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N E U R O S C I E N C E

Reduced false positives in autism screening via digital 
biomarkers inferred from deep comorbidity patterns
Dmytro Onishchenko1, Yi Huang1, James van Horne1, Peter J. Smith2,3,  
Michael M. Msall2,4, Ishanu Chattopadhyay1,5,6*

Here, we develop digital biomarkers for autism spectrum disorder (ASD), computed from patterns of past medical 
encounters, identifying children at high risk with an area under the receiver operating characteristic exceeding 
80% from shortly after 2 years of age for either sex, and across two independent patient databases. We leverage 
uncharted ASD comorbidities, with no requirement of additional blood work, or procedures, to estimate the 
autism comorbid risk score (ACoR), during the earliest years when interventions are the most effective. ACoR has 
superior predictive performance to common questionnaire-based screenings and can reduce their current 
socioeconomic, ethnic, and demographic biases. In addition, we can condition on current screening scores to 
either halve the state-of-the-art false-positive rate or boost sensitivity to over 60%, while maintaining specificity 
above 95%. Thus, ACoR can significantly reduce the median diagnostic age, reducing diagnostic delays and accelerating 
access to evidence-based interventions.

INTRODUCTION
Autism spectrum disorder (ASD) is a developmental disability as-
sociated with significant social and behavioral challenges. Although 
ASD may be diagnosed as early as the age of 2 (1), children frequently 
remain undiagnosed until after the fourth birthday (2). With genetic 
and metabolomic tests (3–6) still in their infancy, a careful review of 
behavioral history and a direct observation of symptoms are currently 
necessary (7, 8) for a clinical diagnosis. Starting with a positive ini-
tial screen, a confirmed diagnosis of ASD is a multistep process that 
often takes 3 months to 1 year, delaying entry into time-critical 
intervention programs. While lengthy evaluations (9), cost of care 
(10), lack of providers (11), and lack of comfort in diagnosing ASD 
by primary care providers (11) are all responsible to varying de-
grees (12), one obvious source of this delay is the number of 
false positives produced in the initial ASD-specific screening tools 
in use today. For example, a large-scale study of the modified check-
list for autism in toddlers with follow-up (M-CHAT/F) (13) (n = 
20,375), which is used commonly as a screening tool (8, 14), demon-
strated that it has an estimated sensitivity of 38.8%, specificity of 
94.9%, and positive predictive value (PPV) of 14.6%. Thus, current-
ly, out of every 100 children with ASD, M-CHAT/F flags about 39, 
and out of every 100 children it flags, about 85 are false positives, 
exacerbating wait times and queues (12). Automated screening that 
might be administered with no specialized training, requires no be-
havioral observations, and is functionally independent of the tools  
used in current practice,  has the potential for immediate transform
ative impact on patient care.

While the neurobiological basis of autism remains poorly under-
stood, a detailed assessment conducted by the U.S. Centers for 
Disease Control and Prevention (CDC) demonstrated that children 

with ASD experience higher-than-expected rates of many diseases 
(1). These include conditions related to dysregulation of immune 
pathways such as eczema, allergies, and asthma, as well as ear and 
respiratory infections, gastrointestinal problems, developmental 
issues, severe headaches, migraines, and seizures (15, 16). In the 
present study, we exploit these comorbidities to estimate the risk of 
childhood neuropsychiatric disorders on the autism spectrum. We 
refer to the risk estimated by our approach as the autism comorbid 
risk score (ACoR). Using only sequences of diagnostic codes from 
past doctor’s visits, our risk estimator reliably predicts an eventual 
clinical diagnosis, or the lack thereof, for individual patients. Thus, 
the key clinical contribution of this study is the formalization of 
subtle comorbidity patterns as a reliable screening tool to poten-
tially improve wait times for diagnostic evaluations by significantly 
reducing the number of false positives encountered in initial screens 
in current practice.

A screening tool that tracks the risk of an eventual ASD diagno-
sis, based on the information already being gathered during regular 
doctor’s visits, and which may be implemented as a fully automated 
background process requiring no time commitment from providers 
has the potential to reduce avoidable diagnostic delays at no addi-
tional burden of time, money, and personnel resources. Use of pat-
terns emergent in the diagnostic history to estimate risk might help 
reduce the subjective component in questionnaire-based screening 
tools, resulting in (i) reduced effect of potential language and cul-
tural barriers in diverse populations and (ii) possibly better identifi-
cation of children with milder symptoms (8). Furthermore, being 
functionally independent of the M-CHAT/F, we show that there is 
a clear advantage to combining the outcomes of the two tools: We 
can take advantage of any population stratification induced by the 
M-CHAT/F scores to significantly boost combined screening per-
formance (see Materials and Methods and section S8).

Use of sophisticated analytics to identify children at high risk is 
a topic of substantial current interest, with independent progress 
being made by several groups (17–23). Many of these approaches 
focus on analyzing questionnaires, with recent efforts demonstrating 
the use of automated pattern recognition in video clips of toddler 
behavior. However, the inclusion of older kids above the age of 5 years 
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and small cohort sizes might limit the immediate clinical adoption 
of these approaches for universal screening.

