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Recently developed single-cell technologies allow researchers to characterize cell states at ever greater resolution and scale.

Caenorhabditis elegans is a particularly tractable system for studying development, and recent single-cell RNA-seq studies char-

acterized the gene expression patterns for nearly every cell type in the embryo and at the second larval stage (L2). Gene

expression patterns give insight about gene function and into the biochemical state of different cell types; recent advances

in other single-cell genomics technologies can now also characterize the regulatory context of the genome that gives rise to

these gene expression levels at a single-cell resolution. To explore the regulatory DNAof individual cell types in C. elegans, we
collected single-cell chromatin accessibility data using the sci-ATAC-seq assay in L2 larvae to match the available single-cell

RNA-seq data set. By using a novel implementation of the latent Dirichlet allocation algorithm, we identify 37 clusters of

cells that correspond to different cell types in the worm, providing new maps of putative cell type–specific gene regulatory

sites, with promise for better understanding of cellular differentiation and gene regulation.

[Supplemental material is available for this article.]

Critical cellular processes are dependent on fine-tuned control of
gene expression levels. From properly responding to environmen-
tal stimuli to progressing through the stages of development and
differentiation, specific changes in gene expression play an impor-
tant role in facilitating precise changes in cellular state. Recent ad-
vances in single-cell transcriptomics have enabled the massively
parallel measurement of gene expression in individual cells, giving
unprecedented genome-wide insight into which genes are regulat-
ed together in the same cell and into expression dynamics over
time. Determining which genes are important in which cells and
under which conditions is critical to attaining a deeper under-
standing of gene function. However, in order to truly understand
how gene expression reflects and influences cell state, we
must also understand how it is controlled. The nematode
Caenorhabditis elegans is a particularly powerful system in which
to apply single-cell genomics technologies because it has limited
cell numbers that nonetheless form diverse tissue and cell types,
it is very amenable to genetic manipulation, and the developmen-
tal lineage of every cell is known and invariant. In the past few
years, the worm has been the subject of perhaps the most compre-

hensive cell type–specific metazoan gene expression atlas by sin-
gle-cell RNA-seq (scRNA-seq) (Cao et al. 2017; Packer et al. 2019).
These studies of the C. elegans embryo (Packer et al. 2019) and sec-
ond larval stage (L2) (Cao et al. 2017) provide a survey of the full
complement of genes expressed in each major cell type, and
even some cells present only once in the worm (e.g., the ASEL
and ASER gustatory neurons). Now, to understand how these tis-
sue-specific expression patterns arise, we also need to have a simi-
larly comprehensive catalog of regulatory elements to map their
activity in different cell types and at different stages of the life
cycle.

Several efforts have been undertaken to map regulatory DNA
in the worm (Araya et al. 2014; Daugherty et al. 2017; Ho et al.
2017; Jänes et al. 2018; Kudron et al. 2018). Collectively, these
studies have identified tens of thousands of chromatin accessibil-
ity regions and transcription factor (TF) binding sites, using
DNase-seq (Ho et al. 2017), ATAC-seq (Daugherty et al. 2017;
Jänes et al. 2018), and ChIP-seq (Araya et al. 2014; Kudron et al.
2018) to assay developmental stages throughout the worm life cy-
cle. The results show that the activity at many regulatory sites
changes over the worm’s life span. However, the data from all of
these studies are fromwhole worms and thus do not resolve differ-
ences in regulatory activity across cell types. The lack of cell type
resolution is problematic for threemain reasons. First, gene regula-
tion is often highly cell type–specific, and even when different cell
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types express the same gene, they may use different enhancers
or promoters to regulate that gene. In the case of two sites regulat-
ing the same gene in different cell types at the same stage, a whole-
worm chromatin accessibility data set would only show that both
sites are accessible at the same time and would not reveal whether
the sites act in concert in the same cell type or whether they affect
the same gene but act in different cell types. Distinguishing be-
tween these cases is critical for understanding and modeling
gene regulation. The second reason is that whole-worm data may
lack the sensitivity to detect regulatory events that occur in cell
types that make up small fractions of the whole worm. scRNA-
seq data (Cao et al. 2017; Packer et al. 2019) reveal important dif-
ferences in gene expression that distinguish even individual cells.
Such differences are presumably driven in part by regulatory re-
gions that are only accessible in those cells; in awhole-wormassay,
the signal from these highly cell type–specific regions could be
drowned out by the noise generated from more populous cell
types. Third, the lack of cell type resolution on these regulatory
DNAmaps confounds our ability to draw conclusions about differ-
ential activity across development. During development, the num-
ber of cells, andwith it the diversity and proportion of cell types, is
constantly changing. Thus, if an accessible site is less prominent in
a later larval stage compared with an embryonic stage, this change
could mean the site is more accessible in embryogenesis than in
later development, or it could reflect that the site is more special-
ized in later stages and is accessible in a smaller fraction of the cells.
Given these important limitations in the available data on C. ele-
gans gene regulation, we sought to generate cell type–resolved
chromatin accessibility maps.

Over the past few years, the technology to collect chromatin
accessibility profiles of single cells has improved greatly. This tech-
nology relies on the assay for transposase-accessible chromatin fol-
lowed by high-throughput sequencing (ATAC-seq) (Buenrostro
et al. 2013), which treats permeabilized nuclei with a hyperactive
Tn5 transposome from prokaryotes (Adey et al. 2010) to simulta-
neously cut accessible sites in the genome and ligate sequencing
adapters onto the fragment ends on either side of the cut site (a re-
action referred to as “tagmentation”). The resulting library is then
amplified and sequenced. The simplicity of the assay significantly
reduces the requirements for input material compared with
DNase-seq (Song and Crawford 2010), and protocols have adapted
ATAC-seq to work on single cells (Buenrostro et al. 2015;
Cusanovich et al. 2015; Chen et al. 2018). These and other studies
have shown in multiple systems that single-cell ATAC-seq
(scATAC-seq) can measure thousands of sites per cell type and
can identify distinct cell populations with high sensitivity. The
use of the single-cell combinatorial indexing variant of single-
cell ATAC-seq (sci-ATAC-seq) permits the cost-effective capture of
scATAC-seq data. This assay probabilistically identifies DNA frag-
ments isolated from single cells by first sorting 2500 nuclei per
well into a 96-well plate, treating the nuclei in each well with a
Tn5 enzyme loaded with adapters that contain a unique barcode
sequence, and then pooling and re-sorting 25 nuclei per well
into new 96-well plates in which a second set of barcodes is incor-
porated by usingwell-specific primers during library amplification.
After sequencing, the reads can be assigned to a particular cell
based on their combination of Tn5 and PCR barcodes. The sci-
ATAC-seq assay has been successfully leveraged in several previous
studies, including the identification of differences in gene regula-
tion across germ layers in Drosophila embryogenesis (Cusanovich
et al. 2018b), the generation of an atlas of 85 different clusters of
cells from 13 different mouse tissues (Cusanovich et al. 2018a),

and the identification of cell types in hippocampal tissue from
mice (Sinnamon et al. 2019).

Here we sought to obtain a comprehensive cell type–resolved
map of the regulatory DNA in a whole metazoan, the nematode
C. elegans. We collected single-cell chromatin accessibility data
from tens of thousands of nuclei (hereafter referred to as cells for
simplicity) isolated from L2 animals to match previously published
scRNA-seq data (Cao et al. 2017). To contend with the sparsity of
single-cell chromatin accessibility data and to reduce dimensional-
ity, we implemented an improved latent Dirichlet allocation
(LDA) model (Blei et al. 2003; Griffiths and Steyvers 2004) that
can scale to tens of thousands of cells by parallelizing the training
process acrossmultiple cores, a feature that was unavailable in a pre-
viously published LDA implementation for single-cell analysis
(González-Blas et al. 2019). By training LDA models on our
scATAC-seq data and analyzing the results in conjunction with
the L2 sci-RNA-seq expression data (Cao et al. 2017), we were able
to identify the tissue, and even cell type origins, of the cells. We
compared ourmaps of chromatin accessibilitywith those fromprior
studies of accessible chromatin in whole animals, both to validate
our results and to determine which sites were novel to our data.
Finally, we assessed whether genes expressed broadly across tissues
might nevertheless showmultiple, more cell type–specific regulato-
ry patterns, for example, by having tissue-specific accessible sites at
alternative 5′ ends.We anticipate that these datawill provide a valu-
able resource for studying regulatory biology in the worm and set
the stage for future scATAC-seq experiments on additional life stag-
es. In conjunction with cell type–specific gene expression data,
these maps of candidate regulatory regions will help reveal the
gene regulatory networks driving development in C. elegans.

Results

Single-cell chromatin accessibility in C. elegans with sci-ATAC-seq

To match the sci-RNA-seq data, we grew a synchronized popula-
tion of wild-type worms to the middle of L2. At this stage, about
700 of the 959 somatic cells in the adult hermaphrodite have
been produced, and the vastmajority are terminally differentiated,
but the development of the gonad has not progressed far enough
to begin producing the thousands of germline nuclei that at later
developmental stages would severely bias our collection of tissue
types. After harvesting theworms,we fixed and isolated the nuclei,
froze them in aliquots, and used these wild-type nuclei as input to
the sci-ATAC-seq (Cusanovich et al. 2015, 2018a,b). We collected
sci-ATAC-seq data for 30,930 cells with at least 150 unique reads
per cell (median, 672 reads per cell), which represents ∼40× sam-
pling of each cell in the L2 worm (Supplemental Fig. S1). Note
that we expect thousands of genes to be expressed per cell, and
thus, at amedian of 672 reads per cell, we are only sampling a small
fraction of the accessible regulatory sites in any given cell.

The postsequencing pipeline consists of aligning the paired-
end reads to the WS235/ce11 version of the C. elegans genome
and identifying cut sites as the 60-bp regions centered on the
ends of the DNA fragments defined by the mapped mate pairs
(for details, see Methods). Next, we identified which loci were ac-
cessible in each of our cells. There exists no unbiased annotation
of cell type–resolved regulatory regions in C. elegans, so we called
peaks directly from the sci-ATAC-seq data in an iterative fashion
(Fig. 1A). The first step was to call peaks with MACS2 (Zhang
et al. 2008) using all of the reads together, as with a bulk ATAC-
seq data set. To detect additional cell type–specific peaks that could
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be obscured by the background reads coming from themost abun-
dant cell types in this complex cell mixture, we clustered the cells
based on the output of the LDA modeling technique (Blei et al.
2003) using the bulk peaks, pooled the cut sites from the cells in
each cluster, and called peaks for each cluster using MACS2 (Fig.
1B, primary LDA). Finally, in order to refine our peak set, we repeat-
ed the clustering, pooling, and peak calling once more (Fig. 1B, re-
finement LDA).

