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When assessed over a large number of samples, bulk RNA sequencing provides reliable data for gene expression at the tissue

level. Single-cell RNA sequencing (scRNA-seq) deepens those analyses by evaluating gene expression at the cellular level.

Both data types lend insights into disease etiology. With current technologies, scRNA-seq data are known to be noisy.

Constrained by costs, scRNA-seq data are typically generated from a relatively small number of subjects, which limits their

utility for some analyses, such as identification of gene expression quantitative trait loci (eQTLs). To address these issues

while maintaining the unique advantages of each data type, we develop a Bayesian method (bMIND) to integrate bulk

and scRNA-seq data. With a prior derived from scRNA-seq data, we propose to estimate sample-level cell type–specific

(CTS) expression from bulk expression data. The CTS expression enables large-scale sample-level downstream analyses,

such as detection of CTS differentially expressed genes (DEGs) and eQTLs. Through simulations, we show that bMIND im-

proves the accuracy of sample-level CTS expression estimates and increases the power to discover CTS DEGs when compared

to existing methods. To further our understanding of two complex phenotypes, autism spectrum disorder and Alzheimer’s

disease, we apply bMIND to gene expression data of relevant brain tissue to identify CTS DEGs. Our results complement

findings for CTS DEGs obtained from snRNA-seq studies, replicating certain DEGs in specific cell types while nominating

other novel genes for those cell types. Finally, we calculate CTS eQTLs for 11 brain regions by analyzing Genotype-Tissue

Expression Project data, creating a new resource for biological insights.

[Supplemental material is available for this article.]

Gene expression quantified at the tissue level, bulk gene expres-
sion data, has been a useful resource for understanding the etiolo-
gy of different diseases. RNA sequencing technology, applied to
tissue samples, is mature, and its relatively cost-efficient property
allows assessment of tissue fromhundreds of samples, thereby pro-
ducing rich data sets (Allen et al. 2016; Parikshak et al. 2016; The
GTEx Consortium 2017; Bennett et al. 2018; Wang et al. 2018).
However, because tissue is comprised of a variety of cell types,
bulk data are the convolution of gene expression frommyriad cells
of various cell types. To overcome this challenge, researchers have
pursued single-cell RNA sequencing (scRNA-seq) to quantify cell
type–specific (CTS) gene expression, either at the cellular or nucle-
ar level (Darmanis et al. 2015; Mathys et al. 2019; Velmeshev et al.
2019).While providing important insights into etiology, such data
have their own limitations: cells are typically collected from a lim-
ited number of samples, thus they lack sufficient variation over
samples; and the data are noisy and technically variable owing
to quantification of a small number of RNA molecules. This issue
is especially severe for single-nucleus RNA-seq (snRNA-seq) data
from frozen tissue, which is themain specimen source for brain re-
search. Nuclear RNA accounts for only 20%–50% of the RNAmol-
ecules in the whole cell, and this fraction varies across cell types
(Bakken et al. 2018). Furthermore, studies of brain tissue have

found that snRNA-seq fails to detect a fraction of the microglia
population (Mathys et al. 2019) and microglial activation in the
human brain (Thrupp et al. 2020), yet microglia are thought to
be a key cell type related to critical diseases, such as Alzheimer’s
disease.

To overcome the drawbacks of bulk and scRNA-seq/snRNA-
seq data while maintaining their unique advantages, we propose
to integrate bulk and single-cell data to estimate CTS expression
for large samples. Existing methods typically can only estimate
population-average CTS expression (e.g., csSAM) (Shen-Orr et al.
2010). To enable subject-level estimation,wepreviously developed
a novel MIND algorithm (Wang et al. 2020) that extends popula-
tion-average estimates to the level of subject and cell type by bor-
rowing information across multiple measures of bulk level
expression from the same subjects. We implemented theMIND al-
gorithm within the framework of mixed-effects models and esti-
mated the subject-level CTS expression via empirical Bayes.
Although MIND’s estimates of CTS expression are useful in sub-
ject-level analyses, multimeasure bulk expression data are not
commonly available. Instead, most data sets only have one or
two measures of bulk expression per subject. Correspondingly,
there have been methods developed in parallel for single-measure
bulk DNA methylation data (e.g., TCA) (Rahmani et al. 2019) and
gene expression data (e.g., CIBERSORTx) (Newman et al. 2019).
TCA is a frequentist method similar to MIND, and CIBERSORTx
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relies on non-negative least squares to estimate sample-level CTS
expression with the goal of separating two groups of samples.
There are also CTS analytical methods for testing the interaction
of cell type fractions and the variable of interest without explicit
estimation of CTS expression, such as CellDMC (Zheng et al.
2018), which was originally designed for DNA methylation data.
Nonetheless, these methods have not efficiently used the rich in-
formation available from single-cell data.

To address these deficiencies, we develop a Bayesian MIND
(bMIND) algorithm to refine the estimation of CTS expression
for each bulk sample. As compared to MIND, bMIND not only
works for bulk data without multiple measures, but it can also be
used to estimate the sample-level CTS expression for each brain re-
gion, for instance, thereby enabling a study of heterogeneous CTS
expression patterns across brain regions. To provide accurate and
reliable estimates in this setting, we propose to use information
from scRNA-seqdata by incorporating it as prior in a Bayesian anal-
ysis. Specifically, we extract informative prior distributions of
mean CTS expression and covariance structure for each gene
from scRNA-seq data to facilitate the estimation of sample-level
CTS expression from bulk data. We adopt a Bayesian approach
because it is known towork well and robustly by incorporating pri-
or information to regularize the statistically challenging estima-
tion we aim to achieve in this work. Distinguishing itself from
other methods, bMIND is a powerful and flexible tool, suitable
for estimation of CTS expression and for testing for differential ex-
pression. The approach works best when scRNA-seq data are avail-
able, but it also works well without prior information.

Here, we introduce the bMIND algorithm and compare it to
other state-of-the-art methods. We also show its utility by various
analyses, including CTS differential expression analysis of data rel-
evant for autism spectrum disorder (ASD) and Alzheimer’s disease
(AD). Moreover, analyzing updated Genotype-Tissue Expression
Project (GTEx) V8 brain data, we calculate CTS eQTLs for each of
11 brain regions to create a new resource for uncovering the etiol-
ogies of complex diseases and other phenotypes.