Laboratory tests for ASD have also begun to emerge, particularly 
leveraging detection of abnormal metabolites in plasma (3, 6) and 
salivary poly-omic RNA (5). However, as before, inclusion of older 
children limits applicability in screening, where we need a decision 
at 18 to 24 months. In addition, such approaches, while instrumen-
tal in deciphering ASD pathophysiology, might be too expensive for 
universal adoption at this time.

In contrast to ACoR, the above approaches require additional data 
or tests. Use of comorbidity patterns derived from past electronic 
health records (EHRs) either has been limited to establishing cor-
relative associations (24, 25) or has substantially underperformed 
(26) [area under the curve (AUC) ≦65 % ] compared to our results.

MATERIALS AND METHODS
We view the task of predicting ASD diagnoses as a binary classi-
fication problem: Sequences of diagnostic codes are classified into 
positive and control categories, where “positive” refers to children 
eventually diagnosed with ASD, as indicated by the presence of a 
clinical diagnosis [International Classification of Diseases, Ninth 
Revision, with Clinical Modification (ICD-9-CM) code 299.X] in 
their medical records. Of the two independent sources of clinical 
incidence data used in this study, the primary source used to train 
our predictive pipeline is the Truven Health Analytics MarketScan 
Commercial Claims and Encounters Database for the years 2003 to 
2012 (27), currently maintained by IBM Watson Health (referred to 
in this study as the Truven dataset). This U.S. national database 
merges data contributed by over 150 insurance carriers and large 
self-insurance companies, and comprises over 4.6 billion inpatient 
and outpatient service claims and almost 6 billion diagnosis codes. 
We extracted histories of patients within the age of 0 to 6 years and 
excluded patients for whom one or more of the following criteria 
fails: (i) at least one code pertaining to one of the 17 disease catego-
ries we use (see later for discussion of disease categories) is present 
in the diagnostic history and (ii) the first and last available record 
for a patient are at least 15 weeks apart. These exclusion criteria 
ensure that we are not considering patients who have too few ob-
servations. In addition, during validation runs, we restricted the 
control set to patients observable in the databases to those whose 
last record is not before the first 200 weeks of life. The characteris-
tics of excluded patients are shown in Table 1. We trained with over 
30 million diagnostic records (16,649,548 for males and 14,318,303 
for females with 9835 unique codes). While the Truven database is 
used for both training and out-of-sample cross-validation with held-
back data, our second independent dataset comprising de-identified 
diagnostic records for children treated at the University of Chicago 
Medical Center between the years of 2006 and 2018 (the UCM dataset) 
aids in further cross-validation. We considered children between the 
ages of 0 and 6 years and applied the same exclusion criteria as the 
Truven dataset. The number of patients used from the two databases 
is shown in Table 1. Our datasets are consistent with documented 
ASD prevalence and median diagnostic age [3 years in the claims 
database versus 3 years 10 months to 4 years in the United States 
(28)] with no significant geospatial prevalence variation (see fig. S1).

The significant diversity of diagnostic codes (6089 distinct ICD-9 
codes and 11,522 distinct ICD-10-CM codes in total in the two data-
sets), along with the sparsity of codes per sequence and the need to make 

good predictions as early as possible, makes this a difficult learning 
problem. We proceed by partitioning the disease spectrum into 
17 broad categories, e. g., infectious diseases, immunologic disor-
ders, endocrinal disorders, etc. Each patient is then represented by 
17 distinct time series, each tracking an individual disease category. 
At the population level, these disease-specific sparse stochastic time 
series are compressed into specialized Markov models (separately 
for the control and the treatment cohorts) to identify the distinctive 
patterns pertaining to elevated ASD risk. Each of these inferred 
models is a probabilistic finite state automaton (PFSA) (29). See 
section S10 for details on PFSA inference (30, 31). The number of 
states and connectivities in the PFSA models are explicitly inferred 
from data, with the algorithms generating higher-resolution models 
when needed and opting for a lower resolution otherwise automat-
ically. This results in a framework with fewer nominal free parameters 
compared to standard neural network or deep learning architectures: 
The simplest deep learning model we investigated has more than 
185,000 trainable parameters, while our final pipeline has 13,744. A 
smaller set of free parameters implies a smaller sample complexity, 
i. e., can be learned with less data, which, at least in the present ap-
plication, gives us better performance relative to the standard archi-
tectures we investigated (see fig. S5).

After inferring models of diagnostic history, we need to quantify 
how such models diverge in the positive cohort versus those under-
lying the control cohort. We use a novel approach to evaluate subtle 
deviations in stochastic observations known as the sequence likeli-
hood defect (SLD) (32), to quantify similarity of observed time series 

Table 1. Patient counts in de-identified data and the fraction of 
datasets excluded by our exclusion criteria. Dataset sizes are after the 
exclusion criteria are applied. 

