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Because disease-associatedmicroglia (DAM) and disease-associated astrocytes (DAA) are involved in the pathophysiology of

Alzheimer’s disease (AD), we systematically identified molecular networks between DAM and DAA to uncover novel ther-

apeutic targets for AD. Specifically, we develop a network-based methodology that leverages single-cell/nucleus RNA se-

quencing data from both transgenic mouse models and AD patient brains, as well as drug-target network, metabolite-

enzyme associations, the human protein–protein interactome, and large-scale longitudinal patient data. Through this ap-

proach, we find both common and unique gene network regulators between DAM (i.e., PAK1, MAPK14, and CSF1R) and

DAA (i.e., NFKB1, FOS, and JUN) that are significantly enriched by neuro-inflammatory pathways and well-known genetic

variants (i.e., BIN1). We identify shared immune pathways between DAM and DAA, including Th17 cell differentiation

and chemokine signaling. Last, integrative metabolite-enzyme network analyses suggest that fatty acids and amino acids

may trigger molecular alterations in DAM and DAA. Combining network-based prediction and retrospective case-control

observations with 7.2 million individuals, we identify that usage of fluticasone (an approved glucocorticoid receptor

agonist) is significantly associated with a reduced incidence of AD (hazard ratio [HR] =0.86, 95% confidence interval

[CI] 0.83–0.89, P< 1.0 × 10−8). Propensity score–stratified cohort studies reveal that usage of mometasone (a stronger

glucocorticoid receptor agonist) is significantly associated with a decreased risk of AD (HR=0.74, 95% CI 0.68–0.81,

P < 1.0× 10−8) compared to fluticasone after adjusting age, gender, and disease comorbidities. In summary, we present a

network-based, multimodal methodology for single-cell/nucleus genomics-informed drug discovery and have identified

fluticasone and mometasone as potential treatments in AD.

[Supplemental material is available for this article.]

Alzheimer’s disease (AD) is expected to double in incidence by
2050 (Hebert et al. 2001), affecting upward of 16 million Ameri-
cans and 90 million people worldwide (Alzheimer’s Association
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2016). Without new treatments, this will represent an unprece-
dented crisis of human suffering and financial cost. The attrition
rate for AD clinical trials (2002–2012) is estimated at 99.6% (Cum-
mings et al. 2014), and improved methods of drug discovery are
therefore needed. The underlying pathophysiology of AD is espe-
cially poorly understood and appears to involve a complex, poly-
genic, and pleiotropic genetic architecture (Tasaki et al. 2018).
Recent studies strongly implicate a crucial role of neuroinflamma-
tion in the pathophysiology of AD (Cao and Zheng 2018). Howev-
er, broad anti-inflammatory therapies have not been clinically
efficacious against AD. We believe this suggests a pressing need
to better understand the heterogeneity of immune cells in AD,
which could translate to identification of novel drug targets.

Recent single-cell/nucleus RNA sequencing (scRNA-seq or
snRNA-seq) studies have suggested essential roles for microglia
and astrocytes, such as determining the distribution of immune
cell subpopulations in AD (Keren-Shaul et al. 2017; Habib et al.
2020). For example, disease-associated microglia (DAM) have
been identified as a unique microglia subtype associated with AD
(Keren-Shaul et al. 2017), and disease-associated astrocytes (DAA)
have been identified as becoming increasingly abundant with pro-
gression of AD (Habib et al. 2020). Astrocytic release of cytokines,
the primary immune messenger, influence the microglial activa-
tion state (e.g., CCL2 and ORM2) and also help microglia modu-
late astrocytic phenotype and function (e.g., IL1A and TNF) (Jha
et al. 2019). A growing body of evidence suggests that both micro-
glia and astrocytes are exquisitely sensitive to their environment
and are affected by dysregulation of multiple biochemical path-
ways, such as abnormal lipid metabolism, in AD pathogenesis
(Desale and Chinnathambi 2020). Systematic identification of
the underlying molecular mechanisms linking DAM and DAA
and AD could thus advance understanding of the underlying biol-
ogy and offer potential novel drug targets.

Existing data resources, including transcriptomics and inter-
actomics (protein–protein interactions [PPIs]), have not yet been
fully exploited in pursuit of understanding the causal disease path-
ways in AD (Fang et al. 2020). With this in mind, integrative anal-
yses of genomics, transcriptomics, and other omics can enable us
to elucidate the cascade of molecular events contributing to com-
plex neuro-inflammatory mechanisms, including microglia and
astrocytes. We show how these analyses can accelerate the transla-
tion of high-throughput single-cell/nucleus omics findings into
innovative therapeutic approaches for AD centered on the interac-
tions of microglia and astrocytes.

Results

Network-based methodology pipeline

In this study, we presented an integrative multi-omics, network-
based methodology to uncover molecular networks of DAM and
DAA and to prioritize drug candidates for AD. We integrated sc/
snRNA-seq data from both AD transgenic mouse models and AD
patient brains, drug-target networks, enzyme-metabolite associa-
tions, PPIs, along with large-scale patient database validation
(Fig. 1). The whole procedure is divided into four components:
(1) We first assembled the five recent sc/snRNA-seq data sets (Sup-
plemental Table S1) covering both microglia and astrocytes from
either AD transgenic mouse models or human brains; (2) we per-
formed standard bioinformatics analysis for sc/snRNA-seq data, in-
cluding quality control, cell/nucleus clustering, and differential
expression analysis; (3) we built the molecular network for DAM

andDAA using the state-of-the-art network-based algorithm by in-
tegrating sc/snRNA-seq data into the human protein–protein
interactome (Methods); (4) we prioritized repurposed drugs for po-
tential treatment of AD by identifying those that specifically re-
verse dysregulated gene expression of microglia and astrocytes;
and (5) we validated top drug candidates using the state-of-the-
art pharmacoepidemiologic observations of a large-scale, longitu-
dinal patient data (Fig. 1).