Results

Bayesian estimation of sample-level CTS gene expression

To improve the estimation of sample-level CTS expression, we pro-
pose a Bayesian algorithm (bMIND) to incorporate prior informa-
tion from single-cell data (Fig. 1). We model bulk expression of

sample i in gene j, xij, for T≥1 measures, as a product of cell type
fraction (Wi, T×K) and CTS expression (aij, K×1) of K cell types
in Bayesian mixed-effects models

xij = W iaij + c(1)
′

i bj +W iBjc
(2)
i + eij,

aij � N(aj, Sj), eij � N(0, s2
j IT ),

(1)

where αj (K×1) is the expected CTS expression for the jth gene that
constitutes the profile matrix, Sj (K × K) is the covariance matrix
of CTS expression for K cell types, c(1) denotes covariates affecting
bulk expression, c(2) represents covariates affecting CTS expres-
sion, and eij is the error term that captures the unexplained ran-
dom noise with variance s2

j . The cell type fraction (W i) is
assumed known or preestimated using a cell type fraction estima-
tion algorithm (Wang et al. 2019; Jew et al. 2020). The goal of
bMIND is to provide the posterior mean of the CTS expression
(aij,K × 1) for each sample i, gene j, and K cell types.

To incorporate information from scRNA-seq data, we use
these summary statistics: for each gene j, let âj be the profile ma-
trix, and let Ŝj be the cell type covariance matrix. We assume the
following prior distribution

• aj � N(âj, 0.5IK), where âj is the average CTS expression calcu-
lated from scRNA-seq data;

• Sj � Inv Wishart(Ŝj, 50) where the first parameter is the expect-
ed covariance matrix and the second parameter represents the
degree of belief; the inverse-Wishart distribution is the conjugate
prior for the covariance matrix, which eases estimation, and fa-
cilitates explicitly incorporating the prior covariance matrix Ŝj

or the jth gene estimated from scRNA-seq data; and
• s2

j � Inv Wishart(1, 0), which is non-informative.

Given the technical noise and variability of scRNA-seq data,
we use summary statistics from the scRNA-seq data rather than
the raw data because summary statistics are more robust and also
reduce the computation burden (Zhu et al. 2018). The hyperpara-
meters in the prior distributions are chosen based on empirical ex-
periments. bMIND is robust to their specification, as shown in
“Results.” We allow gene-specific parameters and analyze each
gene in parallel. Although implemented with Markov chain
Monte Carlo (MCMC) sampling, bMIND is computationally effi-
cient. Depending on the sample size and number of cell types,
all genes in the genome can be analyzed in approximately an
hour using 30 CPU cores.

Figure 1. Overview of bMIND algorithm and CTS differential expression analysis (CTS DE). With prior information from scRNA/snRNA-seq data for case
and control subjects, bMIND analyzes bulk RNA-seq data and estimates sample-level CTS expression with a Bayesian approach. Here, we present an ex-
ample of five cell types (CT1–CT5). In the downstream analysis, as an example, we test the association between CTS expression and phenotype for each
gene in each cell type and identify CTS differentially expressed genes (CTS DEGs).
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CTS differential expression analysis

When the samples are from cases or controls, we include the case-
control status (y) into the model for differential expression analy-
sis. We use a Bayesian framework for testing H0:a0

j = a1
j for each

cell type; where a0
j and a1

j denote the mean CTS expression for
gene j in controls and cases, respectively. This new model allows
the incorporation of prior information from cases and controls
of single-cell studies:

xij = I(yi = 0)W ia0
j + I(yi = 1)W ia1

j + c(1)
′

i bj +W iBjc
(2)
i + eij, (2)

where xij represents bulk expression for the ith sample in the jth
gene , yi is the disease status with 0 for controls and 1 for cases,
and W i denotes the cell type fractions. We use prior distributions
a0

j � N(a0
j ,S

0
j ) and a1

j � N(a1
j ,S

1
j ) for cases and controls sepa-

rately. With a0
j and a1

j as mean parameters for cases and controls,
we generate their Bayesian posterior samples and calculate the
MCMC P-values by comparing the posterior distribution of
a0

j −a1
j with the null (0). Alternatively, we can also perform CTS

DE analysis with the estimated sample-level CTS expression from
Equation 1 (see the specific testing procedure in Methods).

For comparison, we use four other methods: (1) TCA
(Rahmani et al. 2019), a frequentist approach similar toMIND, de-
signed for bulk DNAmethylation data, but also applicable for CTS
estimation of gene expression; (2) CIBERSORTx (Newman et al.
2019), which estimates CTS expression via non-negative least
squares; (3) csSAM (Shen-Orr et al. 2010), designed for microarray
data to estimate population-average CTS expression, and featuring
a permutation-based test for CTS DE analysis; and (4) CellDMC
(Zheng et al. 2018), designed for DNAmethylation data, but appli-
cable to gene expression data. CellDMC tests CTS DEGs by regress-
ing bulk expression on the interaction terms between phenotype
and cell type fractions, without estimating CTS expression. We
also compare bMIND, which uses a prior derived from scRNA-seq
data, with bMIND_rp (a variant of bMIND that uses a rough prior
based on the analyzed bulk data) and bMIND_np which uses non-
informative prior.

bMIND refines estimates of sample-level CTS expression

We evaluated the properties of bMINDwith real-data analyses and
realistic simulation studies. First, we checked if bMINDwas able to

detect variation in gene expression by cell type. We tested this by
looking for consistent CTS expression across different data sets, us-
ing two independent bulk RNA-seq data sets frombrain samples of
subjects diagnosedwithASD and samples fromunaffected subjects
(Parikshak et al. 2016; Velmeshev et al. 2019) and independent pri-
ors derived from snRNA-seq data (Velmeshev et al. 2019) and
scRNA-seq data (Darmanis et al. 2015). We paired Darmanis’s
scRNA-seq data, used as a prior, with bulk data from Parikshak
et al. (2016); likewise, we paired Velmeshev’s snRNA-seq data
with bulk data from Velmeshev et al. (2019). To ensure the prior
did not exert too much influence, we set the variance of the prior
distribution of the expression profile matrix to 1000. After averag-
ing the estimated CTS expression across samples within each data
set for each gene,we calculated the correlation between the two av-
erages over cell types.Weperformed the same comparison by com-
puting the correlation of snRNA-seq (Velmeshev et al. 2019) and
scRNA-seq estimated gene expression data (Darmanis et al.
2015). The correlation in the profile matrix estimated from two in-
dependent applications of bMINDwas comparable to that from sc/
snRNA-seq data sets (Fig. 2A). These results show that bMIND pro-
vides meaningful estimates of gene expression profiles derived
from bulk data sets.