Truven UCM

Distinct patients 115,805,687 69,484

Male Female Male Female

ASD diagnosis 
count* 12,146 3018 307 70

Control count* 2,301,952 2,186,468 20,249 17,386

AUC at 125 weeks 82.3% 82.5% 83.1% 81.37%

AUC at 150 weeks 84.79% 85.26% 82.15% 83.39%

Excluded fraction of the datasets

Positive category 0.0002 0.0 0.0160 0.0

Control category 0.0045 0.0045 0.0413 0.0476

Average number of diagnostic codes in excluded patients (corresponding 
number in included patients)

Positive category 4.33 (35.93) 0.0 (36.07) 2.6 (9.75) 0.0 (10.18)

Control category 1.57 (17.06) 1.48 (15.96) 2.32 (6.8) 2.07 (6.79)

*Cohort sizes are smaller than the total number of distinct patients due to 
the following exclusion criteria: (i) At least one code within our complete 
set of tracked diagnostic codes is present in the patient record, and (ii) 
time lag between first and last available record for a patient is at least  
15 weeks.



Onishchenko et al., Sci. Adv. 2021; 7 : eabf0354     6 October 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 13

of diagnostic events to the control versus the positive cohorts for 
individual patients. This novel stochastic inference approach pro-
vides significant boost to the overall performance of our predictors; 
with only state-of-the-art machine learning, the predictive perform
ance is significantly worse [see sections S2 and S3, as well as reported 
performance in the literature for predicting ASD risk from EHR data 
with standard algorithms (26)].

We briefly outline the SLD computation: To reliably infer the 
cohort type of a new patient, i. e., the likelihood of a diagnostic 
sequence being generated by the corresponding cohort model, we 
generalize the notion of Kullbeck-Leibler (KL) divergence (33, 34) 
between probability distributions to a divergence ​​D​ KL​​​(G‖H) between 
ergodic stationary categorical stochastic processes (35) G and H as

	​​ D​ KL​​(G‖H ) = ​ lim​ n→∞​​ ​ 1 ─ n ​ ​  ∑ 
x:∣x∣=n

​​​ ​p​ G​​(x ) log ​ 
​p​ G​​(x)

 ─ ​p​ H​​(x) ​​	 (1)

where ∣x∣ is the sequence length, and pG(x) and pH(x) are the prob-
abilities of sequence x being generated by the processes G and H, 
respectively, and the log-likelihood of x being generated by a pro-
cess G is defined as follows:

	​ L(x, G ) = −  ​  1  ─ ∣x∣ ​  log ​p​ G​​(x)​ 	 (2)

The cohort type for an observed sequence x, which is actually 
generated by the hidden process G, can be formally inferred from 
observations based on the following provable relationships (section 
S10, theorems S6 and S7)

	​​   lim​ 
∣x∣→∞

​​ L(x, G ) = ℋ(G)​	 (3a)

	​​   lim​ 
∣x∣→∞

​​ L(x, H ) = ℋ(G ) + ​D​ KL​​(G‖H)​	 (3b)

where ℋ(·) is the entropy rate of a process (33). Equation 3 shows 
that the computed likelihood has an additional nonnegative contri-
bution from the divergence term when we choose the incorrect gen-
erative process. Thus, if a patient is eventually going to be diagnosed 
with ASD, then we expect that the disease-specific mapped series 
corresponding to her diagnostic history be modeled by the corre-
sponding model in the positive cohort. Denoting the model corre-
sponding to disease category j for positive and control cohorts 
as ​​G ​+​ j ​ and ​G ​0​ j ​​ respectively, we can compute the SLD (j) as

	​​ ​​ j​  ≜  L(​G ​0​ j ​, x ) − L(​G ​+​ j ​, x ) → ​D​ KL​​(​G ​0​ j ​‖​G ​+​ j ​)​	 (4)

With the inferred models and the individual diagnostic history, 
we estimate the SLD measure on the right-hand side of Eq. (4). The 
higher this likelihood defect, the higher the similarity of diagnosis 
history to that of children with autism.

In addition to the category-specific Markov models, we use a 
range of engineered features that reflect various aspects of the diag-
nostic histories, including the proportion of weeks in which a diag-
nostic code is generated, the maximum length of consecutive weeks 
with codes, and the maximum length of weeks with no codes (see 

table S2 for complete description), resulting in a total of 165 differ-
ent features that are evaluated for each patient. With these inferred 
patterns included as features, we train a second-level predictor that 
learns to map individual patients to the control or the positive groups 
based on their similarity to the identified Markov models of category- 
specific diagnostic histories and the other engineered features (see 
section S1 for detailed mathematical details).

Since we need to infer the Markov models before the calculation 
of the likelihood defects, we need two training sets: one that is used 
to infer the models and one that subsequently trains the final classi-
fier with features derived from the inferred models along with other 
engineered features. Thus, the analysis proceeds by first carrying out a 
random three-way split of the set of unique patients (in the Truven 
dataset) into Markov model inference (25%), classifier training (25%), 
and test (50%) sets. The approximate sample sizes of the three sets 
are as follows: ≈700,000 for each of the training sets, and ≈1.5 million 
for the test set. The features used in our pipeline may be ranked in 
order of their relative importance (see Fig. 1B for the top 15 features), 
by estimating the loss in performance when dropped out of the 
analysis. We verified that different random splits do not adversely 
affect performance. The UCM dataset in its entirety is used as a test 
set, with no retraining of the pipeline.