Each peak-calling iteration centers aroundmodeling the peak
distribution in individual cells, as represented by a cells-by-peaks
matrix containing binary values indicating whether or not a cell
reports a read overlapping a particular peak. This binary matrix is
input into LDA, a Bayesianmodeling approach that was originally
developed in the field of semantic analysis of text documents and
has recently been used to model single-cell genomics data (Dey
et al. 2017; González-Blas et al. 2019; Kim et al. 2020). We discuss
this modeling approach in detail below and in the Methods. After
our iterative clustering and peak calling procedure, we postpro-
cessed the merged peaks from the refinement LDA step by detect-
ing local maxima (summits) in the signal over each peak and
splitting any peaks with multiple summits into separate contigu-
ous segments. This step splits wide peaks to better capture accessi-
ble regions that may contain multiple binding sites. We share
the pipeline output in a UCSC track hub, which can be accessed
at the following URL: http://genome.ucsc.edu/cgi-bin/hgTracks?
db=ce11&hubClear=http://waterston.gs.washington.edu/atacTissue
/Durham_hub.txt.

Single-cell peaks are concordant with regulatory regions from

published bulk chromatin assays

After applying our iterative peak calling procedure, the whole-
worm refinement LDA (Fig. 1) identified 36,339 peak regions,

and splitting the multisummit peaks resulted in a total of 38,017
peaks. To compare our peak calls to other maps of regulatory
DNA in C. elegans, we intersected our regions with peaks from two
other data sets: bulk, whole-worm ATAC-seq data from samples
spanning the C. elegans life cycle (Jänes et al. 2018), and TF bind-
ing site peaks identified from 427 whole-worm TF ChIP-seq data
sets from the modERN Consortium (Fig. 2; Kudron et al. 2018).

We find good overlap with both published data sets but also
some differences (Fig. 2A). First, intersecting the sci-ATAC-seq
peaks with the bulk ATAC-seq data set shows 25,675 peaks of
38,017 (∼66%) overlapping a bulk ATAC-seq site overall. This frac-
tion is significantly greater than expected by chance (Fisher’s exact
test P=0), because the sci-ATAC-seq peaks cover 20,234,260 bp in
total (∼20.2% of the genome), and the bulk ATAC-seq peaks cover
6,376,655 bp (∼6.4% of the genome). About 50% (12,960) of the
overlaps were with bulk ATAC-seq sites classified as enhancers
(Jänes et al. 2018), ∼40% (10,219) were with sites classified as pro-
moters, and 10% (2496) were with other kinds of sites (e.g., non-
coding RNAs). We find more extensive overlap with TF ChIP-seq
sites; 30,886 of the 38,017 sci-ATAC-seq peaks (∼81%) overlap TF
ChIP-seq peaks from modERN (Fig. 2A). The ChIP TF peaks cover
23,225,218 bp (∼23.2% of the genome), and similarly to the
bulk ATAC-seq overlaps, the number of TF ChIP-seq peak overlaps
is highly significant (Fisher’s exact test P=0).

Looking at the data from the opposite perspective (Fig. 2B), al-
most three-quarters of bulk ATAC-seq sites overlap a sci-ATAC-seq
peak (29,021 of 42,102,∼69%), and these overlaps are fairly evenly
split between sites classified as promoters (10,684 of 13,833,
∼77%) and enhancers (13,715 of 19,195, ∼71%), with the remain-
ing overlaps (4622 of 9,074, ∼51%) involving other categories of
regulatory elements. In the case of the modERN TF sites, we find
that the majority overlap a sci-ATAC-seq peak (23,863 of 41,542,
∼57%). Most of the ChIP-seq sites that do not overlap a sci-

B

A

Figure 1. An iterative peak calling procedure yields more peaks from the complexmix of worm cell types. (A) The core peak calling procedure is to model
the data using latent Dirichlet allocation (LDA), cluster the cells, and call peaks based on the clusters. (B) A flow chart represents the overall peak-calling
strategy. First, bulk peaks are called, followed by two iterations of clustering and peak calling based on an LDA model. Then, we group the cells by tissue
and repeat the two steps of clustering and peak calling. The number of cells included and the number of peaks called at each step are given in the inset table.
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ATAC-seq peak are “singletons” that were only observed in one of
the 427 ChIP-seq data sets (13,579 of 17,679,∼77%). Because both
the bulk ATAC-seq data set and the TF ChIP-seq data set contain
data derived from across C. elegans development, we reasoned
that many of the sites with no overlap in our sci-ATAC-seq peaks
are specific to other developmental stages than L2. In support of
this hypothesis, we find that the set of ChIP-seq sites that overlap
sci-ATAC-seq peaks is enriched for those found in larval samples,
especially L2, and depleted for sites observed in the embryo and
young adult (Fig. 2C). We find similar results for the bulk ATAC-
seq sites (Supplemental Fig. S2A), and the enrichment for TF
ChIP-seq sites from L2 is even higher when only considering the
singleton ChIP-seq sites (Supplemental Fig. S2B). Of the 18,543
singleton TF ChIP-seq sites that do not overlap a sci-ATAC-seq
peak, only 929 (∼5%) are from data sets collected in L2.

We also checked the ChIP-seq signal over our sci-ATAC-seq
peaks for four histone modifications (Jänes et al. 2018). The sci-
ATAC-seq peaks are enriched for signal from the two activating his-
tone marks H3K4me3 and H3K4me1, uncorrelated with signal
from the H3K36me3 histone mark associated with actively tran-
scribed gene bodies, and depleted for signal from the repressive
histone mark H3K27me3 (Supplemental Fig. S3).

LDAmodeling reveals 37 clusters of cells

To interpret our data at the level of tissues
and cell types, we applied LDA (Blei et al.
2003), a statistical modeling technique
that is particularly well suited to finding
patterns in the sparse data generated
by single-cell genomics assays (Fig. 3A).
LDA has been applied previously to
analyze single-cell chromatin accessibili-
ty (González-Blas et al. 2019), single-cell
chromatin conformation (Kim et al.
2020), and single-cell gene expression
data (Dey et al. 2017). LDA is a generative
Bayesianmodeling approach thatwas de-
veloped in the context of document clas-
sification. In the document classification
task, the model is trained to identify in-
formation-rich words in a document cor-
pus and to associate those words with
latent topics that can distinguish the
documents. The output consists of two
matrices: one that captures the probabil-
ity distribution of each topic over all
words, and another that captures the
probability distribution of each docu-
ment over all topics. Thus, each topic is
defined as some combination of words,
and each document is modeled with
some combination of topics based on
its word content.

When applied to scATAC-seq data,
cells are treated as documents, and peaks
are treated as words. The model learns
the peaks associated with latent “regula-
tory topics” that capture patterns that
discriminate among regulatory states
and cell types. The output consists of
twomatrices: one representing the distri-
bution of peaks over topics, and another

representing the distribution of topics over cells. A key advantage
of LDA in this setting is that it handles sparse data quite well and
leverages information from all cells at once to assign peaks to top-
ics and all peaks at once to assign topics to cells.

We trained an LDAmodel with 55 topics, choosing 55 topics
based on a fivefold cross-validation hyperparameter search proce-
dure (see Methods) (Supplemental Fig. S4). This model yielded a
cells-by-topics matrix with 30,870 rows (one for each cell after fil-
tering out cells with too few peaks detected) and 55 columns, as
well as a peaks-by-topics matrix with 32,214 rows (one for each
peak after filtering out outlier high- and low-coverage peaks) and
55 columns (Fig. 3A). (Note that in the text, we transpose the top-
ics-by-peaks matrix and refer to it as the peaks-by-topics matrix for
consistency with the cells-by-topics matrix.) We expected that dif-
ferences in chromatin accessibility among cell types would be the
largest source of covariation in the data and, thus, that therewould
be many topics that corresponded to distinct cell types.

To look for topics thatmight distinguish cell types, we first re-
moved 15 topics that did not have a high probability in any subset
of tightly grouped cells (Methods) (Supplemental Fig. S5). Next, we
assigned cells with >50% probability for one of the 40 remaining
topics to “topic clusters.” For any topic cluster with fewer than

BA
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Figure 2. The peaks called from sci-ATAC-seq data show substantial overlap with existing chromatin
data collected from whole worms. (A) The majority of sci-ATAC-seq peaks overlap sites called in the tran-
scription factor (TF) ChIP-seq peaks from modERN or the bulk ATAC-seq peaks from Jänes et al. (2018).
(B) Peaks from the other data sets also show substantial overlap with sci-ATAC-seq peaks. Most of the
ChIP-seq TF peaks that do not overlap a sci-ATAC-seq peak are singleton peaks that are only found in
a single experiment. (C) Breaking out the ChIP-seq peak overlaps by the developmental stage of the
worms assayed and comparing the distribution across stages of the peaks with overlaps compared
with the stage distribution for randomly selected ChIP-seq peaks show an enrichment for peaks found
in larval stage L2. Error bars, 95% confidence interval.
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150 cells, we assigned unassigned cells (i.e., that had <50% proba-
bility for all topics) from the periphery based on their proximity to
the centroid of that topic cluster.We removed three topics that still
had fewer than 50 cells because theywould have too little coverage
for peak calling. Thus, by using this procedure, we assigned a total
of 24,503 cells to 37 topic clusters for further analysis. We report
the cells-by-topics matrix in Figure 3B and the number of cells
per topic in Table 1. We describe how we assigned cell types to
these topic clusters in the ensuing sections.

Visualizing these clusters with uniformmanifold approxima-
tion and projection (UMAP) (McInnes et al. 2018; Becht et al.
2019) shows clear separation among groups of cells (Fig. 3C). We
also note that, although we focus on the 37 topics that drive our
cell clusters, the remaining topics could still contain useful infor-
mation. Some topics with high probability in too few cells to be
used for clustering may characterize cell types that are rare or
that were less successfully isolated. In addition, topics with more
diffuse probability across cells could correspond to other phenom-
ena, for example, to different kinds of regulatory activity (e.g., pro-
moters or enhancers) (González-Blas et al. 2019), cells with more
complex patterns of regulatory activity, cells with noisy signal,
or cell types with insufficient signal to be confidently clustered.

Topics correspond to specific tissue identities

After clustering our cells based on 37 topics, we sought to deter-
mine whether these clusters of cells represent different cell types.

As with other dimensionality reduction techniques (e.g., principal
component analysis), LDA is an unsupervised algorithm with no
restrictions on what qualities of the data it uses to determine the
topics, and interpretation of the topics can be challenging.