Next, we assessed whether bMIND could provide reliable
sample-level CTS estimates. Ideally, this would be evaluated by
comparing scRNA-seq and CTS estimates obtained from the
same samples, but in a comparison of bulk RNA-seq and recon-
structed bulk expression obtained from snRNA-seq data, the per
gene correlation was observed to be quite low (Velmeshev et al.
2019). We instead used simulations to assess the correlation be-
tween estimated and true CTS expression for each cell type.
Velmeshev et al. (2019) collected snRNA-seq data frombrain tissue
samples of subjects diagnosed with ASD and samples from unaf-
fected subjects as controls. Using the single-nucleus expression
for the available 41 brain samples, we grouped the nuclei into
five major cell types: astrocytes (Astro), excitatory neurons
(ExN), inhibitory neurons (InN), oligodendrocytes (Oligo), and ol-
igodendrocyte precursor cells (OPC), while dropping endothelial
(Endo) cells and microglia (Micro) because of low fractions.
Henceforth, we shall call these the Velmeshev data.We aggregated
the expression of nuclei fromeachASD sample to generate pseudo-
bulk data for which we know the ground truth. We estimated the
prior distribution using the snRNA-seq data from control samples.

BA C

Figure 2. Correlation comparison for estimated sample-level CTS expression. (A) Correlation of average CTS gene expression (across samples), over cell
type, obtained from two brain RNA-seq data sets (Parikshak et al. 2016; Velmeshev et al. 2019). For a benchmark, we assess the concordance between brain
snRNA-seq data (Velmeshev et al. 2019) and scRNA-seq data (Darmanis et al. 2015) (labeled as sn/scRNA-seq). (B,C ) Using realistic simulations, correlation
between truth and estimated CTS expression are computed to compare TCA (Rahmani et al. 2019) with bMIND and bMIND_rp (using a rough prior). The
task involved analyzing pseudo-bulk data generated from snRNA-seq data (Velmeshev et al. 2019) obtained from ASD subjects, and bMIND uses a prior
derived from the corresponding controls. For each cell type, we compute correlation across samples for each gene (B), and correlation across genes for each
sample (C). The P-values are obtained from paired one-tailed Wilcoxon test comparing TCA and bMIND_rp.
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After analyzing the generated pseudo-bulk data to estimate CTS ex-
pression, we calculated the correlation between the true and esti-
mated CTS expression, per cell type, per gene. Note that by
generating the bulk data from the ASD samples and prior distribu-
tion from the control samples, we assessed the robustness of the
method to utilizing distinct data sources for the analysis.

The correlation per gene based on bMIND was higher than
those from TCA (Fig. 2B) and CIBERSORTx (Supplemental Fig.
S1A) across cell types. Furthermore, because bMIND is a Bayesian
approach, we evaluated the sensitivity of the estimates to the prior
distribution specification by comparing bMIND to bMIND_rp (Fig.
2B) and observed that results from bMINDwere relatively accurate
even when the prior was not. Nonetheless, a precise prior can im-
prove sample-level CTS estimates; for instance, the correlation be-
tween estimated expression and the truth across genes, for each
cell type and each sample, was considerably higher using bMIND
(Fig. 2C). Finally, to show that bMIND has the ability to incorpo-
rate additional measures of bulk expression from the same sam-
ples, we conducted realistic simulations and showed that more
measures increased the estimation accuracy (Supplemental Fig.
S1B). The bulk data were simulated with measured cell type frac-
tions and sample-level CTS expression derived from snRNA-seq
data (Velmeshev et al. 2019). To show that bMINDworks for other
tissue types, we repeat the simulations with a single-cell data set
from heart (Litviňuková et al. 2020). With the generated pseudo-
bulk data, bMIND’s CTS estimates were more accurate than TCA
(Supplemental Fig. S1C,D).

bMIND has good power in CTS differential analysis

To evaluate the performance of bMIND for CTS DE analysis, we
conducted extensive simulation studies, assessing its false discov-

ery rate (FDR) and power. Using these simulated data, we planned
to compare performance of bMIND to csSAM (Shen-Orr et al.
2010); however, csSAMhad zero power in these settings. Other op-
tions for CTS DE analysis were TCA (Rahmani et al. 2019) and
CIBERSORTx (Newman et al. 2019). As reported in the literature
(Jing et al. 2019), however, we observed inflated FDR using TCA
(Supplemental Fig. S1E) and thus did not consider it for CTS DE
analysis. CIBERSORTx (Newman et al. 2019) was not open source
and thus was not suitable for extensive simulation studies. In con-
trast, CellDMC (Zheng et al. 2018) was suitable and its perfor-
mance relative to bMIND was evaluated in our simulations.

We assessed FDR and power as a function of effect size, the
number of cell types, and sample size. Under all simulation scenar-
ios, bMIND controlled FDR (Fig. 3A–C) at the nominal level of
0.05. bMIND (with informative prior) had improved power as
compared to bMIND_np (with non-informative prior), which
had greater power than CellDMC (Fig. 3D–F; Zheng et al. 2018).
As expected, the power of CTSDE analysis increasedwith the effect
size differentiating cases and controls (Fig. 3D) and with the num-
ber of samples evaluated (Fig. 3E), but it decreased as the number of
cell types estimated increased (Fig. 3F).Whenwe repeated the sim-
ulations with noisy and estimated cell type fractions, no inflation
of the FDR was observed (Supplemental Fig. S2).