Our pipeline maps medical histories to a raw indicator of risk. 
Ultimately, to make crisp predictions, we must choose a decision 
threshold for this raw score. In this study, we base our analysis on 
maximizing the F1 score, defined as the harmonic mean of sensitiv-
ity and specificity, to make a balanced trade-off between type 1 and 
type 2 errors (see section S4). The relative risk is then defined as the 
ratio of the raw risk to the decision threshold, and a value >1 pre-
dicts a future ASD diagnosis. Our two-step learning algorithm 
outperforms standard tools and achieves a stable performance across 
datasets strictly superior to documented M-CHAT/F.

The independence of our approach from questionnaire-based 
screening implies that we can further boost our performance by 
conditioning the sensitivity/specificity trade-offs on individual M-CHAT/F 
scores. In particular, we leverage the population stratification in-
duced by M-CHAT/F to improve combined performance. Here, a 
combination of ACoR with M-CHAT/F refers to the conditional 
tuning of the sensitivity/specificity for ACoR in each subpopulation 
such that the overall performance is maximized. To describe this 
approach briefly, we assume that there are m subpopulations with 
the sensitivities and specificities achieved, and the prevalences in 
each subpopulation are given by si, ci, and i, respectively, with i ∈ 
{1, ⋯, m}. Let i be the relative size of each subpopulation. Then, we 
have (see section S8A)

	​ s  = ​  ∑ 
i=1

​ 
m

 ​​ ​s​ i​​ ​​ i​​​	 (5a)

	​ s  = ​  ∑ 
i=1

​ 
m

 ​​ ​s​ i​​ ​​ i​ ′​​	 (5b)

where we have denoted

	​​ ​ i​​  = ​ ​ i​​ ​ 
​​ i​​ ─  ​ and ​​ i​ ′​  = ​ ​ i​​ ​ 

1 − ​​ i​​ ─ 1 −  ​​	 (5c)

and s, c, and  are the overall sensitivity, specificity, and prevalence, 
respectively. Knowing the values of i, ​​​ i​ ′​​, we can carry out an 
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m-dimensional search to identify the feasible choices of si, ci pairs 
for each i, such that some global constraint is satisfied, e. g., mini-
mum values of specificity, sensitivity, and PPV. We consider four 
subpopulations defined by M-CHAT/F score brackets (13), and if 
the screen result is considered a positive (high risk, indicating the 
need for a full diagnostic evaluation) or a negative, i. e., low risk: (i) 
score ≤2 screening ASD negative, (ii) score [3 to 7] screening ASD 
negative on follow-up, (iii) score [3 to 7] screening ASD positive 
on follow-up, and (iv) score ≥8 screening ASD positive (see table 

S3). The “follow-up” in the context of M-CHAT/F refers to the 
re-evaluation of responses by qualified personnel. We use published 
data from the Children’s Hospital of Philadelphia (CHOP) study (13) 
on the relative sizes and the prevalence statistics in these subpopula-
tions to compute the feasible conditional choices of our operating 
point to vastly supersede standalone M-CHAT/F performance. The 
CHOP study is the only large-scale study of M-CHAT/F we are 
aware of with sufficient follow-up after the age of 4 years to provide 
a reasonable degree of confidence in the sensitivity of M-CHAT/F.
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Fig. 1. Standalone predictive performance of ACoR. (A) Receiver operating characteristic (ROC) curves for males and females (Truven data shown, UCM is similar, see 
Fig. 2A). (B) Feature importance inferred by our prediction pipeline. The detailed description of the features is given in Table 2. The most important feature is related to 
immunologic disorders, and we note that in addition to features related to individual disease categories, we also have the mean control likelihood (rank 3), which may be 
interpreted as the average likelihood of the diagnostic patterns corresponding to the control category as opposed to the positive category. (C and D) Spatial variation in 
the achieved predictive performance at 150 weeks, measured by AUC, for males and females, respectively. Gray areas lack data on either positive or negative cases. These 
county-specific AUC plots show that the performance of the algorithm has relatively weak geospatial dependence, which is important in the light of the current uneven 
distribution of diagnostic resources. Not all counties have nonzero number of ASD patients; high performance in those counties reflects a small number of false positives 
with zero false negatives.
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Fig. 2. More details on standalone predictive performance of ACoR and variation of inferred risk. (A) AUC achieved as a function of patient age, for the Truven and 
UCM datasets. The shaded area outlines the 2 to 2.5 years of age and shows that we achieve >80% AUC for either sex from shortly after 2 years. (B) How inferred models 
differ between the control versus the positive cohorts. (C) How the average risk changes with time for the control and the positive cohorts. Note that the risk progressions 
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database. ill defn., symptoms, signs, and ill-defined conditions; musc. skltl., diseases of the musculoskeletal system and connective tissue; cond. orig. in perintl., certain 
conditions originating in the perinatal period; immun., endocrine, nutritional and metabolic diseases, and immunity disorders; nerv. & sensory, diseases of the ner-
vous system and sense organs; respir., respiratory disorders; and digest., digestive disorders. On average, models become less complex, implying that the ex-
posures become more statistically independent.
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Two limiting operating conditions are of particular interest in 
this optimization scheme, (i) where we maximize PPV under some 
minimum specificity and sensitivity (denoted as the high precision 
or the HP operating point) and (ii) where we maximize sensitivity 
under some minimum PPV and specificity (denoted as the high re-
call or the HR operating point). Taking these minimum values of 
specificity, sensitivity, and PPV to be those reported for M-CHAT/F, 
we identify the feasible set of conditional choices in a four-dimensional 
decision space that would significantly outperform M-CHAT/F in 
universal screening. The results are shown in Fig. 1B.