Oneway to assess whether the topics show some tissue specif-
icity is by cross-referencing the sci-ATAC-seq peaks with what is
known about those loci in the literature, similarly to how marker
genes are identified for clusters in scRNA-seq data (Cao et al.
2017; Packer et al. 2019). In the absence of broad data sets for
cell-specific regulatory elements, we began by looking for overlap
of the ATAC-seq peaks for each topic with the ChIP-seq peaks
from cell type–specific TFs. For each of the 37 topics that we
used to cluster the cells, we found all peaks in the peaks-by-topics
matrix with probability greater than zero for that topic and over-
lapped them with all available ChIP-seq peaks from sites found
in 40 or fewer other ChIP-seq data sets (i.e., non-high-occupan-
cy-target [non-HOT] sites) (Kudron et al. 2018) for three TFs with
known cell type–specific expression patterns: HLH-1, a master reg-
ulator for body wall muscle (Krause et al. 1990); ELT-1, a master
regulator for hypodermis in embryos and seam cells in L2 larvae
(Page et al. 1997); and ELT-2, a TF important in intestine develop-
ment (Fukushige et al. 1998). We compared the number of over-
laps in each topic to the number we would expect if the overlaps
were random (i.e., if topics were not cell type–specific), and we ex-
pressed this comparison as a log2 ratio between observed and ran-
dom overlap counts (Fig. 4). We find topics with specific
enrichment for overlaps with peaks from each TF (95% confidence
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Figure 3. LDA modeling yields 37 major cell clusters that are characterized mostly by a single topic each. (A) LDA modeling learns latent topics that ex-
plain the data and return two matrices, here designated P and C. Matrix P, referred to in the text as the peaks-by-topics matrix, captures the probability
distribution of each topic over all peaks, whereas matrix C, referred to in the text as the cells-by-topics matrix, captures the probability distribution of each
cell over all topics. (B) Heatmap showing the normalized Cmatrix values for the 37 topics associated with clusters; this plot highlights that most cells have
probability concentrated in one or a few topics. Cell types determined for the topics based on analysis of the P matrix are annotated on the left, and the
number of peaks per cell is shown to the right. (C ) UMAP embedding of the Cmatrix colored to indicate the 37 cell clusters. Any cells that are not assigned to
a cluster are plotted as small gray dots and are mostly found on the periphery of the clusters.
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intervals are provided in Fig. 4). Peaks that characterize topics 37
and 40 are most enriched for overlaps with HLH-1 sites; peaks
for topics 9, 10, 25, and 46 are particularly enriched for overlaps
with ELT-1 sites; and peaks for topics 13, 23, 47, and 51 are most

enriched for overlaps with ELT-2 sites. This analysis suggests that
at least some of the topics are representing different tissues and
that the cells enriched in topics characterized bymany peaks over-
lapping HLH-1, ELT-1, and ELT-2 sites are likely muscle, hypoder-
mis, and intestine cells, respectively. We show the same overlap
analysis for all 283 TFs in Supplemental Figure S6.

Encouraged by the analysis of overlaps with ChIP-seq data
from cell type–specific TFs, we sought to leverage the L2 sci-
RNA-seq data (Cao et al. 2017) to do a more comprehensive anal-
ysis of all 37 topics. To do this, wemapped the sci-ATAC-seq peaks
to the nearest downstream exon within 1200 bp, thereby account-
ing for peaks at alternative promoters and within introns.
Assigning regulatory regions to their nearest gene is a simple and
commonly used heuristic that works well in C. elegans (Araya
et al. 2014). In contrast to mammals and other more complex an-
imals (Pliner et al. 2018), there is little evidence that regulation by
distal sites plays a prominent role in C. elegans (Reinke et al. 2013).
Furthermore, the C. elegans genome is compact and gene-dense,
meaning that most regulatory sites are found close to genes, either
in intergenic sequences or in introns (Reinke et al. 2013). In total,
wewere able to assign 19,532 peaks of our 36,339 total peak calls to
17,389 genes. The number of genes we associate with accessible re-
gions is higher than the number of genes known to be expressed in
L2 worms (Boeck et al. 2016; Cao et al. 2017). There are several
technical reasons for this, as well as potential biological reasons,
including sites that play repressive roles, persistent sites from
earlier developmental stages, or sites that are poised for later
expression.

With these caveats, we used these peak–gene assignments
with their associated expression patterns to associate genes with
topics and thereby infer whether or not the topics are clustering
cells by tissue type. For each topic, we identified the top 250
most topic-specific peaks (Supplemental Fig. S7) along with the
set of genes thatwere associatedwith these peaks fromour analysis
above. Based on the normalized sci-RNA-seq expression values for
each gene for 27 tissue types (http://genome.sfu.ca/gexplore/
gexplore_search_tissues.html), we derived a tissue expression dis-
tribution for each gene. For each topic, we computed themean tis-
sue expression distribution for the genes associated with the top
250 most topic-specific peaks and then calculated the log2 ratio
of that to themean tissue expression distribution of 250 randomly
selected genes (for an example schematic, see Supplemental Fig.
S8). Our results show that these topic-specific peaks are near genes
with tissue-specific expression patterns and suggest that these top-
ics reflect specific cell types (Fig. 5; Supplemental Fig. S9). In fact,
the genes associated withmany of the topics show evidence of en-
richment for tissue subtypes, including distinct kinds of neurons
andhypodermis, and even some small but clearly distinct cell pop-
ulations, such as sexmyoblasts. At this resolution, there appears to
be no distinction between body wall muscle and intestinal/rectal
muscle (topic 40 encompasses both), and it is not possible in all
cases to assign a subtype to topics enriched in neuronal genes
(e.g., in topic 38).

Overall, we find reasonable agreement between the number
of nuclei we observe in our tissue clusters and the number of nuclei
we expect based on the worm anatomy (Table 1; Sulston and
Horvitz 1977; Altun and Hall 2002, 2009). During L2, the number
of nuclei in each worm increases from 674 to more than 731, and
our synchronized worm culture likely sampled worms over several
hours of development. One of the most dynamic tissues in this
time is the gonad, as the germline begins mitotic divisions in early
L2. Indeed, topic 24 (enriched for germline) adds nearly triple the

Table 1. Results of the iterative LDA procedure, with the number of
cells assigned to each topic cluster, the tissue assignment, and the per-
centage of all 24,503 cells that were assigned to a topic cluster, along
with the predicted fraction of nuclei based on the known L2 cell
composition

Tissue
assignment

Topic
number

Number
of nuclei

Percentage
of nuclei

L2
nuclei
count

L2
nuclei
percent

Coelomocyte 4 286 1.2%
Total 286 1.2% 6 0.8%

Glia 12 321 1.3%
21 663 2.7%
27 421 1.7%
31 166 0.7%
Total 1571 6.4% 64 8.8%

Gonad 7 360 1.5%
24 1653 6.7%
36 171 0.7%
48 114 0.5%
Total 2298 9.4% 12a 1.6%

Hypodermis 1 2588 10.6%
9 146 0.6%
10 416 1.7%
17 681 2.8%
25 1631 6.7%
30 80 0.3%
41 150 0.6%
43 468 1.9%
46 216 0.9%
Total 6376 26.1% 143b 19.6%

Intestine 13 155 0.6%
23 286 1.2%
47 106 0.4%
51 4422 18.0%
Total 4969 20.2% 42c 5.7%

Muscle 40 2328 9.5%
Total 2328 9.5% 100 13.7%

Neuron 0 615 2.5%
6 405 1.7%
14 696 2.8%
15 712 2.9%
16 406 1.7%
18 141 0.6%
19 218 0.9%
32 1095 4.5%
33 247 1.0%
38 981 4.0%
45 399 1.6%
Total 5915 24.2% 282 38.6%

Pharynx 35 238 1.0%
53 378 1.5%
Total 616 2.5% 80 10.9%

Sex myoblast 37 144 0.6%
Total 144 0.6% 2 0.3%

aThere are 12 somatic gonad cells at L2, plus a rapidly growing number
of mitotically dividing germ cells (see text).
bThe hypodermis is composed of 13 hyp cells, nine of which are syncy-
tial cells, and 16 seam cells. The number reported in the table is the
number of nuclei in the hyp syncytium and seam cells at L2.
cThe 20 intestinal cells at L2 are polyploid, and some are multinucleate.
Thus, these 20 cells have 34 nuclei with an 8N DNA content. Consistent
with the latter, the identified intestine cells have a much higher read cov-
erage on average, facilitating their identification (Fig. 3B). The intestine
count reported in the table also includes an additional eight diploid
nuclei found in the intestinal valve cells.
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number of nuclei to the gonad total as the other (somatic) gonad
topics combined.

After identifying cell types associated with our topics, we re-
visited the list of peaks that had no overlap with TF ChIP-seq sites
and looked for differences between those with overlaps and those
without (Fig. 6). In general, most peaks contribute to primarily one
topic with appreciable contributions to a few additional topics.
The peaks that overlap TF ChIP-seq sites (Fig. 6A) tend to be found
in many more cells in the L2 animal than the peaks without TF
ChIP-seq overlaps (Fig. 6B). Nevertheless, the peaks without
ChIP-seq overlaps still show clear topic specificity, suggesting
that they are informative peaks. In particular, over half of the peaks
with no ChIP-seq overlaps contribute to neuron or gonad topics.
Neurons are the most diverse tissue type in the worm, with
scRNA-seq capable of identifying transcriptional signatures consis-
tent with specific neuron cells (Packer et al. 2019); their absence in
the ChIP-seq data suggests that whole-worm ChIP-seq lacks the
sensitivity to find the cell type–specific regulatory sites present
in only a few L2 cells. On the other hand, TFs for gonad tissues
are not well characterized by the current modERN ChIP-seq com-
pendium. In support of the increased sensitivity of sci-ATAC-seq
over bulk whole-worm assays, we find that the top 250 most-spe-
cific peaks for each topic that we used to infer the cell types of
our topic clusters (Fig. 5; Supplemental Fig. S7) are depleted for
overlaps with TF ChIP-seq sites and bulk ATAC-seq sites
(Supplemental Fig. S10). Thus, we conclude that the sci-ATAC-
seq peaks that do not overlap TF ChIP-seq sites most likely either
are highly cell type–specific or are specific to TFs that have not
yet been tested with ChIP-seq.

We also investigated the sci-ATAC-seq signal at known tissue-
specific genes, and we find strong tissue-specific chromatin acces-
sibility that is consistent with the known expression patterns of

these genes (Fig. 7). The genes hlh-1,
pha-4 (a master regulator of pharyngeal
tissue), elt-1, col-160 (a collagen gene
that is expressed in nonseam hypoder-
mis in L2), bbs-8 (a gene encoding a re-
ceptor expressed in ciliated sensory and
oxygen sensory neurons), unc-47 (a
gene expressed in GABA-ergic neurons),
elt-2, T02B11.3 (a gene that is specifically
expressed in sheath glial cells), and glh-1
(a gene expressed specifically in the
germline) all show accessibility enriched
in the expected tissue types. The data
also suggest patterns of differential iso-
form expression; for example, of the
three pha-4 isoforms, the 5′ end of the
long isoform is most accessible in intes-
tine cells, whereas the 5′ end of a medi-
um isoform has almost no accessibility,
and the shortest isoform has pharyngeal
accessibility. There are also several sites
downstream from the pha-4 gene that
are strongly accessible in the pharynx
and perhaps represent other sites that
play a role in regulation of this locus.