Discovery of DAM-specific molecular networks

We compared expression of cell marker genes (Cst7, Lpl, P2ry12,
and Cx3cr1) for DAM among all cell/nucleus clusters (Fig. 2A,B;
Supplemental Fig. S1A,B). Here, we used homeostasis-associated
microglia (HAM) (Ginhoux and Prinz 2015) as control groups.
We found a higher abundance of DAMnuclei in 5XFADmice com-
pared to wild-type (WT) mice (P=0.048, t-test) (Supplemental Ta-
ble S2; Supplemental Fig. S2A); yet, there was no nucleus
abundance difference for HAM between 5XFAD and WT mice (P
=0.786) (Supplemental Fig. S2A). We observed a similar pattern
when considering the scRNA-seq profile, in that the cell abun-
dance percentage of the DAM in 5XFAD mice was much higher
than in WT mice (P=9.11×10−10) (Supplemental Table S3; Sup-
plemental Fig. S2B). Altogether, both scRNA-seq and snRNA-seq
profiles show significantly elevated abundance of DAM in
5XFAD compared to WT mice.

We next performed differential expression analyses between
DAM and HAM. As expected, 35 AD genes and microglia markers
were differentially expressed in DAM compared to HAM in
5XFAD mice, including Apoe, Trem2, Cst7, Lpl, P2ry12, and
Cx3cr1 (Supplemental Fig. S3A,B). We next reconstructed molecu-
lar networks (Fig. 2C; Supplemental Fig. S1C) for DAM based on
snRNA-seq (snDAMnet) and scRNA-seq (scDAMnet) data sets, us-
ing the GPSnet algorithm (Cheng et al. 2019b). The snDAMnet in-
cludes 227 PPIs connecting 72 human gene products (e.g., BIN1,
HCK, HSP90AA1, IL6ST, PAK1, PRKCD, and SYK) (Supplemental
Table S4).We assembled AD-associated genes frommultiple sourc-
es, including the GWAS catalog (Buniello et al. 2019) and experi-
mental evidences from animal models and human studies
(Piñero et al. 2017).We found that genes in snDAMnetwere signif-
icantly enriched in AD-association (adjusted P-value [q] = 5.44×
10−11, Fisher’s exact test) (Supplemental Table S4), such as
Adam10, Bin1, Cd33, and Mapk14. The scDAMnet contains 69
gene products (e.g., Axl,Cst7, Lyn,Mertk, and P2ry12) (Supplemen-
tal Table S5) involving 97 human PPIs. The scDAMnet is signifi-
cantly enriched by 27 AD-associated genes (e.g., Apoe, Ccl3, Ctsd,
Inpp5d, and Marcks, q=1.56×10−8) (Supplemental Table S5) as
well. We found that genes in DAMnets are significantly enriched
in immune pathways (Supplemental Tables S4, S5), includingmul-
tiple key immunemodulators related to AD (Fig. 2C; Supplemental
Fig. S1C). Last, we illustrated snDAMnet and scDAMnet across
three selected immune pathways: fragment crystallizable (Fc) gam-
ma receptor (R)-mediated phagocytosis, the chemokine signaling
pathway, and Th17 cell differentiation (Supplemental Fig. S3C,
D), as discussed below.

Fc gamma R-mediated phagocytosis

We identified 15 genes (such asBin1, Prkcd, Syk, Inpp5d, andHck) in
the Fc gamma R-mediated phagocytosis pathway enriched by ei-
ther snDAMnet or scDAMnet (Supplemental Tables S4, S5).
Bridging integrator 1 (BIN1), a well-established risk gene for AD
by the International Genomics of Alzheimer’s Project, contains a
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microglia-specific enhancer and promoter encoded by a genome-
wide significant AD variant rs6733839 (Medway and Morgan
2014). One possible role for BIN1 in DAM function may be gene
regulation as a microglia-specific enhancer and promoter altered
by rs6733839 (Corces et al. 2020). Spleen-associated tyrosine ki-
nase (SYK) has also already been shown to play a role in AD path-
ological lesions and has been proposed as a possible drug target for
AD (Schweig et al. 2017). Inositol polyphosphate-5-phosphataseD
(INPP5D), identified as one of the genetic risk factors for late-onset
AD, also affects AD pathology by regulating microglia (Rosenthal
and Kamboh 2014).

Chemokine signaling pathway

Chemokine signaling is enriched in both snDAMnet and
scDAMnet, and these two networks contain 13 genes, including
Pak1, Ccl3, Ccl4, Ccr5, and Lyn (Supplemental Tables S4, S5). p21
(RAC1) activated kinase 1 (PAK1) is dysregulated in AD, and tar-
geting the PAK signaling pathway has been proposed as a thera-
peutic strategy for AD (Ma et al. 2012). C-C motif chemokine
ligand 3 and 4 (CCL3 and CCL4) and C-C motif chemokine re-
ceptor 5 (CCR5) (Guedes et al. 2018) have been shown to be
up-regulated in adult human microglia or in mouse microglia ex-
posed to the amyloid-β (Aβ) peptide. A recent study observed el-
evated activity of LYN proto-oncogene, Src family tyrosine kinase
(LYN) in AD patients, and inhibiting LYN expression prevents Aβ-

induced neuronal cell death, suggesting LYN as a potential ther-
apeutic target for AD (Gwon et al. 2019).