We carried out a battery of tests to ensure that our results are not 
significantly affected by class imbalance (since our control cohort is 

orders of magnitude larger) or systematic coding errors, e. g., we 
verified that restricting the positive cohort to children with at least 
two distinct ASD diagnostic codes in their medical histories instead 
of one has little impact on out-of-sample predictive performance 
(fig. S6B).

Use of de-identified patient data for the UCM dataset was ap-
proved by the Institutional Review Board (IRB) of the University 
of Chicago. An exemption was granted because of the de-identified 
nature of the data (IRB Committee: Biological Sciences Division, 
contact: A. Horst, ahorst@medicine.bsd.uchicago.edu. IRB#: Predictive 
Diagnoses IRB19-1040).

RESULTS
We measure our performance using several standard metrics in-
cluding the AUC, sensitivity, specificity, and the PPV. For the pre-
diction of the eventual ASD status, we achieve an out-of-sample 
AUC of 82.3 and 82.5% for males and females, respectively, at 
125 weeks for the Truven dataset. In the UCM dataset, our perform
ance is comparable: 83.1 and 81.3% for males and females, respec-
tively (Figs. 1 and 2). Our AUC is shown to improve approximately 
linearly with patient age: Fig. 2A illustrates that the AUC reaches 
90% in the Truven dataset at the age of 4. Note that Fig. 2C sug-
gests that the risk progressions are somewhat monotonic. In addi-
tion, the computed confidence bounds suggest that the odds of a 
child with low risk up to 100 or 150 weeks of age abruptly shifting to 
a high risk trajectory are low. Thus, “borderline” cases need to be 
surveilled longer, while robust decisions may be obtained in other 
cases much earlier.

Recall that the UCM dataset is used purely for validation, and good 
performance on these independent datasets lends strong evidence 
for our claims. Furthermore, applicability in new datasets without 
local retraining makes it readily deployable in clinical settings.

Enumerating the top 15 predictive features (Fig. 1B), ranked ac-
cording to their automatically inferred weights (the feature “impor-
tances”), we found that while infections and immunologic disorders 
are the most predictive, there is a significant effect from each of the 
17 disease categories. Thus, the comorbid indicators are distributed 
across the disease spectrum, and no single disorder is uniquely im-
plicated (see also Fig. 2F). Predictability is relatively agnostic to the 
number of local cases across U.S. counties (Fig. 1, C and D), which 
is important in light of the current uneven distribution of diagnos-
tic resources (12, 36) across states and regions.

Unlike individual predictions that only become relevant over 
2 years, the average risk over the populations is clearly different 
from around the first birthday (Fig. 2C), with the risk for the 
positive cohort rapidly rising. Also, we see a saturation of the risk 
after ≈3 years, which corresponds to the median diagnosis age in 
the database. Thus, if a child is not diagnosed up to that age, then 
the risk falls, since the probability of a diagnosis in the population 
starts to go down after this age. While average discrimination is not 
useful for individual patients, these reveal important clues as to how 
the risk evolves over time. In addition, while each new diagnostic 
code within the first year of life increases the risk burden by approx-
imately 2% irrespective of sex (Fig. 2E), distinct categories modulate 
the risk differently; e. g., for a single random patient illustrated in 
Fig. 2F, infections and immunological disorders dominate early, while 
diseases of the nervous system and sensory organs, as well as ill- 
defined symptoms, dominate the latter period.

Table 2. Engineered features (total count, 165).  

Feature type* Description No. of features

[Disease category]
Likelihood defect (see 

Materials and 
Methods)

17

[Disease category]0

Likelihood of control 
model (see 
Materials and 
Methods)

17

[Disease 
category]proportion

Occurrences in the 
encoded 
sequence/length 
of the sequence

17

[Disease category]streak

Maximum length of 
adjacent 
occurrences of 
[disease category]

51

[Disease 
category]prevalence

Maximum, mean, and 
variance of 
occurrences in the 
encoded 
sequence/total 
number of 
diagnostic codes in 
the mapped 
sequence

51

Feature mean, feature 
variance, and 
feature maximum 
for difference of 
control and case 
models

Mean, variance, and 
maximum of the 
[disease category] 
values

3

Feature mean, feature 
variance, and 
feature maximum 
for control models

Mean, variance, and 
maximum of the 
[disease category]0 
values

3

Streak

Maximum, mean, and 
variance of the 
length of adjacent 
occurrences of 
[disease category]

3

Intermission

Maximum, mean, and 
variance of the 
length of adjacent 
empty weeks

3

*Disease categories are described in table S1.

mailto:ahorst@medicine.bsd.uchicago.edu
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Given these results, it is important to ask how much earlier we 
can trigger an intervention. On average, the first time the relative 
risk (risk divided by the decision threshold set to maximize F1 score; 
see Materials and Methods) crosses the 90% threshold precedes di-
agnosis by ≈188 weeks in the Truven dataset and ≈129 weeks in the 
UCM dataset. This does not mean that we are leading a possible 
clinical diagnosis by over 2 years; a significant portion of this delay 
arises from families waiting in queue for diagnostic evaluations. 
Nevertheless, since delays are rarely greater than 1 year (12), we are 
still likely to produce valid red flags significantly earlier than the 
current practice.