Given the isoform-specific accessi-
bility pattern over the pha-4 locus, we
asked whether this is a more general phe-
nomenon and searched for other genes
that show similar patterns. Many genes,

both with and without multiple 5′ ends, are broadly expressed
and show complicated patterns of chromatin accessibility in the
sci-ATAC-seq data that suggest the presence of tissue-specific regu-
latory sites but that can be difficult to interpret (Supplemental Fig.
S11; Supplemental Table 1). To maximize interpretability, we
searched for genes with multiple 5′ ends separated by at least
150 bp that are predominantly expressed in just two tissue types.
We found dozens of examples of genes with compelling patterns
of tissue-specific chromatin accessibility that suggest tissue-specif-
ic isoform usage (Supplemental Note 1). We compared the sci-
ATAC-seq signal at these loci with bulk whole-transcript RNA-seq
data from FACS-isolated embryonic tissues (Warner et al. 2019)
and, despite the differences in stages assayed, find that in many
cases the tissue-specific isoform patterns in the sci-ATAC-seq
data are supported by the RNA-seq data (Supplemental Fig. S12).

LDA modeling of cells from individual tissue types detects fine-

grained cell types

Although the topics we identified can distinguish cells at the level
of tissue type, to yield more specific cell identities, we tried a more
focused analysis of cells from a particular cluster/tissue. We reran
our LDA-based clustering procedure (Fig. 1; Supplemental Fig.
S13) for cells of each tissue type to identify subclusters that corre-
spond to more fine-grained cell types. We grouped the topics into
eight major tissue types (coelomocyte, glia, gonad, hypodermis,
intestine, muscle, neuron, and pharynx) and iteratively trained
LDA models for each tissue, clustered the cells, and called peaks for
each cluster. Similarly to thewhole-wormanalysis, we provide the re-
sults as a UCSC Genome Browser track hub, viewable at http://
genome.ucsc.edu/cgi-bin/hgTracks?db=ce11&hubClear=http://wate
rston.gs.washington.edu/atacCellType/Durham_hub.txt.

Figure 4. Overlapping peaks important for each topic with ChIP-seq peaks collected from cell type–
specific TFs suggests at least some topics represent tissue types. Peaks associated with each topic were
overlapped with ChIP-seq peaks for three cell type–specific TFs: HLH-1, which is specific for muscle
(top); ELT-1, which is specific for seam cells (middle); and ELT-2, which is specific for the intestine (bottom).
Topic distributions for peaks with ChIP-seq site overlaps were compared with the topic distribution for
randomly sampled peaks, and the results are plotted here as the log2 ratio of the overlap topic distribution
to the random topic distribution. Error bars, 95% confidence interval for 100 random samples.
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Body wall muscle cells are quite similar to each other, despite
differentiating from four different embryonic lineages. In previous
scRNA-seq studies, the body wall muscle cells all clustered togeth-
er, without much separation (Cao et al. 2017; Packer et al. 2019).
Nevertheless, within the body wall muscle cluster, the cells were
found to group by anatomical position, setting up an anterior–pos-
terior axis through the cluster thatwas identified by looking for the
expression of specific marker genes. Similarly, the intestine cells
showed evidence of expression differences in sci-RNA-seq by
anatomical position. We looked for a similar anatomical pattern
in the sci-ATAC-seq muscle and intestinal cell clusters (Fig. 8;
Supplemental Figs. S14, S15).We found cells with peaks associated
with marker genes that are expressed throughout muscle (hlh-1
and myo-3) and intestine (end-1 and elt-2) distributed throughout
the clusters (Fig. 8A), whereas those cells with peaks associated
with marker genes with anatomically biased expression showed
distinct patterns (Fig. 8B). The subclustering thus appears to reveal
still finer distinctions between cells.

Next, we performed a similar analysis on all cells from neu-
ron-enriched clusters. Although the tissue type categories based

on the L2 sci-RNA-seq data (Cao et al. 2017) already break gene
expression distributions down into nine different neuronal sub-
types, there are many more specific neuron types revealed by an-
atomical analysis and by additional scRNA-seq data sets (Fig. 5;
Packer et al. 2019; Taylor et al. 2019). To take a closer look at
the neuron cells, we gathered all cells from topic clusters showing
neuronal enrichment and performed the same analysis that we
did for body wall muscle and the intestine above. The neuron
LDA model yielded 36 topic clusters—only one fewer than the
number of clusters found by the whole-worm model, highlight-
ing the diversity of neuronal cell types. We evaluated five marker
genes that we chose for their tissue-specific expression patterns in
the sci-RNA-seq data: bbs-8 is expressed in ciliated sensory neu-
rons; gcy-32 is expressed in oxygen sensory neurons; unc-30 is ex-
pressed in GABA-ergic neurons; mec-7 is expressed in touch-
sensitive neurons; and ceh-24 is expressed in cholinergic neurons.
We find that the cells with chromatin accessibility near these
genes are associated with distinct, well-separated clusters in
UMAP space (Fig. 9A), suggesting cell type identities for these
clusters.

Figure 5. Topic-specific peaks tend to be near tissue-specific genes. Peaks associatedwith each topic weremapped to the nearest downstreamgene, and
the tissue expression distribution of the genes near the top 250 most-specific peaks for each topic was compared with the tissue expression distribution of
250 randomly selected genes. Here we plot the results as the log2 ratio of the topic-associated tissue expression distribution to that of randomly selected
genes. Error bars, 95% confidence interval after comparing to the tissue expression distribution of 100 random samples. LDA topic numbers are shown in
the bottom right corner of each plot. Topics with similar tissue-specificity patterns are grouped together, and the tissue type names and colors are as in Cao
et al. (2017). Tissue assignments weremade by eye based on the tissue withmaximal fold-change and arewritten in the bottom left corner of each plot. If no
single tissue was clearly the maximum, then amore general tissue annotation was chosen (e.g., “neurons” for topic 38). These annotationsmay need to be
revisited with new data. Note that for concise visualization in this figure, we display just 20 of our 37 topics, but we report a version of this figure with all 37
topics in Supplemental Figure S9. All plots have the same y-axis range, from a log2 ratio of −4.5 to 4.0.
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To verify the neuron subtypes identified by single marker
genes and also attempt to identify additional subtypes for the oth-
er clusters of cells, we followed up by checking additional marker
genes for specific neurons (Fig. 9B). The ASE neurons are a pair
of ciliated chemosensory neurons that detect water-soluble attrac-
tants like potassium and sodium ions. They express bbs-8, along
with a highly specific repertoire of guanylyl cyclase (gcy) genes
that encode sensory receptors.

We found chromatin accessibility peaks near six such recep-
tor genes specific to ASE neurons: gcy-4, gcy-5, gcy-6, gcy-7, gcy-
14, and gcy-22 (Etchberger et al. 2009). To identify the ASE neurons
in the UMAP, we colored cells by the number of coaccessible peaks
they have that are near the ASE-specific gcy genes, which identifies
one of the bbs-8 subclusters as likely to be ASE neurons. We per-
formed a similar analysis to confirm the UMAP cluster containing
the AQR, PQR, and URX oxygen-sensory neurons. Oxygen-sen-
sory neurons express their own repertoire of gcy genes, including
gcy-32, gcy-35, gcy-36, and gcy-37 (Packer et al. 2019), and peaks
near these genes are coaccessible primarily in the cells marked by
gcy-32 in Figure 9A. We identified additional examples of neuron
subtypes, includingmechanosensory neurons, two types of motor
neurons, and interneurons (Supplemental Fig. S16). We show the
neuron UMAP colored by LDA topic probabilities in Supplemental
Figures S17 through S20. Finally,we also subclustered coelomocyte
(Supplemental Figs. S21, S22), glia (Supplemental Figs. S23, S24),
gonad (Supplemental Figs. S25, S26), hypodermis (Supplemental
Figs. S27, S28), and pharynx (Supplemental Figs. S29, S30), finding
evidence for additional specific cell types in each of them. Thus,
sci-ATAC-seq can make fine-grained distinctions among cell types

at a resolution that approaches scRNA-seq and thereby begin to as-
sociate specific regions of accessible chromatin with specific cell
types.

Discussion

We used the sci-ATAC-seq assay to assemble the first cell type–re-
solved map of regulatory elements in C. elegans. We found
38,017 peaks, which we used to assign 24,503 of our 30,930 cells
to one of 37 different clusters (Fig. 3) that represent distinct, differ-
entiated tissues in the L2 nematode (Fig. 5). Ourmap, derived from
data collected in essentially a single experiment, recovers the ma-
jority of L2 regulatory sites detected by hundreds of individual
ChIP-seq experiments (Fig. 2) and proposes an additional 7131
novel regulatory sites not found in the ChIP-seq compendium
(Fig. 6). Accessibility at these sites can distinguish among nearly
all the major cell types in the worm (Fig. 5; Supplemental Fig.
S9) and many minor ones, including highly similar cell types,
such as muscle or intestine cells at different anatomical positions
(Fig. 8), and cell types that have only a few examples per worm, es-
pecially neuron subtypes (Fig. 9; Supplemental Fig. S16). For exam-
ple, there are only twoASE neurons in eachworm, and our analysis
suggests that we can identify one or two clusters thatmight harbor
these cells (Fig. 9B). For accessibility peaks that overlap TFChIP-seq
sites (Kudron et al. 2018), they suggest the tissue in which the TFs
are active, and in turn, the ChIP sites suggest which TFs are active
at the sci-ATAC-seq peak (Fig. 6; Supplemental Fig. S6). We found
dozens of examples in which nonoverlapping alternative 5′ exons

BA

Figure 6. Novel sites of accessible chromatin with no overlapping modERN ChIP-seq peaks show topic specificity. We compare the normalized peak-by-
topic matrix values between the peaks that overlap a ChIP-seq site (A) and those that do not (B). The nonoverlapping peaks are enriched for topics asso-
ciated with gonad (especially germline/topic 24) and topics associated with neurons. The nonoverlapping peaks also tend to be observed in fewer cells.
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are likely regulated by distinct tissue-specific accessibility sites,
supporting the notion that a principal reason for alternative 5′

ends is for tissue-specific regulation (Supplemental Note 1;
Supplemental Fig. S12). In addition, there are many other broadly
expressed genes, both with and without multiple isoforms, that
also show tissue-specific accessibility patterns (Supplemental Fig.
S11; Supplemental Table 1).

The cell type resolution of sci-ATAC-seq data approaches that
of scRNA-seq (Cao et al. 2017; Packer et al. 2019) despite the high
levels of sparsity and low dynamic range of the data in individual
cells. scATAC-seq suffers generally from sparsity and a low dynam-
ic range because there are at most two chances in a diploid cell to
sample a given accessible locus, depending onwhether or not both
alleles are accessible. This contrasts to scRNA-seq, which has hun-
dreds or even thousands of chances for measuring the mRNA of
highly expressed genes. The sparsity of scATAC-seq was particular-
ly high in our data set because theworm samples yielded sci-ATAC-
seq libraries withmany fewer unique fragments per cell than other
organisms. In the first reported sci-ATAC-seq results, human and
mouse cell lines yielded a median of 2503 fragments per cell
(Cusanovich et al. 2015), and in more recent work on fly and
mouse cells, the median yield was over 10,000 fragments per cell
(Cusanovich et al. 2018a,b). In contrast, despite using the most
up-to-date protocol (Cusanovich et al. 2018a,b), themedianC. ele-
gans cell yielded only about 700 fragments (Supplemental Fig. S1).
Wehypothesize that this could be improved by optimizing the nu-
clear isolation and permeabilization conditions: L2 nuclei are ex-
tremely small, compact, and dense (∼2 µm in diameter), and
possibly after formaldehyde fixation, Tn5 has only limited access

to the chromatin. As single-cell technology advances and we are
able to generate more complex libraries, we expect that scATAC-
seq will provide even higher resolution of individual cell types in
the worm.