Th17 cell differentiation

The T helper type 17 (Th17) cells are CD4+ T cells that promote a
cell-mediated immune response against invading bacteria and fun-
gi. We identified six genes (Ppp3ca, Hsp90aa1, Mapk14, Hif1a,
Tgfbr2, and Il6st) in the Th17 cell differentiation pathway enriched
by snDAMnet (Supplemental Table S4). With respect to mitogen-
activated protein kinase 14 (MAPK14), a mouse model study sug-
gested that inhibiting MAPK14 mitigates AD pathology (Alam
and Scheper 2016). The transcription factor hypoxia inducible fac-
tor 1 subunit alpha (HIF1A) was involved in a variety of neurode-
generative diseases, including AD (Zhang et al. 2011). Heat shock
protein 90 (HSP90), a chaperone protein, regulates tau pathology
by forming macromolecular complexes with co-chaperones and
inhibiting HSP90-mitigated tau pathology by proteasomal degra-
dation (Campanella et al. 2018).

Discovery of DAA-specific molecular networks

We compared gene expression of 13 DAA cell markers among all
nuclei clusters (Fig. 3A,B; Supplemental Fig. S4A). We found that
a normalized nucleus abundance of DAA in 5XFADmice is higher
than that in WT mice (P=9.79×10−3, t-test) (Supplemental Table
S6; Supplemental Fig. S2C). The mDAAnet (Fig. 3C) includes 407

Figure 1. A diagram illustrating the network-based framework. A standard single-cell/nucleus RNA sequencing (sc/snRNA-seq) data analysis pipeline in-
cludes quality control, clustering analysis, and differentially expressed gene (DEG) analysis. We built the molecular network using the state-of-the-art net-
work-based algorithm (termed GPSnet) by integrating sc/snRNA-seq data into the human protein–protein interactome (Methods). Next, we prioritized
repurposed drugs for potential treatment of Alzheimer’s disease (AD) by identifying those that specifically reverse dysregulated gene expression for mo-
lecular networks of disease-associatedmicroglia (DAM) or astrocyte (DAA): if drug-induced up- or down-related genes are significantly enriched in the dys-
regulated molecular networks, these drugs will be prioritized as potential candidates for treatment of AD. Finally, top drug candidates were validated
further using a large-scale, longitudinal patient database. (GSEA) Gene set enrichment analysis; (CMap) connectivity map.
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PPIs connecting 116 proteins (Supplemental Table S7). The
mDAAnet contains 56 AD-associated genes (q= 1.84×10−22,
Fisher’s exact test) (Supplemental Table S7). A t-distributed sto-
chastic neighbor embedding (t-SNE) plot of DAA and non-DAA
nuclei are presented in Figure 4A (Supplemental Fig. S5A). The
hDAAnet contains 16 PPIs connecting 10 proteins (Fig. 4B), in-
cluding six AD-associated proteins (JUND, MAP1B, FOS, MFGE8,
JUNB, and JUN, q=8.69×10−4, Fisher’s exact test) (Supplemental
Table S8).

We further inspected human brain region–specific molecu-
lar networks for DAA (Supplemental Fig. S6). The uniform man-

ifold approximation and projection (UMAP) plots of DAA and
non-DAA nuclei are presented for two brain regions of AD pa-
tients, including entorhinal cortex (EC) and superior frontal gy-
rus (SFG) (Fig. 4C,D). The hDAAECnet contains 43 human PPIs
connecting 26 proteins (Fig. 4E), including 11 AD-associated pro-
teins (q=3.77×10−4) (Supplemental Table S9). The hDAASFGnet
contains 22 PPIs connecting 13 proteins (Fig. 4F), including
eight AD-associated proteins (q=1.22×10−4). Molecular networks
(hDAAECnet and hDAASFGnet) between EC and SFG share nine
proteins: DCLK2, HPSE2, HSP90AA1, HSPA1A, HSPA1B, HSPB1,
ID2, JUN, and TNC (Fig. 4E,F). For two brain regions, there are

BA

C

Figure 2. Discovery of DAM-specific molecular networks for the transgenic mouse model of AD. (A) Uniform manifold approximation and projection
(UMAP) plot of clustering 4389 microglia cells: the blue cluster denotes the homeostasis-associated microglia (HAM), and the green cluster denotes
the DAM. (B) Expression levels (heatmap) of representative marker genes (up-regulation in DAM: Cst7 and Lpl; and down-regulation in DAM: P2ry12
and Cx3cr1) in differentmicroglia subclusters. (C ) A predictedDAM-specificmolecular network contains 227 protein–protein interactions (PPIs) connecting
72 proteins. Node sizes are proportional to their corresponding |log2FC| during differential expression analysis. (FC) Fold-change. Node (gene/protein)
color is coded by known immune pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Edge color is coded by known exper-
imental evidences of PPIs (Methods). Key immune modulators related to AD are highlighted by bold text.
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no apparent differences of nucleus abundance percentage across
different Braak stages for both DAA and non-DAA (Supplemental
Tables S10–S12; Supplemental Fig. S2D–F).