Next, to evaluate CTS DE in data for which we have an inde-
pendent estimate of truth, we compared bMIND with results ob-
tained from fluorescence-activated cell sorting (FACS) data for
Alzheimer’s disease (AD). Srinivasan et al. (2020) collected 113
FACS samples from human AD cases and controls, including 25
microglia samples, and 27 endothelial samples. From this experi-
ment, they identified 66 DE genes in microglia and 135 in endo-
thelial cells. For comparison to their results, we analyzed 85 AD
and 99 control bulk samples from Brodmann area 36 (Wang

E F

BA C

D

Figure 3. FDR and power simulationwith true cell type fractions. (A–C) FDR as a function of effect size in DEGs (A), the sample size (B), and the number of
cell types (C ). (D–F ) Power as a function of effect size (D) in DEGs, the sample size (E), and the number of cell types (F). bMIND_np represents a version of
bMINDwith non-informative prior. bMIND uses truemean hyperparameters but large variance hyperparameters (103× true variances). If not specified, the
total sample size is 200 and number of cell types is three. The average effect size is 4.2 for B and E and 5.9 for C and F. All simulation scenarios are replicated
10 times.
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et al. 2018) using bMIND, with a non-informative prior, to assess
DE for more than 5000 genes expressed in brain cells (Grubman
et al. 2019).We observed a strong correlation in log fold change be-
tween FACS-sorted cell data and bMIND for CTS DEGs for micro-
glia and endothelial cells (Supplemental Fig. S3; Srinivasan et al.
2020). Thus, we conclude bMIND can successfully infer individual
and CTS gene expression from bulk data to reveal meaningful CTS
DE signal in the data.

CTS differential expression analysis of ASD brain tissue

The snRNA-seq Velmeshev data provide a resource for analyzing
bulk RNA-seq data related to autism in two ways: first, the data
can be used for a prior for bMIND; and second, because the nuclei
were drawn fromASD cases and controls, they can be used directly
to assess DEGs. With these data as reference, we analyzed the
PsychENCODE UCLA-ASD bulk RNA-seq cortex data, also ob-
tained from brain tissue samples from subjects diagnosed with
ASD and from control subjects (Parikshak et al. 2016). First, we es-
timated cell type fractions using Bisque (Jew et al. 2020) and then
inferred CTS using bMIND. Similar to the findings based on
snRNA-seq data (Velmeshev et al. 2019), we found that there
weremore astrocytes and fewer oligodendrocytes in ASD than con-
trol samples (Fig. 4A). Because microglia and endothelial cells
showed average fractions below 0.05 (Velmeshev et al. 2019), we
dropped these cell types before differential expression analysis.
Using bMIND we identified 688 CTS DEGs over five major cell
types (FDR <0.05 and absolute log2 fold change >0.14)
(Supplemental Table S1). For comparison, analysis of the 41
snRNA-seq samples produced 513 CTS DEGs (Velmeshev et al.
2019) with the same criteria. Most of the CTS DEGs identified by
bMIND were from excitatory neurons (Fig. 4B), which concurs
with the snRNA-seq findings (Velmeshev et al. 2019). In contrast,
CellDMC (Zheng et al. 2018) identified 5631 DEGs in inhibitory

neurons and 2502 DEGs in excitatory neurons (FDR <0.05).
Because CellDMC has been shown to detect too many signals in
analyses of real data (Rahmani et al. 2019), our results suggest
that the method is not robust to violations in the model assump-
tions and thus highly variable in its results.

When comparing CTS DEGs detected by bMIND and snRNA-
seq data (Velmeshev et al. 2019), and examining significant results
found in excitatory neurons, we obtained 33 genes in common
(Fisher’s exact test P-value = 4.3 ×10−19), including NRXN1 (Fig.
4C). We also discovered some CTS DEGs using bMIND that had
not previously been identified by Velmeshev et al. (2019), for in-
stance, astrocyte marker gene GFAP (Fig. 4C). Among the
bMIND-identified CTS DEGs, six genes (GFAP, NRXN1, LRRC4C,
KCNMA1, RORB, SLC6A1) were among the 102 ASD risk genes dis-
covered by Satterstrom et al. (2020) (Fisher’s exact test P-value =
0.04) and 49 genes were among the SFARI autism gene list
(Abrahams et al. 2013) (Fisher’s exact test P-value = 2.5 ×10−9).
As compared with the top 50 marker genes for each cell type de-
rived from snRNA-seq data (Velmeshev et al. 2019), there was a sig-
nificant enrichment of CTS DEGs as markers in astrocytes and
excitatory neurons (Fisher’s exact test P-value = 8.3 ×10−4 and
7.8 ×10−8, respectively).

We then evaluated the CTS DEG sets with Gene Ontology
(GO) enrichment analysis (Fig. 4D; Supplemental Table S2; Raud-
vere et al. 2019). CTS DEGs identified in astrocytes were signifi-
cantly enriched in the regulation of gliogenesis, astrocyte
differentiation/development, and glial cell proliferation. Corre-
spondingly, the CTS DEGs in excitatory neurons were enriched
in glutamatergic (excitatory) synapse and nervous system develop-
ment. We further parsed this set of enriched terms using REVIGO
(Supek et al. 2011), a tool for clustering and interpreting long lists
of GO terms. ASD DEGs were associated with 488 enriched GO
terms. REVIGO identified two key themes for these terms, cell pro-
jection organization and neurotransmitter transport, as well as

B

A

C

D

Figure 4. CTS differential expression analysis of autism. (A) Estimated cell type fractions for two cortical regions of the PsychENCODE UCLA-ASD data
(Parikshak et al. 2016). (∗) Significance after Bonferroni adjustment (P-value <0.05/14) comparing fractions of ASD and control samples. (B) Number of
CTS DEGs identified by bMIND in each cell type. (C) Examples of bMIND-identified CTS DEGs. (D) Gene Ontology enrichment analysis for CTS DEGs
in astrocytes and excitatory neurons: top 10 terms with FDR <0.05.
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more minor themes of nervous system development and regula-
tion of GTPase activity.

CTS differential expression analysis of brain tissue from

Alzheimer’s disease subjects

In the second case study, we conducted CTS DE analysis for
Alzheimer’s disease. We analyzed bulk RNA-seq data from brain
samples of subjects diagnosedwith ADandunaffected control sub-
jects from three projects: Mayo Clinic RNA-seq data (Allen et al.
2016), Mount Sinai Brain Bank (MSBB) (Wang et al. 2018), and
Religious Order Study and the Memory and Aging Project
(ROSMAP) (Bennett et al. 2018). We used AD snRNA-seq data
(Mathys et al. 2019) for reference and the Bisque algorithm (Jew
et al. 2020) to estimate cell type fractions. Following the cell clus-
tering in the snRNA-seq data (Mathys et al. 2019), we focused on
six cell types: Astro, ExN, InN, Micro, Oligo, and OPC.