We also expect to see improved results from applying more
advanced computational techniques. We provide a new LDA im-
plementation that implements several useful features (see
Methods), and we also look forward to new approaches that
more tightly integrate the analysis of scATAC-seq and scRNA-seq
data sets. There are multiple recent approaches for projecting sin-
gle-cell data from different modalities into the same embedding
space (Welch et al. 2017; Cusanovich et al. 2018a; Stuart et al.
2019). By jointly analyzing the sci-ATAC-seq data and sci-RNA-
seq data with one of these methods, it may be possible to improve
the cell type resolution of our chromatin accessibility maps.

Such accessibility maps with high cell type resolution will be
important for understanding gene regulation on the scale of the
whole genome across the whole organism. In addition, regulatory
sites are hypothesized to play a major role in common disease and
evolutionary adaptation, so maps of regulatory sites will aid in in-
terpreting the effects of genetic variation. For example, many mu-
tations that are linked to some phenotype by approaches like
GWAS do not fall in genes. The implication is that, if one of the
mutations is indeed causal, it must fall in a regulatory sequence
of DNA. Thus, maps of cell type–specific regulatory regions can
help interpret and prioritize candidate causal variants and will be
a useful complement to genetic resources in C. elegans, including
the C. elegans Natural Diversity Resource (Cook et al. 2017) and
the Million Mutation Project strains (Thompson et al. 2013).

Figure 7. Known tissue-specific genes show topic-specific chromatin accessibility. UCSC Genome Browser multilocus view of the regions surrounding
nine known tissue-specific genes (top and bottom), as well as the tissue expression patterns from sci-RNA-seq (middle). In each genome browser view,
the top track shows the locations of sci-ATAC-seq peaks colored by tissue type, the second track shows the stacked sci-ATAC-seq signal from each tissue,
the third track shows consensus peak regions around local maxima in the signal track, and the fourth track shows the genemodels. The gene expression bar
plots show expression values for 27 tissues in TPM units, with the same coloring and order as the legend in Figure 5.
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Better annotations of regulatory DNA can also help with under-
standing comparative genomics and the evolution or conservation
of stretches of noncoding DNA.

Given the importance of mapping regulatory sites for under-
standing genome structure and function, as well as the power ofC.
elegans as a model organism, improving and expanding our maps
of regulatory regions should be a high priority. As single-cell geno-
mics technology continues to improve, we will be able to attain
better measurements across more cells and at lower cost.
Coassays that canmake chromatin accessibility and RNA-seqmea-
surements in the same cells are showing very promising results,
with the library preparation cost per cell recently dropping by or-
ders of magnitude (Cao et al. 2018; Ma et al. 2020). By leveraging
such approaches, collecting accessibility data for additional devel-
opmental stages in thewormwill provide valuable insight into the
dynamics of gene regulation over the course of development as
cells differentiate. These data can be paired with new scRNA-seq
data collected from throughout C. elegans embryogenesis (Packer
et al. 2019), moving the field closer to having a truly comprehen-
sive map of gene expression and regulation for every cell through-
out development in C. elegans.

Methods

Nuclear isolation from whole L2 worms

We grew wild-type C. elegans worms (VC2010 strain) at 21°C on
nine 150-mm plates and synchronized the population by bleach-
ing (2%bleach, 0.5MKOH) young adultswith eight to 12 embryos
to isolate embryos, hatching them at room temperature in egg
buffer (118 mM NaCl, 48 mM KCl, 2 mM CaCl2, 2 mM MgCl2,
HEPES 25 mM at pH 7.3) for 12–16 h, and replating the L1 hatch-
lings onto nine more 150-mm plates at a density of approximately
60,000 worms per plate. After two rounds of this bleach synchro-
nization and plating, the L1 worms were allowed to grow for 19
h at 21°C after plating to reach the middle of L2. The worms
were washed off eight of the plates with M9 buffer (22 mM
KH2PO4, 22 mM Na2HPO4, 85 mM NaCl, 1 mM MgSO4 at pH
6.5) into a 50-mL conical tube. Bacteriawere removed from the sus-
pension by spinning the tube at ∼3000g, aspirating the superna-
tant, and resuspending in fresh M9. The M9 wash was repeated,
and the supernatant was aspirated, leaving a worm pellet in ∼1

mL of M9. The worm pellet was flash-frozen by using a P1000 to
transfer the worms drop by drop into a mortar containing liquid
nitrogen. The frozen worms were crushed into powder with a pes-
tle such that each worm broke into three to four chunks, and the
powder was transferred to a 50-mL Falcon tube containing 8.75
mLof 1.1% formaldehyde in egg buffer supplementedwith 1× pro-
tease inhibitor. Worms were rocked at room temperature for 10
min before the fixation reaction was quenched by adding 1.25
mL 1M glycine (final concentration ∼125mM) and incubated an-
other 5min at room temperature. The fixedwormswere pelleted at
3220g for 5 min at 4°C, the supernatant was removed, and the pel-
let was resuspended in 10mL ice-cold egg buffer. Fixedwormswere
pelleted again by spinning at 3220g for 5min at 4°C. The egg buffer
supernatant was aspirated, and the pellet was resuspended in ice-
cold 2× nuclear preparation buffer (20 mM HEPES at pH 7.6, 20
mM KCl, 3 mM MgCl2, 2 mM EGTA, 0.5 M sucrose, 0.05%
Triton X-100 in egg buffer) supplemented with protease inhibitor
(NPB+PI). The following steps were all performed at 4°C or on ice:
The solution was transferred to a 7-mL Dounce homogenizer, and
the fixed worm chunks were homogenized with 20 loose pestle
strokes followed by 10 tight pestle strokes. The Dounced suspen-
sion was spun for 90 sec at ∼200g in a swing-arm centrifuge to
loosely pellet debris, and the top 1000 µL of supernatant (contain-
ing the nuclei) was removed to a 15-mL Falcon tube on ice. One
milliliter of fresh NPB+PI was added to the Dounce, the debris pel-
let was gently resuspended, and the Douncing and spinning were
repeated three more times, resulting in the collection of 4 mL of
nuclei. The suspension of nuclei was cleaned by gently passing
through a 10-µm syringe filter prewetted and chased with 1 mL
ice-cold NPB+PI into a new 15-mL Falcon on ice. The nuclei
were split evenly into 1.5-mL Eppendorf tubes and pelleted at
2000g for 10min at 4°C. All supernatant was removed, and the pel-
lets were each gently resuspended in 1 mL freezing solution (50
mM Tris at pH 8.0, 25% glycerol, 5 mM Mg(OAc)2, 0.1 mM
EDTA, 5 mM DTT, 1× protease inhibitor cocktail [Roche], 1:2,500
SUPERase•In [Ambion]) (Cusanovich et al. 2018b). The resuspend-
ed nuclei were transferred to 2-mL cryotubes, flash-frozen in liquid
nitrogen, and stored at −80°C.

scATAC-seq via single-cell combinatorial indexing

The sci-ATAC-seq protocol was as described by Cusanovich et al.
(2018b). Briefly, flash-frozen VC2010 nuclei were thawed in a
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Figure 8. Subclustering of muscle and intestinal cells separates them by position along the anterior–posterior body axis. (A) Peaks near genes that should
be expressed throughout a tissue, like hlh-1 and myo-3 in body wall muscle or end-1 and elt-2 in the intestine, show accessibility in cells throughout the
UMAP. (B) In both the muscle and intestine data, we can detect subclusters of cells that show peaks near genes that mark the anterior or posterior regions
of these tissues based on literature and microscopy data (Packer et al. 2019).
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37°C water bath and put immediately on ice. The nuclei were
transferred to a 1.5-mL Eppendorf tube and spun at 2000g for 10
min. The supernatant was aspirated, and the pellet was resuspend-
ed in 200 µL of ATAC-OMNI (Corces et al. 2017) RSB (10 mM Tris-
HCl at pH 7.4, 10 mM NaCl, and 3 mM MgCl2 in water) supple-
mented with 0.01% digitonin, 0.1% IGEPAL-630, and 0.1%
Tween 20; allowed to stand for 3 min on ice; and then quenched
by adding 1mL of RSB supplemented with 0.1% Tween 20. The re-
suspended and lysed nuclei were stained with 1× Hoechst, and a
BD FACS Aria II was used to distribute 2500 nuclei into each well
of a 96-well v-bottom plate (Eppendorf twin.tec LoBind skirted
96-well PCR plate) prepared with 19 µL of tagmentation reaction
solution (10 µL 2× Nextera TD buffer, 3.3 µL 1× DPBS, 0.2 µL 1%
digitonin, 0.2 µL 10% Tween 20, 5.3 µL H2O) (Corces et al.
2017). After sorting, 1.0 µL of 2.5 µM uniquely barcoded Tn5
from Illumina (Cusanovich et al. 2015) was pipetted into each
well of the 96-well plate, and the transposition reaction was al-
lowed to proceed for 30 min at 55°C. Next, 20 µL of STOP reaction
buffer (40 mM EDTA and 1mM Spermidine) was added to quench
the reaction, and the plate was put for 15 min at 37°C. After stop-
ping transposition, all nuclei were pooled into a 15-mL conical
tube, restained with 1× Hoechst, and distributed by FACS into
twenty-eight 96-well v-bottom plates at 25 nuclei per well. The
96-well plates contained 12 µL per well of reverse cross-linking
buffer (0.83 mg/mL Proteinase K and 0.042% SDS in Qiagen EB
buffer) and were put on ice, spun down, and frozen at −20°C in
batches during sorting. Later, these plates were thawed in groups
of four for reversing cross-links by incubating for 16 h at 65°C, after
which the transposed and un-cross-linked fragments were ampli-
fied using uniquely barcoded PCR primers. We ran four wells as
test reactions in qPCR and monitored the libraries for saturation
of SYBR green signal to identify the number of cycles required

for appropriate amplification (Cusanovich et al. 2018b), and
then amplified the rest of the wells for either 22 cycles with
Illumina NPM 2× PCR master mix or 23 cycles with NEBNext 2×
PCR master mix. PCR reaction was 12.0 µL of nuclei in reverse
cross-linking buffer, 2.5 µL of 5 µM Nextera v2 barcoded P7 PCR
primer, 2.5 µL of 5 µM Nextera v2 barcoded P5 PCR primer, 1.0
µL of 100× BSA, 25.0 µL of 2× NEBNext PCR master mix (NEB
M0541), and 7.0 µL nuclease free H2O. NPM PCR protocol was 3
min at 72°C; 30 sec at 98°C; repeat for 22 times 10 sec at 98°C,
30 sec at 63°C, 1 min at 72°C; and 4°C HOLD. NEBNext PCR pro-
tocol was 5 min at 72°C; 30 sec at 98°C; repeat 23 times 10 sec at
98°C, 30 sec at 63°C, 1 min at 72°C; and 4°C HOLD. After amplifi-
cation, the fragments were cleaned up by pooling the contents of
all wells and splitting across four Zymo Clean & Concentrate col-
umns (D4014), eluted each in 25 µL Qiagen EB; combined the el-
uates; further cleaned and concentrated with 1× Ampure XP
magnetic beads; and finally eluted in 25 µL. Library quality was as-
sessed using the Agilent TapeStation D5000 kit (Screentape 5067-
5588; reagents 5067-5589), and molarity was quantified for frag-
ments between 200 and 1000 bp. Last, the libraries were combined
into an equimolar pool at 2 nM for sequencing. Libraries were se-
quenced using the manufacturer’s denaturation conditions and
loaded either on a Illumina MiSeq 300 cycle v2 kit (MS-102-
2002) at an input concentration of 15 pM, or on an Illumina
NextSeq mid-output 300 cycle v2.5 kit (20024905) at an input
concentration of 1.8 pM, using custom sequencing primers and
recipe from Illumina.