Our approach produces a strictly superior PPV, exceeding 
M-CHAT/F PPV by at least 14% (14.1 to 33.6%) when sensitiv-
ity and specificity are held at comparable values (approximately 
38 and 95%) around the age of 26 months (≈112 weeks, note that 
26 consecutive months is approximately 112 to 113 weeks). Figure 3A 
and Table 3 show the out-of-sample PPV versus sensitivity curves 

for the two databases, stratified by sex, computed at 100, 112, and 
100 weeks. A single illustrative operating point is also shown on the 
receiver operating characteristic (ROC) curve in Fig. 1C, where, 
at 150 weeks, we have a sensitivity of 51.8% and a PPV of 15.8 and 
18.8% for males and females, respectively, both at a specifici-
ty of 95%.

Beyond standalone performance, independence from standard-
ized questionnaires implies that we stand to gain substantially from 
a combined operation. With the recently reported population strat-
ification induced by M-CHAT/F scores (13) (table S4), we can com-
pute a conditional choice of sensitivity for our tool, in each 
subpopulation [M-CHAT/F score brackets, 0 to 2, 3 to 7 (negative 
assessment), 3 to 7 (positive assessment), and >8], leading to a sig-
nificant performance boost. With such conditional operation, we 
get a PPV close to or exceeding 30% at the HP operating point 
across datasets (>33% for Truven and >28% for UCM) or a sensitiv-
ity close to or exceeding 50% for the HR operating point (>58% for 
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CHOP

1.7%
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2.23%
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A Standalone precision recall B M-CHAT/F conditioned performance

Fig. 3. Metrics relevant to clinical practice: PPV versus sensitivity trade-offs. (A) Precision/recall curves, i. e., the trade-off between PPV and sensitivity for standalone 
operation with ACoR. (B) How we can boost ACoR performance using population stratification from the distribution of M-CHAT/F scores in the population, as reported by 
the CHOP study (13). This is possible because ACoR and M-CHAT/F use independent information (comorbidities versus questionnaire responses). Note that the population 
prevalence affects this optimization, and hence we have a distinct curve for each prevalence value (1.7% is the CDC estimate, while 2.23% is reported by the CHOP study). 
The two extreme operating zones marked as high precision (HP) and high recall (HR): if we choose to operate in HR, then we do not reduce the number of positive screens 
by much but maximize sensitivity, while by operating in HP, we increase sensitivity by 20 to 40% (depending on the prevalence) but double the PPV achieved in current 
practice. In contrast, when choosing to maximize sensitivity by operating in the HR zone, we only cut down positive flags to about 70% of what we get with M-CHAT/F, 
but boost sensitivity by 50 to 90% (reaching sensitivities over 70%). Note that, in all these zones, we maintain specificity above 95%, which is the current state of art, im-
plying that by doubling the PPV, we can halve the number of positive screens currently reported, thus potentially sharply reducing the queues and wait times.
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Truven and >50% for UCM), when we restrict specificities to above 
95% [see Table 4, Fig. 3B (i), and fig. S10]. Compared with stand-
alone M-CHAT/F performance [Fig. 3B (ii)], we show that for any 
prevalence between 1.7 and 2.23%, we can double the PPV without 
losing sensitivity at >98% specificity, or increase the sensitivity by 
∼50% without sacrificing PPV and keeping specificity ≧94%.

DISCUSSION
In this study, we operationalize a documented aspect of ASD symp-
tomology in that it has a wide range of comorbidities (15, 16, 37) 
occurring at above-average rates (8). Association of ASD with epi-
lepsy (38), gastrointestinal disorders (39–44), mental health disorders 
(45), insomnia, decreased motor skills (46), allergies including ecze-
ma (39–44), and immunologic (37, 47–53) and metabolic (43, 54, 55) 

disorders is widely reported. These studies, along with support from 
large-scale exome sequencing (56, 57), have linked the disorder to 
putative mechanisms of chronic neuroinflammation, implicating 
immune dysregulation and microglial activation (49,  52,  58–61) 
during important brain developmental periods of myelination and 
synaptogenesis. However, these advances have not yet led to clinically 
relevant diagnostic biomarkers. Majority of the comorbid conditions 
are common in the control population, and rate differentials at the 
population level do not automatically yield individual risk (62).

ASD genes exhibit extensive phenotypic variability, with identi-
cal variants associated with diverse individual outcomes not limited 
to ASD, including schizophrenia, intellectual disability, language 
impairment, epilepsy, neuropsychiatric disorders, and also typical 
development (63). In addition, no single gene can be considered “causal” 
for more than 1% of cases of idiopathic autism (64).