Using bMIND, we estimated sample-level CTS expression and
detected CTS DEGs related to AD with FDR <0.05 (Supplemental
Table S1). Similar to the findings based on snRNA-seq of AD
(Mathys et al. 2019),most identifiedCTSDEGswere fromexcitato-
ry neurons, a finding that comports with the observed selective
vulnerability of excitatory neurons in the brain of AD samples
(Leng et al. 2021). We compared the ExN DEGs identified by the
snRNA-seq study (Mathys et al. 2019) and bMIND from the three
bulk data sets (Fig. 5A). The different numbers of DEGs can be ex-
plained by sample size and brain region heterogeneity. At the bulk

expression level, an existing study (Marques-Coelho et al. 2021)
also found more DEGs in the temporal lobe (Mayo data and
MSBB Brodmann areas 22 and 36) than in frontal lobe (ROSMAP
data and MSBB Brodmann areas 10 and 44). When we contrasted
the ExN DEGs found from snRNA-seq (Mathys et al. 2019), we ob-
served significant overlap with bMIND ExN DEGs for both the
Mayo and MSBB data (Fisher’s exact test P-value =3.9 ×10−13 and
1.8 ×10−5, respectively).

CTS DEGs in excitatory neurons identified by the Mayo data
were enriched in KEGG Alzheimer’s disease pathway (Kanehisa
and Goto 2000) (Fisher’s exact test P-value =1.5× 10−5). To illus-
trate how genes worked together in Alzheimer’s disease at the
cell type level, we took advantage of bMIND’s estimates of sam-
ple-level CTS expression to construct a coexpression network of a
subset of genes expressed in excitatory neurons (Fig. 5B); here,
the genes illustrated were those shared by the two gene sets,
ExN-DEG-AD and KEGG Alzheimer’s disease pathway. We also
conducted Gene Ontology enrichment analyses (Raudvere et al.
2019) for DEGs in different cell types (Supplemental Table S2).
As expected, enriched terms for DEGs from excitatory neurons
were enriched in synaptic and neuronal functions. For example,
using REVIGO to assess the large number (683) of enriched GO
terms for Mayo data identified several key themes: vesicle-mediat-
ed transport in the synapse, regulation of catabolism, and chemi-
cal synaptic transmission; and more minor themes of organelle
organization andmacro- and autophagy. DEGs in microglia, how-
ever, were enriched in immune processes (Fig. 5C).
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Figure 5. CTS differential expression analysis of Alzheimer’s disease. (A) Intersection of DEGs in excitatory neurons (ExN DEGs) related to AD identified in
snRNA-seq data (Mathys et al. 2019) and three bulk RNA-seq data sets (ROSMAP,Mayo, andMSBB) by bMIND. (B) Correlationmatrix of the intersection of
ExN DEGs in Mayo data and the KEGG AD gene pathway. Correlation is computed using bMIND estimated sample-level CTS expression. (C) Gene
Ontology enrichment analysis for ExN DEGs for Mayo and ROSMAP bulk data and microglia DEGs for MSBB data (MSBB.Micro). Here, we present the
top 10 terms with FDR <0.05 for each cell type.
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Contrasting functions of DEGs from excitatory neurons of ASD

versus AD subjects

The bulk of DEGs for both ASD and AD arose from excitatory neu-
rons, presenting an opportunity to learn more about both pheno-
types based on commonalities and differences of enriched GO
terms. (Here, we focused on DEGs from the temporal lobe of
Mayo subjects.) ASD DEGs were enriched for 309 GO terms that
were not shared with enriched terms for AD DEGs. From these
terms, REVIGO identified one key theme, regulation of synapse or-
ganization, and two minor themes, amino acid transport and an-
atomical structure morphogenesis (Supplemental Fig. S4A). This
was somewhat different than the key themes associated with the
entire set of ASD DEGs, namely, cell projection organization and
neurotransmitter transport. In fact, all these themes are likely im-
portant to liability for ASD (Satterstrom et al. 2020).

Therewere 504 enrichedGO terms specific for ADDEGs, from
which REVIGO identified key themes of vesicle-mediated trans-
port and regulation of catabolism.Moreminor themeswere organ-
elle organization, macro- and autophagy, and protein/
macromolecule modification (Supplemental Fig. S4B). These
themes were quite similar to those identified from the entire list
of enriched GO terms for AD DEGs.

Next, we asked how REVIGO interpreted the enriched terms
that were shared between ASD and AD. Although 179 GO terms
were identical, the FDR Q-values REVIGO used to prioritize them
were not. On the contrary, there was no relationship between
ASD and AD Q-values for these shared
terms (P-value=0.68, paired Wilcoxon
test). The major themes that emerged
for ASDwere cell projection organization
and neurotransmitter transport, quite
similar to those for the entire set of en-
riched GO terms associated with ASD
DEGs (Supplemental Fig. S4C). For AD,
however, the major theme was regula-
tion of cellular component organization,
a theme that recurred across the different
partitions of enriched GO terms for AD
DEGs (Supplemental Fig. S4D).

CTS eQTL analysis of GTEx V8 brain

data

To generate a resource of inferred CTS
eQTLs for various brain regions, we ana-
lyzed the latest GTEx brain data (The
GTEx Consortium 2020) (V8) using
bMIND. We first obtained the cell type
fractions for each GTEx bulk sample via
non-negative least squares and signature
matrix derived from Darmanis et al.
(2015) and described in Wang et al.
(2020). We then estimated subject-level
CTS expression for 11 GTEx brain re-
gions, after combining replicates for
frontal cortex and cerebellum: amygdala,
cerebellum, anterior cingulate cortex,
frontal cortex, hippocampus, hypothala-
mus, substantia nigra, caudate, nucleus
accumbens, putamen, and spinal cord.
For each region, gene expressionwas esti-

mated for six cell types: Astro, Endo, ExN, InN, Micro, and Oligo.
The summary statistics of significant (FDR < 0.05) gene-variant pairs
were saved in GitHub folder (https://github.com/randel/
bMIND_GTEx8_signif_region_CTS_eQTLs_cis).