Generation of genomic DNA input control

To control for the sequence cutting bias of Tn5 (Green et al. 2012),
we treated naked C. elegans genomic DNAwith the bulk ATAC-seq

BA

Figure 9. Subclustering of neurons reveals finer structure that distinguishes different types of neurons. (A) Cells with reads in peaks near genes with ex-
pression patterns specific to neuron subtypes cluster together (bbs-8: ciliated sensory neurons; gcy-32: oxygen sensory neurons; unc-30: GABA-ergic neu-
rons; mec-7: touch receptor neurons; ceh-24: cholinergic neurons). (B) Cells in the UMAP plot are colored by the number of marker genes with nearby
coaccessible peaks. Here, we show marker genes for the ASE neurons, a specific pair of ciliated sensory neurons, which are identified in one of the bbs-
8 clusters from A (marked by the left-facing arrow), and show marker genes shared by the oxygen sensory neurons AQR, PQR, and URX, which further
support the cluster marked with gcy-32 in A (marked by the right-facing arrow).
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protocol (Buenrostro et al. 2013) as follows. We isolated genomic
DNA with phenol:chloroform extraction and ethanol precipita-
tion. To keep the Tn5:DNA ratio similar to a bulk ATAC-seq exper-
iment with 50,000 cells, we estimated that a typical C. elegans
nucleus will contain 1 ×106 bp×2 genomes×660 MW/bp×1.67
×10−12 pg/MW≈0.22 pg/nucleus, or ∼11 ng in 50,000 nuclei.
We diluted the DNA to a concentration of ∼0.87 ng/µL, as mea-
sured with the Qubit high-sensitivity assay (Invitrogen), and
used 11.5 µL as input to a 25-µL reaction with 12.5 µL of
Nextera TD buffer and 1.0 µL of Nextera Tn5 enzyme. The reaction
was incubated for 30 min at 37°C, cleaned up with a Qiagen
MinElute column, and amplified using NEBNext 2× PCR mix
with primers from Buenrostro et al. (2013). The libraries were
cleaned up with 1:1 AMPure XP magnetic beads and sequenced
on the Illumina NextSeq platform.

ATAC-seq alignment pipeline

Initial processing of the sequencing results was performed as re-
ported by Cusanovich et al. (2018b), with some changes.
Sequencing results were converted to FASTQ format with the
Illumina bcl2fastq program (v. 2.19). First, the integrity of the bar-
code sequences was checked for each of the four components of
the barcode (tagmentation barcodes from both sides of the cut
and the P5 and P7 primer indices added during PCR amplification)
by matching the sequencing results to the known barcode se-
quences. Any read that had three or fewer edits compared with
the best-matching known barcode sequence and that had no other
known barcode sequences matching with five or fewer edits was
corrected and assigned to the best-matching barcode sequence.
Any read-through of short templates was corrected by trimming
adapter sequences from reads using Trimmomatic (v 0.36)
(Bolger et al. 2014) with the options ILLUMINACLIP:NexteraPE-
PE:2:30:10:1:true, TRAILING:3, SLIDINGWINDOW:4:10, and
MINLEN:20. Next, read sequences were aligned to the WS235/
ce11 build of the C. elegans genome with Bowtie 2 (Langmead
and Salzberg 2012) with options –X 2000 and -3 1; properly paired
reads with mapping scores greater than 10 were kept; any reads
mapping to the mitochondrial DNA were filtered out; and read
pairs with identical barcode sequence and with identical starting
and endingmapping coordinateswere identified as PCRduplicates
and collapsed to one using a custom script (Cusanovich et al.
2018b). Next, read coverage for each cell was calculated, and cell
barcodes with fewer than 150 reads were removed from further
analysis (Supplemental Fig. S1). The reads that made it through fil-
tering for each batch of sequencing weremerged into a single BAM
file using the PicardMergeSamFiles program (http://broadinstitute
.github.io/picard). Last, the reads in themerged BAM filewere con-
verted into cut sites by taking 60-bp intervals centered on the frag-
ment ends, shifting those sites for reads mapping to the forward
strand by +4 bp and the negative strand by −5 bp (to account for
the shape of the Tn5 cut site) (Buenrostro et al. 2013), and writing
the resulting coordinates to a BED file for peak calling.

We called peaks from the cut site data using MACS2 (v.
2.2.5) (Zhang et al. 2008) with the options ‐‐format =BED, -g 9e7,
‐‐nomodel, ‐‐qvalue=0.05, ‐‐SPMR, ‐‐tsize=60, ‐‐bdg, ‐‐keep-dup all,
and ‐‐call-summits. Additionally, we aligned andmapped cut sites
for somebulkATAC-seqdatacollectedonnakedC. elegans genomic
DNA and provided these as an input control to correct our peak
calls for sequence bias inTn5 cutting.After peak calling,wemerged
any overlapping peaks to produce a single set of nonoverlapping
genome-wide peak calls. Finally, we generated a binary cells-
by-peaks matrix that records which peaks were detected (i.e.,
were overlapped by a cut site) in each cell. This data structure was
used for further cell clustering analysis with LDA, described below.

Cell clustering pipeline overview

To identify cell types from the sci-ATAC-seq data, we used an itera-
tive clustering and peak-calling approach. After investigating di-
mensional reduction methods, including PCA and LSI, we found
LDA provided the best separation between clusters of cells. The
core pipeline consisted of three main steps: first, training a LDA
model (see below) on the data; second, identifying LDA topics
that corresponded to coherent groups of cells andusing those topics
to cluster the cells; and finally, calling peaks onpooled data for each
cluster of cells. Calling peaks on the cell clusters increases sensitivity
to detect cluster-specific peaks compared with the peak calling at
the end of the alignment pipeline; cell type–specific regulatory sites
may be weaker than more commonly-accessible peaks either
because they are smaller or more transiently accessible or because
they may be specific to a small subset of the cells in the whole
worm. Either way, the data for such sites might not rise above the
background noise from other cell types in the whole-worm data
set but are detectable in more homogeneous subsets of cells. We it-
erated this procedure twice: first, to generate a more sensitive set of
peaks than the peak calls from the alignment pipeline (we call this
first iteration the primary LDA), and a second time to train a new
LDA model with the improved peak set, which also results in a
third, refined peak set (we will refer to the second iteration as the
refinement LDA). Last, MACS2 occasionally calls broad peaks that
cover large regions of the genome of hundreds or even thousands
of base pairs. The signal over these peaks is usually multimodal
withmultiple distinct “summits” thatmost likely represent distinct
binding sites. To better capture the distinct nature of these summit
regions in the refined peak set,we implemented a customscript that
identifies the local summits within a MACS2 peak and splits the
peak intomultiple contiguous segments that each encompass a sin-
gle summit region, and we report these split peaks in our UCSC
Genome Browser track hubs. (Note that our peak splitting proce-
dure is similar to, but distinct from, theMACS2 summit-calling pro-
cedure, which reports the coordinate of the base pair with the
highest signal and does not actually segment the peak around the
summits.) For the peak-splitting code, see the expand_summits2.py
script in the paper’s GitHub repository (https://github.com/
tdurham86/L2_sci-ATAC-seq) and Supplemental Code.

LDA implementation

Inspired by the effectiveness of LDA as implemented in cisTopic
(González-Blas et al. 2019), we decided to take this approach to an-
alyzing the sci-ATAC-seq data. Briefly, LDA is a Bayesianmodeling
strategy that was originally developed in the setting of document
classification. It assumes that each document is characterized by
one or more latent “topics” and that these topics are characterized
by subsets of the words in the document. Documents are modeled
as Dirichlet probability distributions over the set of topics, and the
topics are modeled as Dirichlet probability distributions over the
set of words. Training proceeds by iterating over the entire vocab-
ulary defined by the documents it is modeling and proposing a
topic for every instance of every word in every document. The
probability of picking a topic for a given word and document is
computed based on the current probability distribution of topics
for that document and the probability of words for each topic.
At the end of training, the probability distributions for the topics
over the documents and the words over the topics can be calculat-
ed by summing the topic proposals for all peaks and for all docu-
ments, respectively. Our implementation uses a collapsed Gibbs
sampler to speed up training by sampling the latent parameters
of the model from the full conditional posterior (Griffiths and
Steyvers 2004). When applied to scATAC-seq data, as in cisTopic,
cells are treated as the documents and peaks are treated as the
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words. The LDA model then learns topics that distinguish among
the cells based on which peaks tend to be accessible in similar pat-
terns across all cells, and outputs two matrices that capture the re-
lationship between peaks and topics and between cells and topics:
The first matrix contains the counts of the number of cells for
which a given peakwas assigned to each topic (the peaks-by-topics
matrix), and the second matrix contains how many peaks from
each cell were assigned to each topic (the cells-by-topics matrix).

We began by using cisTopic itself, but found the R implemen-
tation to take ∼2 d to process the full data set. (Note that a new re-
cently released version of cisTopic is significantly faster and
incorporates similar ideas to our implementation.) To speed up
the modeling, we implemented a parallelized version in Java that
can split the training of a singlemodel acrossmultiple cores, reduc-
ing the run time to just a couple of hours. In the end, for thewhole-
worm primary LDA, we used 34 topics and set the alpha parameter
for the Dirichlet priors to 3.0 to concentrate the probability distri-
butions into just a few peaks/topics. We set the beta parameter to
2000.0; the higher value allows the LDAmodel to spread the prob-
ability across more peaks. These alpha and beta values control the
weight of the symmetric, or uniform, priors used for the cell-by-
topic and topic-by-peak distributions; the higher the alpha or
beta value, the more weight is given to the uniform prior, which
encourages themodel to spread probability across topics and peaks
instead of concentrating it. The Java code can be accessed at
GitHub (https://github.com/gevirl/LDA) and is released under
the GNU GPLv3 license.

