

HHS Public Access

Author manuscript Ann Rheum Dis. Author manuscript; available in PMC 2021 October 06.

Published in final edited form as:

Ann Rheum Dis. 2021 October; 80(10): 1255-1265. doi:10.1136/annrheumdis-2021-221244.

Impact of disease modifying anti-rheumatic drugs on vaccine immunogenicity in patients with inflammatory rheumatic and musculoskeletal diseases

Marcia A. Friedman, M.D.¹, Jeffrey R. Curtis, M.D., M.S., M.P.H.², Kevin L. Winthrop, M.D., M.P.H.^{1,3}

¹ Department of Medicine, Oregon Health and Science University, Mail Code OP09, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA

² Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL

³ Oregon Health & Science University School of Public Health, Oregon Health and Science University, 840 SW Gaines Rd, Portland, OR 97239, USA.

Abstract

Patients with rheumatic diseases are at increased risk of infectious complications; vaccinations are a critical component of their care. Disease modifying anti-rheumatic drugs (DMARDs) may reduce the immunogenicity of common vaccines. We will review here available data regarding the effect of these medications on influenza, pneumococcal, herpes zoster, SARS-CoV-2, hepatitis B, human papilloma virus and yellow fever vaccines. Rituximab has the most substantial impact on vaccine immunogenicity, which is most profound when vaccinations are given at shorter intervals after rituximab dosing. Methotrexate has less substantial effect but appears to adversely impact most vaccine immunogenicity. Abatacept likely decrease vaccine immunogenicity, although these studies are limited by the lack of adequate control groups. Janus kinase and tumor necrosis factor inhibitors decrease absolute antibody titers for many vaccines, but do not seem to significantly impact the proportions of patients achieving seroprotection. Other biologics (IL-6R, IL-12/23 and IL-17 inhibitors) have little observed impact on vaccine immunogenicity. Data regarding the effect of these medications on the SARS-CoV-2 vaccine immunogenicity is just now emerging, and early glimpses appear similar to our experience with other vaccines. In this review, we summarize the most recent data regarding vaccine response and efficacy in this setting, particularly in light of current vaccination recommendations for immunocompromised patients.

Ethical approval information: not applicable

Data sharing statement: not applicable

Corresponding Author: Marcia A Friedman, MD, 3181 SW Sam Jackson Park Rd., Mail Code OP09, Portland, OR 97239, friedmam@ohsu.edu, (503) 494-8637.

<u>Contributorship</u>: MAF drafted the initial manuscript. All authors substantially contributed to the conception and design of the work, and the acquisition, analysis, or interpretation of data for the work. All authors revised the manuscript for critically important intellectual content. All authors approve of the version to be published. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Patient and public involvement statement: Patients and the public were not involved in this manuscript.

Keywords

DMARDs; Biologics; Vaccination; SARS-CoV-2 Vaccine; Influenza vaccine; Pneumococcal vaccine; Zoster vaccine

Introduction:

Patients with inflammatory rheumatic diseases are at increased risk of vaccine-preventable infectious diseases.^{1–6} Vaccinations reduce the risks of infectious complications in rheumatic disease patients⁷⁸, yet are under-utilized.⁹¹⁰ While vaccinations are critically important, the drugs used to treat inflammatory diseases may impair responses to vaccines. This review addresses available data regarding the effect of disease modifying anti-rheumatic drugs (DMARDs) on vaccine immunogenicity (Table 1) and summarizes vaccination recommendations made for this population (Table 2).

Vaccine immunogenicity is typically measured as a surrogate for clinical vaccine efficacy. Interpreting and harmonizing results from studies of vaccine immunogenicity are complicated by several factors. First, the arsenal of DMARD therapy is rapidly expanding with new drug classes and more drugs within each class, and these may have subtle yet important differences (for example, differences in janus kinase [JAK]-inhibitor targets and JAK selectivity.) Secondly, recommended vaccines continue to change; pneumococcal and influenza vaccines frequently change, and we now have multiple critically important SARS-CoV-2 vaccines. Lastly, outcome measures (timing of response measurement, how response is measure, definitions of response¹¹) and study design (control groups, concomitant methotrexate [MTX] or low dose glucocorticoid therapy) are inconsistent across studies, making it difficult to parse out the true impact of the drug on vaccine immunogenicity or efficacy.