To evaluate the results of eQTL mapping, we first confirmed
that the eQTL analysis P-values were well-calibrated (Fig. 6A; Sup-
plemental Fig. S5) and eQTLswere enrichednear the transcription-
al start site (TSS), as expected (Fig. 6B; Supplemental Fig. S6). Next,
we hypothesized that many of our region-specific CTS eQTLs
would match the GTEx regional analysis of eQTLs using bulk
data (The GTEx Consortium 2020). To make this comparison, we
calculated the fraction of bulk eQTLs per region as detected as re-
gion-specific CTS eQTLs by bMIND (Fig. 6C), noting substantial
concordance in general. In addition, as might be expected, the
eQTL mapping fractions were highly correlated with the average
cell type fraction per region, with a Pearson’s correlation of 0.88.
The high concordance reveals the important role of cell type abun-
dance in bulk data analysis, and both analyses verify the replicabil-
ity of our CTS analysis.

To assess the utility of bMIND’s region-specific CTS eQTLs, we
assessed the connection between ASD genes (Satterstrom et al.
2020) and genes with eQTLs (eGenes). Using pLI score (Lek et al.
2016) as a measure of gene conservation, we first replicated a pre-
vious finding that eQTLs do not tend to occur in very conserved
genes (Lek et al. 2016; Werling et al. 2020). For instance, in ExN
of frontal cortex, the odds ratio of being eGenes and conserved
(pLI ≥ 0.995) was 0.53 (Fisher’s exact test P-value =1.2 ×10−31).
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Figure 6. Region-specific CTS eQTL analysis with GTEx V8 brain data. (A) The QQ-plot of P-values from
eQTL analysis. Here, we show an example of microglia in substantia nigra. (B) The enrichment of signifi-
cant eQTLs near TSS. Here, we present an example of excitatory neurons in the frontal cortex. (C) Fraction
of GTEx brain bulk eQTLs detected as CTS eQTLs in each brain region. (ACC) Anterior cingulate cortex.
(D) The enrichment analysis of ASD genes in region-specific CTS eGenes (genes with eQTLs). The heat-
map color denotes −log10 transformed Benjamini–Hochberg adjusted P-values (Benjamini and
Hochberg 1995) based on two-sided Fisher’s exact tests, and the number represents the odds ratio.
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Because conserved genes were less likely to be eGenes and ASD
genes tended to be very conserved (Satterstrom et al. 2020), it is
reasonable to predict that ASD genes were less likely to be
eGenes. This speculation was verified with enrichment analysis
of ASD genes as eGenes. Curiously, relatively fewer ASD genes
(Satterstrom et al. 2020) were likely to be eGenes in excitatory neu-
rons of the frontal cortex (Fig. 6D), which thus far is themost relat-
ed cell type and brain region associated with autism. In large part,
this pattern emerges because ASD genes tend to have higher ex-
pression levels, as do cortical excitatory neurons, and ASD genes
tend to be highly conserved.

Discussion

We develop a Bayesian algorithm, bMIND, to provide CTS expres-
sion for bulk RNA-seq samples with prior information derived
from scRNA-seq data. This approach addresses the limitation of
bulk RNA-seq, namely, it arises as a convolution of CTS gene ex-
pression profiles, and the limitation of scRNA-seq data, namely,
ample technical noise and a limited number of samples. Yet,
bMIND builds on the unique advantages of each data type, which
include a large sample size of bulk RNA-seq and CTS gene expres-
sion profiles from scRNA-seq. We conduct extensive simulations
to compare bMIND with state-of-the-art methods, demonstrating
that bMIND improves the estimation accuracy and differential
testing power while controlling FDR. Through analysis of CTS
differential expression for brain samples of subjects diagnosed
with ASD or unaffected, as well as a similar design for
Alzheimer’s disease, we show the utility of bMIND to enhance
the understanding of etiology with cell type resolution. Finally,
by analysis of the latest GTEx V8 data using bMIND, we obtain
CTS eQTLs for 11 brain regions. To the best of our knowledge,
this is the most comprehensive brain CTS eQTL resource with
whichwe verify existing findings, andwe believe it will prove valu-
able for numerous studies.

When bMIND was used to determine CTS DEGs from ASD
and control postmortem cortical tissue,most DEGswere identified
in excitatory neurons (Fig. 4). This was also true of an earlier ASD
study (Velmeshev et al. 2019), which used snRNA-seq data to ob-
tain CTS DEGs directly from cortical excitatory neurons and other
cell types. The DEGs from these studies share significantly more
genes than expected by chance. Moreover, bMIND’s CTS DEGs
show significant overlap with the 102 genes implicated in ASD
by a recent exome sequencing study (Satterstrom et al. 2020) and
with a larger curated list of ASD genes (Abrahams et al. 2013).
Finally, GO enrichment analysis of the bMIND CTS DEGs high-
lights exactly the processes ASD researchers have come to expect,
namely, glutamatergic (excitatory) synapse, nervous system devel-
opment, cell projection organization, and neurotransmitter trans-
port. These are consistent themes from enrichment analysis of
genes directly implicated in ASD by genetic studies (Voineagu
et al. 2011; Parikshak et al. 2013; Willsey et al. 2013; De
Rubeis et al. 2014; Gandal et al. 2018a; Polioudakis et al. 2019;
Ruzzo et al. 2019; Satterstrom et al. 2020), with one important ca-
veat. By necessity, individuals cannot be diagnosedwith ASD at an
early age. Thus, all of the postmortem bulk cortical data studied
here come from subjects well past the fetal stage, during which
rapid cell differentiation occurs. Thus, by design, we would
not expect bMIND to capture DEGs from this critical stage of
development. Nonetheless, bMIND’s CTS DEGs identified from
postnatal cortical tissue are consistent with genetic and
neurobiological expectations for ASD, providing strong evidence

for the validity of the individual-level CTS gene expression esti-
mated by bMIND.