Filtering the cells-by-peaks matrix for LDA

To improve the efficiency and effectiveness of LDA, it can help to
remove cells that have very few peaks and to remove peaks that are
either found in very few cells or too many cells. Sparse cells and
peaks provide little useful information and are enriched for noise,
whereas peaks that are found in too many cells are likely real; they
are not very helpful for distinguishing among cell types. We fil-
tered the outliers by sorting the cells by the fraction of all peaks
that was detected in each cell (or peaks by the fraction of all cells
in which they were detected), mean centering the data, and then
identifying the change points at the extremes of the resulting
curve by doing a convolution with values from a sigmoid function
to detect the areas where the slope is changing fastest. We set the
filtering thresholds as four times the inter-quartile range above the
mean of the convolution output (Supplemental Figs. S31, S32).We
applied LDA to the resulting filtered cells-by-peaks matrix.

LDA model selection

Choosing hyperparameter values is one of the most challenging
aspects of training models like LDA. In particular, using an appro-
priate number of topics is critical to getting good results, and pick-
ing this number requires an empirical approach. In cisTopic
(González-Blas et al. 2019), the investigators recommend training
several model instances, each with a different number of topics,
and choosing the number of topics that gives the best log likeli-
hood of your input data. However, increasing the number of topics
adds parameters to the model, which makes the model better able
to fit the training data, even if it has already fit the true signal and
begins to train on noise (i.e., it is overfitting). Because the cisTopic
procedure uses the same data for training and evaluation, it does
not test the generalizability of the model parameters and cannot
tell when themodel starts to overfit. Ultimately, it will recommend
using a higher number of topics than can be supported by the data.
To identify a suitable number of topics that avoids overfitting, we
implemented the following cross-validation procedure.

First, the cells are evenly and randomly split into five disjoint
sets for fivefold cross-validation. Then, for each number of topics
that we would like to test, five LDA models are trained, with
each model training on four of the folds and holding one out for
evaluation. Once eachmodel is done training, it estimates the like-
lihood of the data in the held-out test fold with a Chib-style esti-
mator (Wallach et al. 2009). In this estimation procedure, the
peak-topic probabilities learned from the training data are fixed,
and then a cell-topic vector is trained for each held-out cell based
on the fixed peak-topic probabilities. The log likelihood of each
held-out cell is estimated based on sampling from the posterior
of the model trained on that held-out cell. We convert these log
likelihoods to perplexity, which is defined as follows:

perplexity(w) = exp −L(w|u)
N

( )
,

where w is a held-out test cell, L(w|u) is the log likelihood of that
test cell given the LDAmodel, andN is the number of peaks found
in that cell. Because perplexity is inversely related to the log likeli-
hood, smaller values are better. The best number of topics to use is
the one that produces the lowest mean perplexity from the five
held-out sets of test data. It is important to note that LDA is a sto-
chastic modeling technique, and training on the same data with
different random seeds will yield similar but different solutions.
In addition, our sci-ATAC-seq data are by nature noisy and com-
plex. Thus, the hyperparameter search procedure will not always
result in a clear best number of topics to pick. We found that if
we trained a model with a few extra topics beyond the optimal
number, LDAwould largely ignore the extra topics and still put al-
most all of the probability in a number of topics that approximated
the underlying dimensionality of the data. Given that the model
appeared robust to some extra topics, we ran our models with
1.5 times the number of topics recommended by the hyperpara-
meter search (Supplemental Figs. S4, S13).

LDA training

To train the LDA model, we used our parallelized implementation
of LDA, which could generally run on the full data set in ∼2 h on a
machinewith eight cores and32GBofmemory.Here is an example
command line from the whole-worm refinement LDA analysis
(see the GitHub repository for full documentation and usage
infomation): java -Xms32G -cp LatentDirichletAllocation.jar
org.rhwlab.lda.cache.matrix.LDA_CommandLine -lda -a 3.0 -b
2000.0 scatac_data.bow -li 4000 -o ./out/dir -s 1 -t 55 -th 8 -tn 5
-ch 0 -rid 0000 -pe -d topic -st mode -sk 40 -v 1 -id ./out/dir/
0000_topics55_alpha3.000_beta2000.000 -pr 1.0.

The model has four main outputs: the docTopic matrix,
which contains the raw counts of how many peaks were assigned
to each topic in each cell; the theta matrix, which contains the
probability distribution across topics for each cell and takes into ac-
count the full LDA probability, including the prior; the wordTopic
matrix, which contains the raw counts of how many times each
peak was assigned to each topic across all cells; and the phi matrix,
which contains the probability distribution across peaks for each
topic and takes into account the prior. We used the theta matrix
to cluster the cells and used the wordTopic matrix for identifying
the cell type for each cluster.

Cell clustering by topics

Next, we sought to cluster the cells based on the LDAmodeling re-
sults. We reasoned that differences among cell types would be the
dominant source of informative variation in our sci-ATAC-seq data
and that, for this reason,many topics shouldmostly correspond to
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distinct cell types. To identify which topics were most likely to
distinguish among cell types, we looked for topics that had high
probability in subsets of cells that were close together in LDA top-
ic-space and used these topics to define cell clusters as follows. To
identify topics that corresponded to groups of cells in LDA topic-
space, for each topic, we ranked the cells by their probability for
that topic in the theta matrix, computed the centroid of the topic
as the mean topic probability vector for the top 50 cells, and then
scored the topic by calculating the average similarity of those top
50 cells to the centroid by averaging the dot products of the topic
probability vectors and the mean topic probability vector. Then,
we ranked the topics by this centroid similarity and identified a
threshold of 0.2 to separate the candidate cell type topics from
the others (Supplemental Fig. S5).

Next, we assigned cells to clusters defined by these topics. Any
cell with >50% probability in one of the cell type topics was auto-
matically assigned to that topic cluster. Some topic clusters had
many high probability cells, whereas some had few. For any clus-
ters with fewer than 150 cells, we attempted to add nearby unas-
signed cells based on their distance from the cluster’s centroid in
a 10-dimensional UMAP space (McInnes et al. 2018). We used an
iterative procedure for each small topic cluster as follows: First,
we computed the cluster centroid in UMAP space by averaging
200 samples from a Gaussian kernel density estimate of the shape
of the cluster. Next, we used a KDTree to identify a set of nearest
neighbor cells to the centroid that was 25% larger than the cluster
size. We detected whether any of these nearest neighbors were dis-
tance outliers (and thus more likely from a different cluster) by
ranking the neighbors by distance from the centroid and convolut-
ing the resulting distances with a step function to detect regions
where the slope of the ranked distances increases. We added to
the topic cluster the unassigned cell closest to the centroid as
long as its value from the convolution was not greater than 1.5
times the interquartile range of all convolution values. Then we it-
erated this procedure, growing the small topic clusters one unas-
signed cell at a time. After this procedure, any topic clusters that
still had fewer than 50 associated cells were removed from consid-
eration as clusters, and their cells were not assigned to any cluster.

To visualize the resulting topic clusters, we used UMAP
(McInnes et al. 2018) to reduce the dimensions of the theta matrix
to two (Fig. 3C).We first row-normalized the thetamatrix with the
L2-norm and then used the Python implementation of UMAP
(umap-learn, v. 0.3.8) with default parameters. Finally, we plotted
the cells as a scatter plot based on their coordinates in 2D UMAP
space, and we colored the cells by their topic cluster assignments.

Calling peaks for each topic cluster

The final step in the clustering pipeline is to call peaks for each
cluster. For each topic cluster, we pooled the cut sites from the cells
in that cluster and used the pooled data as inputs to MACS2 (v.
2.2.5) (Zhang et al. 2008) with the same settings as in the align-
ment pipeline, including providing the bulk ATAC-seq data from
naked genomic DNA as input controls. After calling peaks for
each cluster, we merged the peak calls from all clusters using bed-
toolsmerge tomake amaster list of peak regions and then used this
master peak list to create a new cells-by-peaks matrix. We used our
new cells-by-peaks matrix as input to a second round of LDA and
cell clustering to refine our clusters and peak calls.

Overlapping peaks with other data sets

Supplemental data for Figure 2 from Jänes et al. (2018) was down-
loaded from the eLife website (filename: janes2018_fig2_da-
ta1_v2.txt). This file was parsed using Unix tools and BEDTools

(v. 2.25.0) (Quinlan and Hall 2010) into three files: a file contain-
ing all of the peaks in BED format with overlapping sites merged
(i.e., using bedtools merge with default parameters), a file contain-
ing promoter-annotated peaks (those annotated as “coding_
promoter,” “unassigned_promoter,” or “pseudogene_promoter”)
with overlapping peaks merged, and a file containing enhancer-
associated peaks (those annotated as “putative_enhancer”) with
overlapping peaks merged. These files were overlapped with the
sci-ATAC-seq peaks, and the sci-ATAC-seq peaks were overlapped
with these files, using bedtools intersect. The significance of the
extent of the overlapping peaks was calculated using the Fisher’s
exact test implementation in the bedtools fisher command.

Peak loci from the modERN project were downloaded from
the EPIC website (http://epic.gs.washington.edu/modERN/) for
reference WS245/ce11 using the “download aggregated peaks”
and “download clustered peaks” buttons on the “worm by life
stage” tab of the user interface. Peaks were parsed into different
files based on developmental stage, and any overlapping peak re-
gions were merged in the final files. As above, these files were over-
lapped with the sci-ATAC-seq peaks, and the sci-ATAC-seq peaks
were overlapped with these files using bedtools intersect. The sig-
nificance of the extent of the overlapping peaks was calculated us-
ing the Fisher’s exact test implementation in the bedtools fisher
command.

To test for enrichment of overlaps frombulk ATAC-seq sites or
TF ChIP-seq sites from different developmental stages, we split the
sites from each compendium into separate BED files by develop-
mental stage, from embryo to young adult. For the TF ChIP-seq
data, this split was accomplished using the developmental stage
annotation provided in the downloaded peaks. For the bulk
ATAC-seq peaks, we first z-score-normalized the signal heights
for each peak across life stages provided in the Figure 1 supplemen-
tal data from Jänes et al. (2018), and we then assigned each peak to
any developmental stage with a z-score≥1.5 for that peak and
wrote the assigned peaks to the corresponding BED files. Next,
we counted the number of overlaps between the developmental
stage beds and our sci-ATAC-seq peaks and then computed the
log2 ratio of the number of overlaps observed versus the number
of overlaps expected from 100 randomly drawn samples of sites
(Fig. 2C; Supplemental Fig. S2).

We also downloaded ChIP-seq data for the L2 developmental
stage from Jänes et al. (2018) (NCBI Gene Expression Omnibus
[GEO; https://www.ncbi.nlm.nih.gov/geo/] accession GSE1144
40) and analyzed the ChIP-seq signal over sci-ATAC-seq peaks as
follows. First, we used the UCSC liftOver tool to map our peak co-
ordinates to ce10 to match the reference of the ChIP-seq data
and then generated a set of randomly shuffled peak locations using
the bedtools shuffle command with options -chrom and
-noOverlapping. Next, for both the true and shuffled peak sets,
we computed the log2 ratio of the mean signal over each peak to
the mean signal over the entire chromosome for each ChIP-seq
data set, and then we compared the resulting distributions using
split violin plots (Supplemental Fig. S3).