We next performed functional pathway enrichment analysis
and found that genes identified in DAA molecular networks
were significantly enriched in multiple immune pathways
(Supplemental Figs. S4B, S5B, S7A,B). We next turned to investi-
gate gene functions using the two most significant immune path-
ways as examples: IL17 signaling pathway and antigen processing
and presentation. We identified seven genes (NFKB1, CEBPB,
MAPK1, HSP90AA1, FOS, JUND, and JUN) in the IL17 signaling
pathway jointly enriched by all four DAA networks from both
mouse models and AD patient brains (Supplemental Tables S7–
S9). Nuclear factor kappa B subunit 1 (NFKB1) and NFKB inhibitor
alpha (NFKBIA) control transcription of cytokines and chemokines

in astrocytes and they commonly result in cellular damage or ac-
celerate the production of Aβ in astrocytes (González-Reyes et al.
2017). Fos proto-oncogene, AP-1 transcription factor subunit
(FOS), and Jun proto-oncogene, AP-1 transcription factor subunit
(JUN) are transcriptional factors mediating functional roles in AD
pathobiology (Anderson et al. 1994). There are three genes
(HSP90AA1, HSPA1A, and HSPA1B) in the antigen processing
and presentation pathway enriched in either hDAAECnet or
hDAASFGnet (Supplemental Table S9). Heat shock protein 90 al-
pha family class A member 1 (HSP90AA1) has been previously
linked to AD (Campanella et al. 2018). Both heat shock protein
family A (Hsp70) member 1A (HSPA1A) (Evgen’ev et al. 2017)
and heat shock protein family A (Hsp70) member 1B (HSPA1B)
have been shown to regulate oxidative stress in either mouse
model or human AD brains (Clarimón et al. 2003), suggesting

BA

C

Figure 3. Discovery of DAA-specific molecular networks in transgenic mousemodel of AD. (A) T-distributed stochastic neighbor embedding (t-SNE) plot
of clustering 7748 astrocyte nuclei. Red cluster denotes the DAA. (B) Stacked violin plot displaying the expression patterns of four representative genes (with
the remaining nine genes in Supplemental Fig. S4A) across different astrocyte subclusters. (C) A predicted DAA-specific molecular network contains 407
protein–protein interactions (PPIs) connecting 116 gene products (proteins). Node sizes are proportional to their corresponding |log2FC| during differential
expression analysis. Node color is coded by known immune pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Edge color is
coded by experimental evidences of PPIs. Key immune modulators related to AD are highlighted by bold text.
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their crucial roles in AD biology and possible treatment
approaches.

Alzheimer’s conserved molecular networks between microglia

and astrocytes

We next compared the network relationship between DAM and
DAA under the human interactomemodel (Methods). We only in-
vestigated DAM and DAA in transgenic mouse models because
there is a lack of well-defined DAM in human AD brains. Using a

network proximity measure (Methods),
we found a statistically significant net-
work-based relationship between DAM
and DAA (Fig. 5A; Supplemental Table
S13): (1) scDAMnet and mDAAnet (Z-
score =−1.9, P=0.029, permutation
test), and (2) snDAMnet and mDAAnet
(Z-score =−4.07, P<0.001, permutation
test). Mechanistically, we found eight
overlapped genes (APOE, CALM2, CD9,
CD63, CTSB, CTSD, IQGAP1, and
LGALS3BP) and 11 commonly enriched
immune pathways between DAM and
DAA, such as B cell and T cell receptor sig-
naling andTh17 cell differentiation (Sup-
plemental Tables S4, S5, S7). For example,
Cd9 and Lgals3bp are differentially ex-
pressed in both DAM and DAA of mouse
models (Fig. 5B). Galectin 3 binding pro-
tein (LGALS3BP), a secretedglycoprotein,
has been reported as a potentialmarker in
aging (Costa et al. 2020). Two immune
pathways (Fc gamma R-mediated phago-
cytosis and chemokine signaling) are
also enriched in both DAMnets and
mDAAnet. Except for LGALS3BP and
CD9 (Fig. 5B), another seven proteins
(AXL, CKB, CSF1R, FGR, HIF1A, INPP5D,
and RPLP2) are also shared between
scDAMnet and snDAMnet (Fig. 5A). The
immune pathway platelet activation is
uniquely enriched in snDAMnet (Sup-
plemental Table S4); yet, IL17 signaling
pathway and Th1 and Th2 cell differ-
entiation are exclusively enriched in
mDAAnet (Supplemental Table S7). In
summary, microglia and astrocytes may
trigger neuroinflammation in AD by a
specific molecular network manner.

Metabolites trigger molecular

networks between astrocyte and

microglia

AD is a pervasivemetabolic disorder asso-
ciated with altered immune responses
(Mahajan et al. 2020). We found that
metabolic genes from the KEGG (Kane-
hisa et al. 2017) have a closer network re-
lationship with DAM and DAA networks
in the human interactome (Supplemen-
tal Table S13). We next investigated

whether metabolites trigger network perturbation between DAM
and DAA under the human protein–protein interactome model.
We constructed a network with 373,320 edges (26,990 metabo-
lite-enzyme associations and 346,330 PPIs). We assembled 155
AD-relatedmetabolites supported by experimental evidences (Sup-
plemental Table S14) and then reconstructed a subnetwork con-
sisting of 266 AD-related metabolites and enzymes (Fig. 6A;
Supplemental Fig. S8A).

We found 77 enzymes involved in the AD-related metabo-
lites: (1) 50 enzymes from DAM; (2) 30 enzymes from DAA, and