Table 3. Standalone PPV achieved at 100, 112, and 150 weeks for each dataset and gender [M-CHAT/F: sensitivity = 38:8%; specificity = 95%; and 
PPV = 14:6% between 16 and 26 months (≈112 weeks)].  

Weeks Specificity Sensitivity PPV Gender Dataset

100 0.92 0.39 0.14 F UCM

100 0.95 0.39 0.19 M UCM

100 0.93 0.39 0.13 F Truven

100 0.91 0.39 0.10 M Truven

112 0.93 0.39 0.16 F UCM

112 0.95 0.39 0.20 M UCM

112 0.96 0.39 0.22 F Truven

112 0.95 0.39 0.17 M Truven

150 0.94 0.39 0.19 F UCM

150 0.98 0.39 0.34 F Truven

150 0.97 0.39 0.26 M Truven

150 0.97 0.39 0.26 M UCM

Table 4. Personalized operation conditioned on M-CHAT/F scores at 26 months. NEG, negative; POS, positive. 

M-CHAT/F outcome Global performance (Truven) Global performance (UCM) Prevalence*

0–2 NEG 3–7 NEG 3–7 POS ≥8 POS Specificity Sensitivity PPV Specificity Sensitivity PPV

Specificity choices

0.2 0.54 0.83 0.98 0.95 0.585 0.209 0.95 0.505 0.186 0.022

0.21 0.53 0.83 0.98 0.95 0.586 0.208 0.95 0.506 0.184 0.022

0.42 0.87 0.98 0.99 0.98 0.433 0.331 0.98 0.347 0.284 0.022

0.48 0.87 0.97 0.99 0.98 0.432 0.331 0.98 0.355 0.289 0.022

0.38 0.54 0.94 0.98 0.95 0.736 0.203 0.95 0.628 0.178 0.017

0.3 0.55 0.94 0.98 0.95 0.737 0.203 0.95 0.633 0.179 0.017

0.58 0.96 0.98 0.99 0.98 0.492 0.302 0.98 0.373 0.247 0.017

0.59 0.96 0.98 0.99 0.98 0.491 0.303 0.98 0.372 0.248 0.017

0.46 0.92 0.97 0.99 0.977 0.534 0.291 0.977 0.448 0.256 0.017

0.48 0.92 0.97 0.99 0.978 0.533 0.292 0.978 0.448 0.257 0.017

*Prevalence reported by CDC is 1.7%, while the CHOP study reports a value of 2.23%. The results of our optimization depend on the prevalence estimate.
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Despite these hurdles, laboratory tests and potential biomarkers 
for ASD have begun to emerge (3, 5, 6). These tools are still in 
their infancy and have not demonstrated performance in the 18- to 
24-month age group. In the absence of clinically useful biomarkers, 

current screening in pediatric primary care visits uses standardized 
questionnaires to categorize behavior. This is susceptible to poten-
tial interpretative biases arising from language barriers, as well as social 
and cultural differences, often leading to systematic underdiagnosis in 
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The negative associations disappear when we consider older children, consistent with the literature that lacks studies on very young cohorts.
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diverse populations (8). In this study, we use time-stamped sequence 
of past disorders to elicit crucial information on the developing 
risk of an eventual diagnosis, and formulate the autism comorbid 
risk score. The ACoR is largely free from aforementioned biases 
(see performance comparison in out-of-sample populations stratified 
by race, gender, and ethnicity in fig.S2, where we find no significant 
differences in predictive performances across racial and ethnic bound-
aries) and yet significantly outperforms the tools in current practice. 
Our ability to maintain high performance in diverse populations is 
an important feature of ACoR; it is not obvious a priori that ACoR 
resists inheriting or compounding the systemic biases that might 
exist in diagnostic procedures. Nevertheless, our investigations with 
the UCM dataset show that we have no significant differences in 
predictive performance in African-American, white, or multiracial 
subpopulations. While the average performance among Hispanic 
children was somewhat lower, the differences were not significant.

Going beyond screening performance, this approach provides a 
new tool to uncover clues to ASD pathobiology, potentially linking 
the observed vulnerability to diverse immunological, endocrinological, 
and neurological impairments to the possibility of allostatic stress 
load disrupting key regulators of CNS organization and synaptogene-
sis. Charting individual disorders in the comorbidity burden fur-
ther reveals novel associations in normalized prevalence—the odds 
of experiencing a specific disorder, particularly in the early years 
(age <3 years), normalized over all unique disorders experienced in 
the specified time frame. We focus on the true positives in the pos-
itive cohort and the true negatives in the control cohort to investi-
gate patterns that correctly disambiguate ASD status. On these lines, 
Fig. 4 and fig. S7 outline two key observations: (i) negative associations: 
some diseases that are negatively associated with ASD with respect 
to normalized prevalence, i. e., having those codes relatively over-
represented in one’s diagnostic history favors ending up in the con-
trol cohort; and (ii) impact of sex: there are sex-specific differences 
in the impact of specific disorders, and given a fixed level of impact, 
the number of codes that drive the outcomes is substantially higher 
in number in males (Fig. 4, A versus B).

