell RNA sequencing data. Genome Biol 20: 194. doi:10
.1186/s13059-019-1795-z

Alquicira-Hernandez J, Sathe A, Ji HP, NguyenQ, Powell JE. 2019. scPred: ac-
curate supervised method for cell-type classification from single-cell
RNA-seq data. Genome Biol 20: 264. doi:10.1186/s13059-019-1862-5

Andrews TS, Hemberg M. 2019. M3Drop: dropout-based feature selection
for scRNASeq. Bioinformatics 35: 2865–2867. doi:10.1093/bioinfor
matics/bty1044

Angelidis I, Simon LM, Fernandez IE, Strunz M, Mayr CH, Greiffo FR,
Tsitsiridis G, Ansari M, Graf E, Strom TM, et al. 2019. An atlas of the ag-
ing lung mapped by single cell transcriptomics and deep tissue proteo-
mics. Nat Commun 10: 963. doi:10.1038/s41467-019-08831-9

Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, Ginhoux F,
Newell EW. 2019. Dimensionality reduction for visualizing single-cell
data using UMAP. Nat Biotechnol 37: 38–44. doi:10.1038/nbt.4314

Berthelot D, Carlini N, Goodfellow I, Papernot N, Oliver A, Raffel CA. 2019.
MixMatch: a holistic approach to semi-supervised learning. Advances in
Neural Information Processing Systems 32: 5049–5059.

Calinski T, Harabasz J. 1974. A dendrite method for cluster analysis.
Commun Stat 3: 1–27. doi:10.1080/03610927408827101

de Kanter JK, Lijnzaad P, Candelli T, Margaritis T, Holstege FCP. 2019.
CHETAH: a selective, hierarchical cell type identification method for
single-cell RNA sequencing. Nucleic Acids Res 47: e95. doi:10.1093/
nar/gkz543

Denisenko E, Guo BB, Jones M, Hou R, de Kock L, Lassmann T, Poppe D,
Clément O, Simmons RK, Lister R, et al. 2020. Systematic assessment
of tissue dissociation and storage biases in single-cell and single-nucleus
RNA-seq workflows. Genome Biol 21: 130. doi:10.1186/s13059-020-
02048-6

Ding J, Adiconis X, Simmons SK, Kowalczyk MS, Hession CC, Marjanovic
ND, Hughes TK, Wadsworth MH, Burks T, Nguyen LT, et al. 2020.
Systematic comparison of single-cell and single-nucleus RNA-sequenc-
ing methods. Nat Biotechnol 38: 737–746. doi:10.1038/s41587-020-
0465-8

Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, Marjanovic ND,
Dionne D, Burks T, Raychowdhury R, et al. 2016. Perturb-Seq: dissecting
molecular circuits with scalable single-cell RNA profiling of pooled ge-
netic screens. Cell 167: 1853–1866.e17. doi:10.1016/j.cell.2016.11.038

Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F,
MarchandM, Lempitsky V. 2016. Domain-adversarial training of neural
networks. J Mach Learn Res 17: 1–35.

Guo C, Pleiss G, Sun Y, Weinberger KQ. 2017. On calibration of modern
neural networks. In Proceedings of the 34th International Conference on
Machine Learning 70: 1321–1330. JMLR.org.

HabermannAC, Gutierrez AJ, Bui LT, Yahn SL,Winters NI, Calvi CL, Peter L,
Chung MI, Taylor CJ, Jetter C, et al. 2020. Single-cell RNA sequencing
reveals profibrotic roles of distinct epithelial andmesenchymal lineages
in pulmonary fibrosis. Sci Adv 6: eaba1972. doi:10.1126/sciadv.aba1972

Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, Saadatpour A, Zhou Z, Chen H,
Ye F, et al. 2018. Mapping the mouse cell atlas by microwell-Seq. Cell
173: 1307. doi:10.1016/j.cell.2018.05.012

HintonG, Vinyals O, Dean J. 2015. Distilling the knowledge in a neural net-
work. arXiv:1503.02531 [stat.ML].

Ioffe S, Szegedy C. 2015. Batch normalization: accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 32th
International Conference on Machine Learning 37: 448–456. JMLR.org.

Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L, McCarthy E,
Wan E, Wong S, Byrnes L, Lanata CM, et al. 2018. Multiplexed droplet
single-cell RNA-sequencing using natural genetic variation. Nat
Biotechnol 36: 89–94. doi:10.1038/nbt.4042

Kimmel JC, Penland L, Rubinstein ND, Hendrickson DG, Kelley DR,
Rosenthal AZ. 2019. Murine single-cell RNA-seq reveals cell-identity-
and tissue-specific trajectories of aging. Genome Res 29: 2088–2103.
doi:10.1101/gr.253880.119

KingmaDP,Mohamed S, Jimenez Rezende D,WellingM. 2014. Semi-super-
vised learning with deep generative models. In Advances in neural infor-
mation processing systems (ed. Ghahramani Z, et al.). Curran Associates,
Red Hook, NY.

Kiselev VY, Yiu A, Hemberg M. 2018. scmap: projection of single-cell RNA-
seq data across data sets. Nat Methods 15: 359–362. doi:10.1038/nmeth
.4644

Kimmel and Kelley

1792 Genome Research
www.genome.org

https://github.com/calico/scnym
https://github.com/calico/scnym
https://github.com/calico/scnym
https://github.com/calico/scnym
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.268581.120/-/DC1


Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y,
Brenner M, Loh PR, Raychaudhuri S. 2019. Fast, sensitive and accurate
integration of single-cell data with harmony. Nat Methods 16: 1289–
1296. doi:10.1038/s41592-019-0619-0

Lee DH. 2013. Pseudo-label: the simple and efficient semi-supervised learn-
ing method for deep neural networks. In International Conference on
Machine Learning (ICML) 2013 Workshop: Challenges in Representation
Learning (WREPL). ICML, Atlanta.

Lopez R, Regier J, ColeMB, JordanMI, Yosef N. 2018. Deep generative mod-
eling for single-cell transcriptomics.Nat Methods 15: 1053–1058. doi:10
.1038/s41592-018-0229-2

Ma S, Sun S, Geng L, SongM,WangW, Ye Y, Ji Q, Zou Z,Wang S, He X, et al.
2020. Caloric restriction reprograms the single-cell transcriptional land-
scape of Rattus norvegicus aging. Cell 180: 984–1001. doi:10.1016/j.cell
.2020.02.008

McInnes L, Healy J, Melville J. 2020. UMAP: UniformManifold Approxima-
tion and Projection for dimension reduction. arXiv:1802.03426
[stat.ML].

Oliver A, Odena A, Raffel CA, Cubuk ED, Goodfellow I. 2018. Realistic eval-
uation of deep semi-supervised learning algorithms. In Advances in neu-
ral information processing systems, Vol. 31 (ed. Bengio S, et al.), pp. 3235–
3246. Curran Associates, Red Hook, NY.

Platt JC. 1999. Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods. In Advances in large margin
classifiers (ed. Smola AJ, et al.), pp. 61–74. MIT Press, Cambridge, MA.

Pliner HA, Shendure J, Trapnell C. 2019. Supervised classification enables
rapid annotation of cell atlases. Nat Methods 16: 983–986. doi:10
.1038/s41592-019-0535-3

Sohn K, Berthelot D, Li CL, Zhang Z, Carlini N, Cubuk ED, Kurakin A, Zhang
H, Raffel C. 2020. FixMatch: simplifying semi-supervised learning with
consistency and confidence. In Advances in neural information processing
systems (ed. Larochelle H, et al.), pp. 596–608. Curran Associates, Red
Hook, NY.

Srivastava N, Hinton GE, Krizhevsky A. 2014. Dropout: a simple way to pre-
vent neural networks from overfitting. J Mach Learn Res 15: 1929–1958.