E F
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C D

Figure 4. Discovery of DAA-specific molecular networks from single-nucleus RNA sequencing data of
human brains with AD. (A) T-distributed stochastic neighbor embedding (t-SNE) plot of clustering 2119
astrocyte nuclei between AD patients and healthy controls. (B) An identified DAA-specific molecular net-
work contains 16 protein–protein interactions (PPIs) connecting 10 gene products (proteins). (C) UMAP
plot for 5599 astrocyte nuclei clustering analysis of brain entorhinal cortex (EC) regions among AD pa-
tients with different Braak stages. (D) UMAP plot of clustering 8348 astrocyte nuclei for brain superior
frontal gyrus (SFG) regions among AD patients with different Braak stages. (E) An identified DAA-specific
molecular network containing 43 protein–protein interactions (PPIs) connecting 26 gene products (pro-
teins) for EC. (F ) An identified DAA-specific molecular network containing 22 PPIs connecting 13 genes/
proteins for SFG. Node sizes are proportional to their corresponding |log2FC|. Node color is coded by
known immune pathways from the KEGG database. Edge color is coded by experimental evidences of
PPIs. Key immune modulators related to AD are highlighted by bold text.
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(3) three enzymes (CTSB, CTSD and APOE) shared between DAM
and DAA (Supplemental Fig. S8B; Supplemental Table S14). Ctsb,
encoding cathepsin B in catabolism and immune resistance (Wu
et al. 2017), has elevated expression (Fig. 6B,C) in both DAM
(fold-change [FC] = 2.48, q=8.89×10−84) and DAA (FC=2.14, q=
3.95×10−43) of mouse models. Pathway enrichment analysis re-
vealed that 77 enzymes were enriched in metabolic homeostasis
(e.g., glycolysis and gluconeogenesis) and immune signaling path-
ways (including IL3 and IL5) (Supplemental Fig. S8C).

Using a betweenness centrality measure (Supplemental Table
S14), we found that fatty acids and amino acids (Fig. 6A) were two
primary types of metabolites involved in molecular networks be-

tween DAM and DAA. For example,
Spp1 (Shan et al. 2012) and Fos (Sun
et al. 2017), two cellular molecules that
promote chronic inflammatory diseases,
are significantly more expressed in both
DAM (FC=5.35, q=5.51×10−56) (Fig.
6D) and DAA (FC=1.92, q=1.09×
10−49) compared to HAM and non-
DAA, respectively. Elaidic acid shows
the largest centrality among all metabo-
lites and is connected with SPP1 and
CD44 through involvement in fatty
acid metabolism, including phospholi-
pase D family member 3 (PLD3) and ga-
lactosidase beta 1 (GLB1) (Kim et al.
2010; Hsieh et al. 2017). Coexpression
analysis reveals a slight correlation of
Spp1 and Pld3 in DAM (Spearman’s corre-
lation r=0.48, P=0.06, t-test) (Fig. 6E).
Meanwhile, arachidonic acid and palmit-
ic acid, two long-chain fatty acids that
have well-documented effects in induc-
ing inflammatory responses (Freigang
et al. 2013), are also involved in both
DAA and DAM (Fig. 6A). In summary,
these findings suggest functional roles
of cellular metabolites (including fatty
acids and amino acids) in the immune in-
terplay of astrocyte and microglia in AD.
Further experimental validations arewar-
ranted to verify network-based astro-
cyte-/microglia-associated metabolism
findings.

Network-based discovery

of repurposable drugs

We next turned to identify drug candi-
dates by specifically targeting molecular
networks of DAM and DAA. As shown
in Figure 1, we assembled drug-gene sig-
natures in human cell lines from the con-
nectivity map (CMap) database (Lamb
et al. 2006). We posited that if a drug sig-
nificantly reverses dysregulated gene ex-
pression of DAM or DAA, this drug may
have potential in treating AD. For gene
set enrichment analysis (GSEA), we used
enrichment score (ES) > 0 and q<0.05 as
a cutoff to prioritize drug candidates. For

1309 drugs from the CMap (Lamb et al. 2006), we obtained 27,
53, 28, 33, and 94 candidate drugs (ES >0 and q<0.05) for snDAM-
net, scDAMnet, hDAAECnet, hDAASFGnet, and hDAAnet, respec-
tively (Supplemental Table S15). As shown in Figure 7A, we found
that network-predicted drugs parsed into seven pharmacological
categories: anti-inflammatory, immunosuppressive, adrenergic
beta receptor agonists, adrenergic alpha-antagonists, antihyper-
tensive, antineoplastic, and others. Tretinoin, also known as all-
trans retinoicacid (ATRA), anFDA-approveddrug foracutepromye-
locytic leukemia (APL) (Warrell et al. 1991), is one of our highest
predictions (Supplemental Table S15). Treatmentwith tretinoin re-
duced microglia and astrocyte activities and enhanced cognitive

B

A

Figure 5. Comparison of molecular networks between DAA and microglia (DAM). (A) Visualization of
interplays between DAM and DAA molecular networks in the human protein–protein interactome net-
workmodel. (B) Expression levels of Lgals3bp and Cd9 for homeostatic associatedmicroglia (HAM) versus
DAM and non-DAA versus DAA. The adjusted P-value (q) is computed using the MAST R package
(Supplemental Material). All details for gene differential expression analyses are provided in
Supplemental Tables S4, S5, and S7.
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capabilities (Ding et al. 2008) in a mouse model. Mechanistically,
tretinoin directly targets mitogen-activated protein kinase 1
(MAPK1), LYN, and FGR in the scDAMnet (Fig. 7B). Salbutamol, a
selective beta2-adrenergic receptor agonist in treating asthma, is a
highly predicted candidate on snDAMnet (Supplemental Table
S15). In vitro studies showed that salbutamolwas a direct inhibitor
of tau filament formation (Townsend et al. 2020). As shown in Fig-
ure 7C, salbutamol interacts with three immune gene products
(PRKCD, GRB2, and MAPK14) in snDAMnet, consistent with
mechanistic observations in AD (Russo et al. 2002). Altogether,
these network-predicted drugs (Supplemental Table S15) offer po-
tential candidate compounds to be tested in nonclinical models
or clinical trials in the future.