Perhaps because this cell type has higher expression levels
and is thus better powered to detect DEGs, most CTS DEGs identi-
fied by bMIND from AD versus control postmortem brain tissue
also derived from excitatory neurons (Fig. 5). These results paral-
leled results from unbiased snRNA-seq data sets contrasting AD
and control cell types, all of which revealed excitatory neurons
as a rich source of DEGs (Grubman et al. 2019; Mathys et al.
2019; Lau et al. 2020). Furthermore, bMIND’s CTS DEGs showed
significant overlapwith a curated list of genes implicated in AD. Al-
though bMIND’s CTS DEGs showed enrichment in synaptic and
neuronal functions, as it did for ASD, the patterns of enrichment
were quite different from those for ASD. For AD, major themes in-
cluded vesicle-mediated transport in the synapse, regulation of ca-
tabolism, and chemical synaptic transmission, whereas other
themes included organelle organization and macro- and autoph-
agy cellular processes. These processes have been implicated by
various AD snRNA-seq studies of DEGs as well (Grubman et al.
2019; Mathys et al. 2019; Srinivasan et al. 2020; Marques-Coelho
et al. 2021). bMIND also identified notable enrichment of CTS
DEGs in astrocytes, highlighting gliogenesis, astrocyte differentia-
tion/development, and glial cell proliferation. It did not, however,
capture some important features of AD identified by snRNA-seq
studies, including altered angiogenesis (Lau et al. 2020), age-differ-
ential microglial patterns of expression (Srinivasan et al. 2020),
and role of oligodendrocytes in pathology (Mathys et al. 2019).
With larger sample sizes and different brain regions sampled, we
would expect that such features will emerge from future bMIND
analyses of bulk gene expression. This raises an important point,
however: bMIND is not a replacement for sc/snRNA-seq studies,
it is a complement to them, providing another window into the
processes underlying AD.

As described in Results, other methods are available for esti-
mating CTS expression and differential testing, but bMIND is
unique in that it provides a flexible tool, capable of seamlessly per-
forming both estimation and testing while incorporating prior in-
formation. In comparison with TCA, our Bayesian estimation
procedure obtains substantiallymore accurate estimates of CTS ex-
pression; our DE testing procedure is different from that in TCA;
our mixed-effects model can naturally incorporate repeated mea-
sures of bulk expression; and the TCA model assumes that the
CTS expression levels are independent across cell types, and our
model allows correlation. Because it is a testing procedure,
CellDMC differs more substantially: it can be only used for differ-
ential testing, but bMIND can also provide sample-level CTS ex-
pression for other downstream analyses; it only allows covariates
that affect bulk data, but bMIND can additionally incorporate co-
variates that affect CTS expression; and it solely relies on bulk ex-
pression data, but bMIND can borrow prior information from sc/
snRNA-seq studies.

In Wang et al. (2020), we introduced MIND to estimate CTS
gene expression frombulk data by exploiting the correlation struc-
ture observed in multiple measures per subject. In contrast,
bMIND incorporates prior information from sc/snRNA-seq data
to circumvent the requirement of repeatedmeasures, which are of-
ten not available. Moreover, bMIND can include covariates in the
model, potentially removing the effects of confounding variables.
Thus, harnessing existing information from both bulk and sc/
snRNA-seq data, bMIND enhances the reproducibility of results
across multiple technical platforms and studies. Indeed, in most
settings, utilizing the prior information from sc/snRNA-seq data
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considerably improves the power and precision of CTSDE analysis,
relative to MIND; however, when sc/snRNA-seq data are not avail-
able and many repeated measures have been sampled, MIND can
obtain superior results because it does not use a non-informative
prior and hence canmore directly capitalize on the available infor-
mation to obtain unbiased results.

Nonetheless, bMIND has limitations. For instance, bMIND
provides more accurate CTS estimates for more abundant cell
types. Thus, in those cell types the CTS differential expression
analysis should be more powerful, all other things being equal.
This issue also applies to the CTS differential expression analysis
using cell-level data from scRNA/snRNA-seq, where cell types
withmore cells/nuclei quantified havemuchmore power to detect
CTSDEGs.Moreworkwill be needed to developmethods sensitive
to less common cell types. In future work, we also plan a Bayesian
approach to account for all sources of variation, such as the varia-
tion involving estimation of cell type fractions. Similar to other
CTS analysis methods (Luo et al. 2020), bMIND is robust to mod-
erate estimation error in cell type fractions. Here, we focus on RNA-
seq data, but the approach for bMIND could also be used for the
analysis of other omics data, such as DNA methylation. We will
pursue this direction in future work.

Evaluation of bMIND is also limited by the resources current-
ly available for validation. Consider, for example, our analyses of
DEG between affected and unaffected subjects. If effect sizes for
DEG were small, as suggested by findings from bulk data (Fromer
et al. 2016; Gandal et al. 2018b), the number of subjects required
to identify DEGs reliably is in the hundreds or thousands. For esti-
mating DEGs from ASD and AD studies, however, cells were taken
from 15 ASD and 16 unaffected subjects (Velmeshev et al. 2019)
and from 24 AD and 24 unaffected subjects (Mathys et al. 2019),
respectively. These studies are powered only to detect very large ef-
fect DEGs. Similar issues exist for sorted cell data. Consequently,
our ability to validate bMIND’s results in real data are hindered un-
til snRNA-seq or sorted cell studies with larger sample sizes are
available.

Note that CTS differential expression analysis is different
from cell type enrichment analysis (Skene and Grant 2016). CTS
differential expression analysis not only links diseases to specific
cell types, but it also deepens the analysis to identify certain dis-
ease-related genes within those cell types. Although it remains a
challenging task, we show the advantage and flexibility of estimat-
ing the virtual CTS expression profile for each bulk RNA-seq sam-
ple. In addition to the improved power to detect CTS DEGs and
eQTLs, sample-level CTS expression enables the development of
coexpression networks specific to certain cell types and other sam-
ple-level analyses.

Methods

Algorithm implementation

We implement the Bayesian mixed-effects models in bMIND with
the MCMCglmm algorithm (Hadfield 2010), which fits a broad
class of Bayesian generalized linear mixed-effects models based
on MCMC approaches. It is flexible to incorporate normal prior
for fixed effects and inverse-Wishart prior for the covariance ma-
trix. As the conjugate prior, the inverse-Wishart prior facilitates es-
timation and allows the incorporation of the prior cell type
covariance matrix estimated from scRNA-seq data explicitly. To
make the computation feasible for all genes in the genome, we an-
alyze one gene each time and run the analysis in parallel. To build a
user-friendly software package, we integrate the following two

steps: estimating cell type fraction andCTS expression.With users’
input of bulk data and either raw scRNA-seq data reference or sig-
nature matrix, we can output both cell type fractions via non-neg-
ative least squares or Bisque (Jew et al. 2020) and CTS expression
via bMIND. When a phenotype is provided, the package will con-
duct CTS DE analysis and output P-values adjusted for multiple
testing.