Srivatsan SR, McFaline-Figueroa JL, Ramani V, Saunders L, Cao J, Packer J,
Pliner HA, Jackson DL, Daza RM, Christiansen L, et al. 2020.
Massively multiplex chemical transcriptomics at single cell resolution.
Science 367: 45–51. doi:10.1126/science.aax6234

Stuart T, Butler A, Hoffman P,Hafemeister C, Papalexi E,MauckWM III, Hao
Y, Stoeckius M, Smibert P, Satija R. 2019. Comprehensive integration of
single-cell data.Cell 177: 1888–1902.e1. doi:10.1016/j.cell.2019.05.031

Sundararajan M, Taly A, Yan Q. 2017. Axiomatic attribution for deep net-
works. In Proceedings of the 34th International Conference on Machine
Learning, Proceedings of Machine Learning Research, Sydney,
Australia (ed. Precup D, Teh YW), Vol. 70, pp. 3319–3328.

Svensson V, Vento-Tormo R, Teichmann SA. 2018. Exponential scaling of
single-cell RNA-seq in the past decade. Nat Protoc 13: 599–604. doi:10
.1038/nprot.2017.149

Svensson V, da Veiga Beltrame E, Pachter L. 2020. A curated database reveals
trends in single-cell transcriptomics. Database 2020: Baaa073. doi:10
.1093/database/baaa073

The Tabula Muris Consortium. 2018. Single-cell transcriptomics of 20
mouse organs creates a tabula muris. Nature 562: 367–372. doi:10
.1038/s41586-018-0590-4

Tan Y, Cahan P. 2019. SingleCellNet: a computational tool to classify single
cell RNA-Seq data across platforms and across species. Cell Syst 9: 207–
213.e2. doi:10.1016/j.cels.2019.06.004

Tanay A, Regev A. 2017. Scaling single-cell genomics from phenomenology
to mechanism. Nature 541: 331–338. doi:10.1038/nature21350

Thulasidasan S, Chennupati G, Bilmes JA, Bhattacharya T, Michalak S.
2019. On mixup training: improved calibration and predictive uncer-
tainty for deep neural networks. Advances in Neural Information
Processing Systems 32: 13888–13899.

Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, Chen J. 2020. A
benchmark of batch-effect correction methods for single-cell RNA se-
quencing data. Genome Biol 21: 12. doi:10.1186/s13059-019-1850-9

Trapnell C. 2015. Defining cell types and states with single-cell genomics.
Genome Res 25: 1491–1498. doi:10.1101/gr.190595.115

Verma V, Lamb A, Kannala J, Bengio Y, Lopez-Paz D. 2019. Interpolation
consistency training for semi-supervised learning. In Proceedings of the
28th International Joint Conference on Artificial Intelligence, IJCAI’19, pp.
3635–3641. AAAI Press, Palo Alto, CA.

Wilson G, Cook DJ. 2020. A survey of unsupervised deep domain adapta-
tion. ACM Trans Intell Syst Technol 11: 1–46. doi:10.1145/3400066

Xu C, Lopez R, Mehlman E, Regier J, JordanMI, Yosef N. 2021. Probabilistic
harmonization and annotation of single-cell transcriptomics data with
deep generative models. Mol Syst Biol 17: e9620. doi:10.15252/msb
.20209620

Zeiler MD. 2012. ADADELTA: an adaptive learning rate method.
arXiv:1212.5701 [cs.LG].

Zhang H, Cisse M, Dauphin YN, Lopez-Paz D. 2018. Mixup: beyond empir-
ical risk minimization. In International Conference on Learning
Representations, Stockholm.

Zhang AW, O’Flanagan C, Chavez EA, Lim JLP, Ceglia N, McPherson A,
Wiens M, Walters P, Chan T, Hewitson B, et al. 2019. Probabilistic
cell-type assignment of single-cell RNA-seq for tumor microenviron-
ment profiling. Nat Methods 16: 1007–1015. doi:10.1038/s41592-019-
0529-1

Zhong E, FanW, YangQ, VerscheureO, Ren J. 2010. Cross validation frame-
work to choose amongst models and datasets for transfer learning. In
Machine learning and knowledge discovery in databases, lecture notes in com-
puter science (ed. Balcázar JL, et al.), pp. 547–562. Springer, Berlin.

Received July 30, 2020; accepted in revised form February 18, 2021.

Semisupervised single-cell classification

Genome Research 1793
www.genome.org