Validating likely causal drug-AD associations in patient data

We next selected drug candidates using subject matter expertise
based on a combination of factors: (1) strength of the predicted
associations; (2) novelty of the predicted associations with

established mechanisms-of-action; (3)
literature-based evidence in support of
prediction; and (4) availability of suffi-
cient patient data for meaningful evalua-
tion (exclusion of infrequently used
medications). Applying these criteria re-
sulted in fluticasone, an approved gluco-
corticoid receptor (NR3C1) agonist for
several inflammation-related indications
(Lumry 1999). As shown in Figure 7A, we
found anti-inflammatory agents are the
biggest network-predicted drug class.
We thus evaluated fluticasone on AD by
analyzing 7.23 million US commercially
insured individuals from the MarketScan
Medicare supplemental database. We
conducted two cohort analyses to evalu-
ate the predicted association using state-
of-the-art pharmacoepidemiologic anal-
ysis: (1) fluticasone versus a matched
control population (non-fluticasone
user), and (2) fluticasone versus mometa-
sone (a stronger NR3C1 agonist) (Lumry
1999). For each comparison, we estimat-
ed the unstratified Kaplan–Meier curves
and conducted propensity score–strati-
fied log-rank tests using the Cox regres-
sion model.

We found that individuals taking
fluticasone were at significantly de-
creased risk for development of AD (haz-
ard ratio [HR] = 0.86, 95% confidence
interval [CI] 0.83–0.89, P<1.0 ×10−8)
(Fig. 8A,C). Propensity score–stratified
cohort studies confirmed that usage of
mometasone (a stronger NR3C1 agonist)
are significantly associated with reduced
risk of AD compared to fluticasone (HR
=0.74, 95% CI 0.68-0.81, P<1.0 ×10−8)
(Fig. 8B,C). Another independent data-
base, FDA MedWatch Adverse Events
Database, revealed that the combination
of fluticasone and ibuprofen could be a

therapeutic option for AD (Lehrer and Rheinstein 2018).
Fluticasone andmometasone are approved steroids to treat asthma
and various allergies with anti-inflammatory, antipruritic, and va-
soconstrictive properties (Lumry 1999). Previous studies showed
crucial roles of NR3C1 in AD (de Quervain et al. 2004; Canet
et al. 2018), suggesting possible protective effects of fluticasone
and mometasone on AD (Fig. 8A–C) via modulating the glucocor-
ticoid signaling.

To further infer the potential mechanisms-of-action of fluti-
casone and mometasone in AD, we next integrated networks
from drug-target interactions, predicted networks of DAM and
DAA, and human PPIs. Network analysis shows that fluticasone
and mometasone indirectly target glycogen synthase kinase 3
beta (GSK3B) and cyclin-dependent kinase 5 (CDK5) via PPIs in
molecular networks of DAM andDAA (Fig. 8D,E). Lipopolysaccha-
ride-stimulation increased inflammatory responses inmicroglia by
activating phosphorylation of CDK5 (Na et al. 2015). CDK5R1
signaling plays a crucial role in microglial phagocytosis of Aβ
(Ma et al. 2013). GSK3B inhibitors reduce microglial migration,

EB
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Figure 6. A metabolite-triggered molecular network between DAA and microglia (DAM). (A) A high-
lighted subnetwork of the metabolite-enzyme network between DAM and DAA in the human protein–
protein interactome networkmodel. (FC) Fold-change. (B,C) Expression of Ctsb is significantly elevated in
DAM (GSE98969) (B) and DAA (GSE143758) (C) compared to homeostatic associated microglia (HAM)
and non-DAA, respectively. (D) Expression of Spp1 is significantly elevated in DAM (GSE98969) com-
pared with HAM. Each dot represents one cell/nucleus. (E) Spearman’s correlation analysis shows that
Spp1 and Pld3 have a slight coordinated change trends in DAM. Gene expression is counted by the av-
erage unique molecular identifier (UMI) count.
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inflammation, and inflammation-induced neurotoxicity (Huang
and Mucke 2012). Altogether, these observations suggest that flu-
ticasone and mometasone have potentially protective effects on
AD by reducing glucocorticoid signaling and CDK5/GSK3B-medi-
ated inflammation on microglia or astrocytes (Fig. 8). Further ex-
perimental validation on the network-inferred mechanism-of-
action is warranted.

Discussion

We acknowledged several potential limitations in the current
study. Although two snRNA-seq and scRNA-seq data sets of DAM
present consistent expression patterns (Supplemental Tables S4,
S5), snDAMnet and scDAMnet showed a small overlap of differen-
tially expressed genes. There are several possible explanations.
Single-cell and single-nucleus may generate different cell abun-
dances during cell processing. The procedure for preparing sin-
gle-cell suspensions from fresh samples may alter the gene
expression profiles of individual cells and change the derived cell
type proportions because some cells aremore vulnerable to cell dis-
sociation protocols (Lake et al. 2016).

The network proximity analyses show significant network-
based relationships between DAM and DAA (Supplemental Table

S13), including immune pathways en-
riched by both DAM and DAA. These
findings provide insights into intercellu-
lar communication between microglia
and astrocytes; yet, systematic identifica-
tion of ligand-receptor interactions con-
necting cell surface proteins of DAM
and DAA may identify previously unrec-
ognized mechanisms regarding intercel-
lular communication between microglia
and astrocytes in AD and offer novel
drug targets for development of anti-in-
flammatory treatments. There was less
significant association between human
and mouse molecular networks (DAM
vs. DAA) (Supplemental Table S13), con-
sistent with different immune responses
of AD brains between human andmouse
models (Hemonnot et al. 2019). Another
study reported distinct gene signatures of
DAM between 5XFAD mouse model and
human AD brains (Keren-Shaul et al.
2017); furthermore, up-regulation of
two mouse DAM marker genes (Lpl and
Cst7) cannot be detected in human AD
brains (Zhou et al. 2020b). In addition,
divergence of mouse and human cortex
may influence network-based findings
presented here (Hodge et al. 2019). De-
velopment of advanced network-based
methodologies to identify conserved
cell types and the underlying molecular
networks between human and animal
models from evolutionary perspectives
is needed in the future. Finally, potential
literature biases regarding PPIs, incom-
pleteness of networks, and small sample
size of sn/scRNA-seq data sets (Sup-

plemental Table S1) may influence our network-based findings
as well.