Alternative CTS differential expression analysis

The output of bMIND is a three-dimensional array (gene × cell
type × sample). With estimated sample-level CTS expression, we
are able to conduct analyses that are previously only available us-
ing bulk RNA-seq data, deepening the analyses from tissue level
to cell type level. Here, we focus on CTS differential expression
(DE) analysis as an example. To control for false discovery rate
(FDR) inCTSDE analysis, wepropose a stringent testing procedure:

• We first conduct the multivariate analysis of variance
(MANOVA) using CTS expression for each gene with respect to
the phenotype of interest and claim a gene as a DEG by
Benjamini–Hochberg adjusted P-values (Benjamini and
Hochberg 1995).

• To find in which cell type a DEG is differentially expressed, we
obtain CTS DE P-values by regressing the phenotype on CTS ex-
pression in that gene.

• A CTS DEG is determined if the CTS DE P-value is the minimal
across cell types in a DEG and less than 0.05/K, where K is the
number of cell types (Guo et al. 2010).

That is, we only detect the top significant signal across cell types
within each gene. Existing snRNA-seq studies of ASD and
Alzheimer’s disease (Mathys et al. 2019; Velmeshev et al. 2019)
support this testing scheme that most (79%–93%) CTS DEGs are
only differentially expressed in a single cell type. The P-values
are calculated with covariates adjusted.

Simulation model of CTS DE testing

We first used estimated cell type fractions (W) for more than 600
samples from ROSMAP data. Then for each gene j=1, …, 1000,
we simulated CTS expression from a0

j � N(0, 0.01I) for controls,
and simulated CTS expression from a1

j � N(d, 0.01I) for cases,
where djk= d denotes the differential effect when gene j is a DEG
in cell type k, and djk=0 if not. There were 200K/3 gene-cell type
pairs that were differentially expressed, where K is the number of
cell types. The disease status y is simulated as binary with a proba-
bility of 0.5. With the error term (ej) and covariates (c (1) and c (2))
generated from standard normal distribution, we simulated the
bulk expression for the jth gene as

xj = I(y = 0) ∗Wa0
j + I(y = 1) ∗Wa1

j + c(1) +Wb ∗ c(2) + ej,

where b is a vector of K×1 with element bk=0.1k representing the
covariate effect on the kth cell type. We explored multiple simula-
tion scenarios by varying the sample size, number of cell types,
and effect size, which is defined as d/sd(X), where X is the bulk
expression.

Data resources and analyses

To identify CTS genes expressed differently between ASD and un-
affected (control) subjects, we analyzed bulk RNA-seq data from
the PsychENCODE UCLA-ASD project (Parikshak et al. 2016), spe-
cifically 167 tissue samples from two cortical regions of 91 subjects
(47 ASD and 44 control subjects). Subjects, who were mostly male
(81%), ranged in age at death from 2 to 67, with 22 being the
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median age. For gene expression profiles specific to cell types, we
used snRNA-seq data from an ASD study (Velmeshev et al. 2019),
which collected 104,559 nuclei from 41 cortical samples taken
from both ASD and control subjects. We also used these snRNA-
seq data to generate realistic bulk data for the simulation studies.
To evaluate the consistency of estimation results, we analyzed
two similar bulk RNA-seq data sets (Parikshak et al. 2016;
Velmeshev et al. 2019).

To identify CTS genes expressed differently between AD and
control subjects, we used bulk RNA-seq data from three resources:
theMayo Clinic data (Allen et al. 2016) with 160 samples from the
temporal cortex; Mount Sinai Brain Bank (MSBB) data (Wang et al.
2018) with 850 bulk samples from four cortical regions (Brodmann
areas 10, 22, 36, and 44); and Religious Order Study and the
Memory and Aging Project (ROSMAP) (Bennett et al. 2018) with
636 samples from the dorsolateral prefrontal cortex. We adopted
a consistent definition for Alzheimer’s disease (Braak score ≥4)
across data sets. We compared our CTS DEGs to those from a
snRNA-seq study (Mathys et al. 2019), which quantified the ex-
pression of 80,660 nuclei from the cortex of 48 subjects. All bulk
RNA-seq and snRNA-seq data included both affected and control
subjects.

Gene expression and genotype data from GTEx samples were
obtained from the NCBI database of Genotypes and Phenotypes
(dbGaP; https://www.ncbi.nlm.nih.gov/gap/) through accession
number phs000424.v8.p2. After estimating subject-level region-
specific CTS expression, we calculated cis-eQTLs for each brain re-
gion and cell type using MatrixEQTL (Shabalin 2012). To be in-
cluded in this analysis, cis SNPs fell within ±1 Mb around each
gene and had minor allele frequency >1%.

Sets of DEGs from both ASD and AD were analyzed for func-
tional effects as determined by Gene Ontology (GO) enrichment
analysis (Raudvere et al. 2019), using threshold FDR Q<0.05. To
capture the major functions of the DEGs obtained from ASD and
from the Mayo study of AD, we analyzed their enriched GO terms
by REVIGO (Supek et al. 2011), which assesses semantic similarity
of GO terms (Schlicker et al. 2006), clusters similar terms, prioritiz-
es more enriched terms for the semantic interpretation, and dis-
plays representative terms for the cluster. For these analyses, we
used a similarity setting of 0.5, which favors shorter and semanti-
cally diverse lists of functions, as well as two default settings:
semantic similarity measure SimRel and the database for GO
term sizes “whole UniProt.” The terms were analyzed by the
online version of REVIGO, which used GO release “go_monthly-
termdb.obo-xml.gz” (January 2017) and UniProt-to-GO mapping
file “goa_UniProt_gcrp.gaf.gz” (March 15, 2017).

Software availability

The R software (R Core Team 2021) package is available as
Supplemental Code and at GitHub (https://github.com/randel/
MIND) with detailed bMIND tutorials.
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