To gain further insight into our sci-ATAC-seq peaks that did
not have overlaps with either TF ChIP-seq sites or with bulk
ATAC-seq sites, we reasoned that if our nonoverlapping peaks are
the result of the increased sensitivity of sci-ATAC-seq for tissue-
specific accessibility, then our lists of the top 250 most topic-spe-
cific peaks (Supplemental Fig. S7) should be depleted for overlaps
with TF ChIP-seq sites and bulk ATAC-seq sites. For each topic,
we calculated the fraction of the 250 most topic-specific peaks
with an overlap and compared that fraction to the overall fraction
of sci-ATAC-seq peaks with overlaps in the TF ChIP-seq sites and
bulk ATAC-seq sites using the log2 ratio (Supplemental Fig. S10).
We find that, for most topics, the top topic-specific peaks are
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depleted for overlaps comparedwith the full list of peaks. The neu-
ron-specific topics are particularly depleted for overlaps with bulk
ATAC-seq sites, suggesting that whole-worm bulk ATAC-seq
has reduced sensitivity for detecting neuron-specific peaks
(Supplemental Fig. S10B). In addition, other important technical
differences in the data collection methods could also contribute
to differences in the regulatory sites detected. For example, in
the case of the ChIP-seq data, the recovered sites are biased for
the particular set of TFs that are assayed; in contrast, sci-ATAC-
seq is relatively unbiased but is subject to the Tn5 sequence bias
(Green et al. 2012).

Cell-by-topic and peak-by-topic heatmaps

To generate the heatmaps as in Figure 3B and Figure 6, we selected
only the columns corresponding to the topics used for clustering
the cells. Next, we row-normalized the counts by dividing each
row by its sum. Then we hierarchically clustered the rows and col-
umns in Python (v. 3.6.10) with the SciPy module (v. 1.4.1). We
used the scipy.spatial.distance.pdist function with the cosinemet-
ric to compute the pairwise distance matrix, then scipy.cluster
.hierarchy.linkage with method average to generate clusters,
and finally scipy.cluster.hierarchy.dendrogram to order the rows
and columns after clustering. The clusters were classified by tissue
type based on the dominant tissue type for each topic in Figure 5.
The cell/peak coverage information was calculated as the log2-
transformed sum of peaks found per cell for the cell-by-topic ma-
trix or the log2-transformed sum of cells showing a peak for the
peak-by-topic matrix.

Identifying tissue-specific topics

We identified topic tissue specificity in two ways: by overlapping
peaks from each topic with peaks from ChIP-seq of cell type–spe-
cific factors (Fig. 4) and by assigning peaks to the nearest gene
and assessing which tissues those genes tend to be expressed in
(Fig. 5).

To compare the overlap of topic-associated sci-ATAC-seq
peaks with TF ChIP-seq peaks, we created separate BED files for
peaks from ChIP-seq experiments for HLH-1, ELT-1, or ELT-2; re-
moved any peaks that had overlaps in 40 or more other ChIP ex-
periments (i.e., high occupancy target, or HOT, sites); and
merged any remaining overlapping peaks with bedtools merge.
We intersected the peaks called from each topic cluster with the
peaks from each TF and recorded the number of overlapping peaks
for each topic. To understand whether the observed overlaps per
topic were surprising, we generated a null distribution by sampling
a number of sci-ATAC-seq peaks equal to the number of observed
overlaps, with each peak being drawn from a particular topic
with a probability based on the total number of peaks called for
that topic cluster. We then took the log2 ratio of the topic distribu-
tion of observed overlaps to the topic distribution of each sample
of randomly drawn peaks.We plot themean log2 ratio and use the
samples to compute a 95% confidence interval around each bar
(Fig. 4). We expanded our analysis and repeated this same proce-
dure for all TF ChIP-seq data sets, and we present the results as a
heatmap in Supplemental Figure S6.

We also used previously published sci-RNA-seq data (Cao
et al. 2017) to comprehensively identify cell types for our topic
clusters by assessing the tissue expression patterns of genes near
our topic-specific peaks. For each topic, we ranked the peaks by
their topic specificity, which we define for a given peak and topic
as the fraction of cells with evidence for that peak that are mem-
bers of the topic’s cluster.Wewrote a BED file for each topic cluster
that contained the coordinates of either the top 250 peaks by topic

specificity or all peaks with topic specificity greater than 0.5,
whichever was greater (Supplemental Fig. S7). Next, we associated
these topic-specific peaks with their nearest downstream gene
(within 1200 bp) by using bedtools closest with options -D b, -io,
and -id. Similar to the cell type–specific TF ChIP-seq analysis
above, we then asked whether the expression distribution of these
top genes across tissues is enriched on average for particular tis-
sues. Accordingly, we drew 100 samples of 250 genes from the
null distribution of all genes with the sci-RNA-seq data, and we
compared the expression distribution of these gene sets with our
sets of topic-specific genes by computing the log2 ratio of the
mean topic-specific tissue expression distribution to the mean tis-
sue expression distribution of each random sample. We again re-
ported the mean log2 ratio and computed the 95% confidence
interval around the mean. For an example illustrating this proce-
dure, see Supplemental Figure S8, and for the tissue expression dis-
tributions associated with all 37 topic clusters, see Supplemental
Figure S9. Note that we tried using different numbers of topic-spe-
cific peaks, from the top 50 to the top 500, and found that the cell
type identities ultimately assigned to the topics were rather insen-
sitive to this choice. We decided to use 250 as a balance between
having input from as many potential cell type–specific genes as
possible without including too many non-topic-specific peaks
(Supplemental Fig. S7).

Identifying tissue subtypes using marker genes

To identify fine-grained cell types, we conducted a subclustering
analysis for each of the following major worm tissues that we
identified: coelomocyte (Supplemental Figs. S21, S22), glia
(Supplemental Figs. S23, S24), gonad (Supplemental Figs. S25,
S26; Kimble and Crittenden 2005), hypodermis (Supplemental
Figs. S27, S28), intestine (Fig. 8; Supplemental Fig. S15), muscle
(Fig. 8; Supplemental Fig. S14), neuron (Fig. 9; Supplemental
Figs. S17, S18, S19, S20, S16), and pharynx (Supplemental Figs.
S29, S30). There were too few cells identified as sex myoblast to
conduct a subclustering on that tissue. First, we pooled the data
for the cells in the topic clusters corresponding to each tissue
and alsomerged the peaks called from these topic clusters to create
a data set per tissue (Table 1).

Next, we ran the same iterative LDA-modeling and cell-clus-
tering procedure as detailed above for the whole worm.We identi-
fied subclusters by coloring the UMAP scatter plots by the cells
with peaks near cell type–specific marker genes (see Figs. 8, 9).
We colored a cell for a marker gene if it showed evidence for any
peak that either overlapped the gene body or overlapped the re-
gion from1200 bp upstream (5′) of the gene to 100 bp downstream
(3′) from the gene. The marker genes we plot were used to identify
fine-grained cell types in embryonic and L2 C. elegans scRNA-seq
data (Packer et al. 2019).

Comparing peak versus gene tissue specificity

To summarize the tissue specificity of peaks and genes, for each
gene we calculated the entropy of the distribution of expression
levels across tissues in the scRNA-seq, and for each sci-ATAC-seq
peak, we calculated the entropy of the distribution of number of
other overlapping peaks from each tissue. The entropy of a discrete
distribution is a measure of how concentrated the probability of
that distribution is in some subset of the elements of the distribu-
tion; for any domain, the uniformdistributionhas the highest pos-
sible entropy, and a distribution with 100% of the probability at
one point in the domain has the lowest possible entropy. Thus,
low entropy of a peak or gene indicates high tissue specificity,
and high entropy indicates low tissue specificity. To compare
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gene expression patterns with their corresponding accessibility
patterns, we assigned all peaks to their nearest downstream exon
within 1200 bp (allowing overlaps), and then for each gene, we av-
eraged the entropy values of all peaks linked to the exons of that
gene. Plotting these values against each other for 13,111 genes sug-
gests thatmost genes have a lowermean peak entropy than expres-
sion entropy, indicating a more tissue-specific pattern of
regulation than their pattern of expression (Supplemental Fig.
S11). Some genes with high expression entropy and low accessibil-
ity entropy simply do not have much chromatin accessibility
signal, whereas other examples show extensive chromatin
accessibility that shows multiple tissue-specific patterns that inde-
pendently have low entropy and thus lead to a lowmean peak tis-
sue entropy for that gene. To distinguish between these two cases,
we calculated a peak diversity score for each gene, which is defined
as the number of distinct overlap patterns among the peaks from
different tissues assigned to that gene. For example, consider a hy-
pothetical gene that has a neuron peak, an intestine peak, and a
pharynx peak. Assume that the neuron peak does not overlap
any other peaks, and the intestine and pharynx peaks do overlap.
That gene would have a peak diversity score of two: There is one
pattern of neuron-specific accessibility and another of intestine
plus pharyngeal accessibility. We extracted the set of 2038 genes
with peak tissue entropy less than 1.0 and expression entropy
greater than 1.5, which are enriched for the genes with the broad-
est expression but most tissue-specific gene regulation, and pro-
vide them as Supplemental Table 1.

Generating UCSC Genome Browser tracks for the

topic clusters

To generate signal files in bigWig format for display in the UCSC
Genome Browser, we used the MACS2 output from our peak-call-
ing steps. The data from the input control bedGraph file were sub-
tracted from the data in the treatment bedGraph using macs2
bdgcmp -m subtract, and the resulting bedGraph file was convert-
ed to bigWig format using the bedGraphToBigWig utility from
UCSC (Kent et al. 2010). These bigWig tracks are displayed along
with our peak calls in two track hubs on the UCSC Genome
Browser:

• sci-ATAC-seq Main Track Hub URL—http://genome.ucsc.edu/
cgi-bin/hgTracks?db=ce11&hubClear=http://waterston.gs
.washington.edu/atacTissue/Durham_hub.txt; and

• sci-ATAC-seq Subclustering TrackHubURL—http://genome.ucsc
.edu/cgi-bin/hgTracks?db=ce11&hubClear=http://waterston.gs
.washington.edu/atacCellType/Durham_hub.txt.

Data access

All raw and processed sequencing data generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession
number GSE157017. The parallel LDA code is available at GitHub
(https://github.com/gevirl/LDA) and as Supplemental Code and is
released under the GNU GPLv3 license. The data pipeline, scripts
for performing the LDA clustering analysis, and Jupyter notebooks
for generating figures are available at the followingGitHub reposito-
ry (https://github.com/tdurham86/L2_sci-ATAC-seq) and as Sup-
plemental Code and are released under the MIT license.
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