In summary, we presented a network-based methodology
that incorporates large-scale snRNA-seq and scRNA-seq data from
either mouse models or AD patient brains, human PPIs, enzyme-
metabolite associations, and drug target networks, along with
large-scale patient-level data observation. We showed that molec-
ular networks derived from DAM and DAA are significantly en-
riched for various well-known immune pathways and AD-related
pathobiological pathways. We showed that the identified molecu-
lar networks from DAM and DAA offer potential targets for drug
repurposing, and we validated two network-predicted drugs
(fluticasone and mometasone) in reducing risk of AD using
large-scale, longitudinal patient data. In summary, we believe
that the network-based methodology presented here, if broadly
applied, would significantly catalyze innovation in AD drug dis-
covery by utilizing the large-scale single-cell/nucleus omics data.

Methods

Resources of single-cell/nucleus RNA sequencing data

The complete sc/snRNA-seq data sets used in this study
(Supplemental Table S1) are available from the NCBI Gene

BA

C

Figure 7. Network-based discovery of repurposable drug candidates for AD by specifically reversing
gene expression of DAM and DAA. (A) Selected drugs that specifically target five different DAM or
DAA molecular networks. Drug are grouped by five different classes (immunological, respiratory, neuro-
logical, cardiovascular, and cancer) (Supplemental Table S12) defined by the first-level of the Anatomical
Therapeutic Chemical (ATC) codes. Four high-confidence drugs (fluticasone, mometasone, salbutamol,
and tretinoin) were highlighted. (B,C) Proposed mechanism-of-actions for two selected drugs (tretinoin
[B] and salbutamol [C]) by drug-target network analysis.

Xu et al.

1908 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.272484.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.272484.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.272484.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.272484.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.272484.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.272484.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.272484.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.272484.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.272484.120/-/DC1


Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)
database under accession numbers GSE98969 (Keren-Shaul et al.
2017), GSE140511 (Zhou et al. 2020b), GSE143758 (Habib et al.
2020), GSE147528 (Leng et al. 2021), and GSE138852 (Grubman
et al. 2019). One scRNA-seq data set (GSE98969) contains C57BL/
6 (whole brain, n=16) and 5XFAD (n=16) mice, including 12,288
sequenced cells (Keren-Shaul et al. 2017). Two of four snRNA-seq
data sets were collected from mouse samples as well (GSE140511
and GSE143758). Data set GSE140511 (Zhou et al. 2020b) con-
tained four types of transgenic male mouse models, including
C57BL/6, 5XFAD, Trem2 knockout C57BL/6, and Trem2 knockout
5XFAD. In this study, we considered the 7-mo mouse models,
which in total sequenced 90,647nuclei.The secondmousenucleus
data set (GSE143758) contains two transgenic mouse models
(C57BL/6 and 5XFAD) fromboth hippocampus and cortex regions
(Habib et al. 2020).We utilized in total 55,367 nuclei data from the
7-mo hippocampus mouse models: (a) 5XFAD (n=5), and (b)
C57BL/6 (n=5) (Habib et al. 2020). A human snRNA-seq data set
(Leng et al. 2021) contains 10 male frozen postmortem human
brain tissues for both superior frontal gyrus (63,608nuclei) and en-
torhinal cortex (42,528 nuclei), including astrocytes, excitatory
neurons, inhibitory neurons, microglia, oligodendrocytes, oligo-

dendrocyte progenitor cells (OPCs), and
endothelial cells (GSE147528) (Leng
et al. 2021). A new human snRNA-seq
data set (Grubmanet al. 2019) containing
12 frozen postmortem human brain tis-
sues (n =6 AD case and n =6 healthy con-
trols [GSE138852]) from entorhinal
cortex regions was further used, which
covers astrocyte, microglia, neuron, oli-
godendrocyte, OPC, and endothelial cell
types. All statistical analyses were con-
ducted in R (R Core Team 2020), and the
details for bioinformatics analysis of
each data set were provided in the
Supplemental Material.

Building human protein–protein

interactome

To build the comprehensive human
interactome from the most contempo-
rary data available, we assembled 18
commonly used PPI databases with ex-
perimental evidence: (1) binary PPIs test-
ed by high-throughput yeast-two-hybrid
(Y2H) systems (Luck et al. 2020); (2) ki-
nase-substrate interactions; (3) signaling
networks; (4) binary PPIs from three-di-
mensional protein structures; (5) protein
complexes data; and (6) carefully litera-
ture-curated PPIs. In total, 351,444 PPIs
connecting 17,706 unique proteins
were used in this study (Supplemental
Material) and are freely available at
https://alzgps.lerner.ccf.org.

Description of GPSnet

GPSnet (Cheng et al. 2019b) takes two in-
puts: node (gene) scores and a back-
ground PPI network. The node score was
defined as follows: for differentially ex-
pressed genes (DEGs) with q≤0.05, and
the node scores denote absolute value of

log2FC. To generate a network module, GPSnet starts with a ran-
domly selected gene/protein (node). During each iteration, one of
the candidate genes (first-order neighbor) that is satisfying the fol-
lowing two conditions at the same time will be added: (1) P-value
of the connectivity significance P(i) (Eq. 1) is <0.01; and (2) the up-
dated module score is greater than the current one (Eq. 2). We re-
peated steps (1) and (2) until no more genes (nodes) can be added
to generate each raw module. In this study, we built ∼100,000 raw
modules ranked by module scores. For each raw module, the corre-
sponding module score can be computed (Eq. 2), and all raw mod-
ules are ranked in decreasing module score order. The protein
frequency is defined based on truncated rawmodules.We generated
the final network modules by assembling top ranked raw modules
(Supplemental Tables S4, S5, S7–S9).