Some of the disorders that show up in Fig. 4 (A and B) are unex-
pected, e. g., congenital hemiplegia or diplegia of the upper limbs 
indicative of either cerebral palsy (CP) or a spinal cord/brain injury, 
neither of which has a direct link to autism. However, this effect is 
easily explainable: Since only about 7% of the children with CP are 
estimated to have a co-occurring ASD (65, 66), and with the preva-
lence of CP significantly lower (1 in 352 versus 1 in 59 for autism), 
it follows that only a small number of children (approximately 1.17%) 
with autism have co-occurring CP. Thus, with significantly higher 
prevalence in children diagnosed with autism compared to the gen-
eral population (1.7 versus 0.28%), CP codes show up with higher 
odds in the true-positive set. Other patterns are harder to explain. 
For example, fig. S7A shows that the immunological, metabolic, and 
endocrine disorders are almost completely risk-increasing, and re-
spiratory diseases (fig. S7B) are largely risk-decreasing. On the other 
hand, infectious diseases have roughly equal representations in the 
risk-increasing and risk-decreasing classes (fig. S7C). The risk- 
decreasing infectious diseases tend to be due to viral or fungal 
organisms, which might point to the use of antibiotics in bacterial 
infections and the consequent dysbiosis of the gut microbiota (41, 55) 
as a risk factor.

Any predictive analysis of ASD must address if we can discriminate 
ASD from general developmental and behavioral disorders. The 

Diagnostic and Statistical Manual of Mental Disorders (DSM-5) es-
tablished a single category of ASD to replace the subtypes of autistic 
disorder, Asperger syndrome, and pervasive developmental dis-
orders (8). This aligns with our use of diagnostic codes from 
ICD-9-CM 299.X as specification of an ASD diagnosis and use 
standardized mapping to 299.X from ICD-10-CM codes when we 
encounter them. For other psychiatric disorders, we get high dis-
crimination reaching AUCs over 90% at 100 to 125 weeks of age 
(fig. S6A), which establishes that our pipeline is indeed largely 
specific to ASD.

Can our performance be matched by simply asking how often a 
child is sick? While the density of ICD codes in a child’s medical history 
is higher for those eventually diagnosed with autism (see Table 1), 
we found this to be a crude measure. While somewhat predictive, 
achieving AUC ≈75% in the Truven database at 150 weeks (see fig. 
S6), code density by itself does not have a stable performance across 
the two databases, with a particularly poor performance in validation 
in the UCM database. Furthermore, adding code density as a feature 
shows no appreciable improvement in our pipeline.

We also investigated the impact of removing all psychiatric 
codes (ICD-9-CM 290-319, and corresponding ICD-10-CM) from 
the patient histories to eliminate the possibility that our performance 
is only reflective of prior psychiatric evaluation results. Training and 
validation on this modified data found no appreciable difference 
in performance (see fig. S9). In addition, we found that including 
information on prescribed medications and medical procedures in 
addition to diagnostic codes did not improve results.

A key limitation of our approach is that automated pattern rec-
ognition strategies are not guaranteed to reveal true causal precur-
sors of future diseases. Thus, we must further scrutinize the patterns 
we find to be predictive. This is particularly true for the inferred 
negative associations of some disorders with the future odds of an 
ASD diagnosis; these might be indicative of collider bias (67), sug-
gesting spurious associations arising from conditioning on the com-
mon effect of unrelated causes. Here, the putative collider in our 
framework is the presence of the child in a clinic or a medical facility 
for a medical issue. In the future, we will investigate the possibility 
of identifying more transparent and interpretable risk precursors via 
postprocessing of our inferred models.

Our approach is also affected by the uncurated nature of medical 
history, which invariably includes coding mistakes and other arti-
facts, e. g. , potential for overdiagnosis of children on the borderline 
of the diagnostic criteria due to clinicians’ desire to help families 
access service and biases arising from changes in diagnostic practices 
over time (68). Discontinuities in patient medical histories from 
change in provider networks can also introduce uncertainties in risk 
estimates, and socioeconomic status of patients and differential 
access to care might skew patterns in EHR databases. Despite these 
limitations, the design of a questionnaire-free component to ASD 
screening that systematically leverages comorbidities has far-reaching 
consequences, by potentially slashing the false positives and wait 
times and removing systemic underdiagnosis issues among females 
and minorities.

In the future, we will also explore the impact of maternal medical 
history and the use of calculated risk to trigger blood work to look 
for expected transcriptomic signatures of ASD. Last, the analysis 
developed here applies to phenotypes beyond ASD, thus opening the 
door to the possibility of general comorbidity-aware risk predictions 
from EHR databases.
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One of our immediate future goals is to prospectively validate 
ACoR in a clinical setting. Ultimately, we hope to see widespread 
adoption of this new tool. A key hurdle to adoption is a general lack 
of trust in nontransparent decision algorithms, in particular in the 
light of the biases, misclassifications, misinterpretations, and subjec-
tivity in the training datasets (69). We hope that results from pro-
spective trials and the key advantages laid out in this study will help 
alleviate such concerns.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abf0354
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