P(i) =
∑di

d= dn

n
d

( )
N − n
di − d

( )

N
di
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j[M (S(j)− m)
�������
n+ 1

√ , (2)
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Figure 8. Retrospective case-control analysis reveals that usage of fluticasone and mometasone is sig-
nificantly associated with reduced likelihood of AD in a longitudinal patient database with 7.23 million
subjects. Two comparison analyses were conducted: (A) fluticasone (a glucocorticoid receptor agonist)
versus a matched control population (non-fluticasone users), and (B) mometasone (a stronger glucocor-
ticoid receptor agonist) versus fluticasone. For each comparator, we estimated the unstratified Kaplan–
Meier curves, conducted propensity score–stratified (n strata = 10) rank test and applied Coxmodels after
adjusting all possible confounding factors, including age, gender, race, and disease comorbidities
(Supplemental Table S16). (C) Hazard ratios (HRs) and 95% confidence interval (CI) for two drug cohort
studies. Propensity score–stratified Cox-proportional hazards models were used to conduct statistical in-
ference for the hazard ratios. (D,E) Proposedmechanism-of-action for treatment of AD by fluticasone and
mometasone using drug-target network analysis.
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whereN denotes all proteins/genes in the PPI, n represents numbers
of nodes in the module, dn is the numbers of neighbors of gene i in
current module, di is the degree of gene i, MSn+1(i) denotes the up-
dated module score if adding node i, s(i) denotes the score of
node i, M denotes the current module, and μ is the average node
score of all genes with respect to the PPI network.

Network proximity

To quantify the relationships of twomolecular networks (DAM vs.
DAA) in the human interactome, we adopted the shortest-based
network proximity measure (Cheng et al. 2019a) as follows:

dshortest(X, Y) = 1
‖X‖∗‖Y‖

∑

x[X,y[Y

d(x, y), (3)

where d(x,y) is the shortest path length between gene x and y from
gene sets X and Y, respectively. To evaluate whether such proxim-
ity was significant, the computed network proximity is transferred
into Z-score form as shown in the following:

Zdshortest =
dshortest − md

sd
. (4)

Here, μd and σd are the mean and standard deviation of per-
mutation test with 1000 random experiments. In each random ex-
periment, two random subnetworks Xr and Yr are constructedwith
the same numbers of nodes and degree distribution as the given
two subnetworks X and Y, separately, in the PPI network.

Network analysis of metabolite–enzyme associations

We assembled 155 AD-related metabolites from 12 studies
(Supplemental Table S14) and the Human Metabolome Database
(HMDB) (Wishart et al. 2018). All metabolites were identified in
AD-related human samples, including brain tissues, cerebrospinal
fluid, and blood. All these results are freely available in our AlzGPS
(Zhou et al. 2021) database (https://alzgps.lerner.ccf.org). We
mapped 240 DAM and DAA disease module genes and the 155
AD-relatedmetabolites to the network and computed themaximal
subgraph. Finally, we computed the network paths connecting the
DAM and DAA gene products on the network as well as the betwe-
enness centrality of each vertex (Supplemental Material).

Gene set enrichment analysis (GSEA)

We assembled drug-gene signatures from the CMap database con-
taining 6100 expression profiles relating 1309 compounds (Lamb
et al. 2006). We utilized GSEA algorithm to predict drugs across
each molecular network of DAM and DAA. Detailed descriptions
of GSEA have been provided in our recent study (Zhou et al.
2020a) and the Supplemental Material.

Enrichment analysis

All pathway and disease enrichment analyses were conducted us-
ing either KEGG 2019 Mouse or KEGG 2019 Human and
DisGeNET (Piñero et al. 2017) from Enrichr (Kuleshov et al.
2016), respectively.

Pharmacoepidemiologic validation

We used the MarketScan Medicare Claims database from 2012 to
2017 for the pharmacoepidemiologic analysis. This database in-
cludes individual-level procedure codes, diagnosis codes, and
pharmacy claim data for 7.23million patients. Pharmacy prescrip-
tions of fluticasone and mometasone were identified using
RxNorm and National Drug Code (NDC). For an individual ex-

posed to fluticasone andmometasone, a drug episode was defined
as from drug initiation to drug discontinuation. A control cohort
was selected from patients who were not exposed to fluticasone.
The disease outcome defined by the International Classification
of Disease (ICD) codes (Supplemental Table S16) was time from
drug initiation to diagnosis of AD. The survival curves for time
to AD were estimated using a Kaplan–Meier estimator approach.
We used the large number of covariates generated throughout
the process to address clinical scenarios evaluated in each drug co-
hort. Propensity score–stratified survival analyses were conducted
to investigate the risk of ADbetween fluticasone users andnon-flu-
ticasone users, as well as fluticasone users and mometasone users.
Specifically, for each comparison, the propensity score of taking
fluticasone was estimated by using a logistic regression model, in
which the covariates included age, gender, geographical location,
and disease comorbidities. Further, propensity score–stratified
Cox-proportional hazards models were used to conduct statistical
inference for the hazard ratios (HRs) of developing AD between
two cohorts. All details are provided in the Supplemental Material.

Software availability

All codeswritten for andused in this studyare available fromGitHub
(https://github.com/ChengF-Lab/alzGPSnet) and as Supplemental
Code.
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