We will summarize here the available data evaluating the effect of DMARDs on vaccine immunogenicity, as well as to summarize current recommendations for how and when to vaccinate rheumatic disease patients on DMARD therapy. While all vaccines are potentially important, we will focus on influenza, pneumococcus, herpes zoster, hepatitis B virus (HBV), tetanus, human papilloma virus (HPV), and yellow fever (YF) vaccines, as well as the newly emerging data for the SARS-CoV-2 vaccines (Table 1). We will additionally review safety data regarding live vaccines (herpes zoster and YF) and newer highly immunogenic recombinant herpes zoster and SARS-CoV-2 vaccines.

Influenza Vaccination:

Background:

Intramuscular influenza vaccines are available as trivalent vaccines containing two strains of influenza A and one strain of influenza B, and quadrivalent vaccines, which contain an additional B strain.¹²¹³ Two quadrivalent vaccines are currently recommended for adults age 65—a high dose quadrivalent vaccine (Fluzone High-Dose) and an adjuvanted quadrivalent vaccine (Fluad Quadrivalent).¹²¹³ The live attenuated intranasal influenza vaccine is contraindicated in patients taking biologics or other immunomodulatory therapies (e.g.

JAK inhibitors). Influenza vaccine efficacy is estimated using a surrogate of hemagglutinin inhibition titers. A titer of 1:40 is considered "seroprotected" (as defined as 50% vaccine efficacy.)

Effect of DMARD therapy of vaccine efficacy:

Rituximab^{14–21} and MTX¹⁴²²²³ reduce influenza vaccine immunogenicity. Abatacept likely impairs immunogenicity though data is limited.^{24–26} Post-vaccination antibody titers are lower in patients on TNF^{142027–29} and JAK inhibitors³⁰, although the proportion of patients achieving seroprotection is similar to rheumatic disease patients not treated with these medications. Interleukin (IL)-6, IL-12/23, and IL-17 inhibitors do not appear to impact the influenza vaccine.^{31–35} (Table 1)

Influenza vaccination responses may be improved for rituximab¹⁶²¹ and MTX²²²³ treated patients by optimally timing the drug and vaccine. Timing the influenza vaccine 6–10 months after rituximab yielded modestly better results than 4–8 weeks after rituximab (5/12 versus 1/11 patients achieved seroprotection p = 0.108).²¹ In a randomized, controlled trial, 316 patients with RA were randomized to take continuous MTX or to hold MTX for 2 weeks after influenza vaccine. Those who held MTX had higher rates of satisfactory vaccine response (75.5% vs 54.5%, p<0.001); however, lower doses of MTX 7.5 mg/week did not show a significant improvement with MTX dose interruption. ²³ Post-hoc analyses found that MTX reduced vaccine response only in patients with high B cell activating factor (BAFF) levels, raising questions about whether these results are generalizable to all patients or only a subset with elevated BAFF (which is not routinely evaluated).³⁶

Abatacept likely impairs influenza vaccine immunogenicity, though data are limited.^{24–26} Two studies of the pandemic 2009 influenza A/H1N1 vaccine found that patients on abatacept had a substantially lower rate of seroconversion; in one study this rate was as low as 9% compared to 69% of controls (p=0.001).²⁴²⁶ However, an uncontrolled study of the trivalent 2011–2012 seasonal influenza vaccine found that 81.2% of patients on subcutaneous abatacept were able to mount protective antibody titers,²⁵ which is only modestly reduced compared to general populations rates (89–97% for each flu strain).³⁷

Low-dose glucocorticoid use has not been shown to impact influenza vaccine response when added to other DMARD thearpy. In a study of infliximab and influenza vaccine response, concomitant low dose glucocorticoids (mean doses 5–10 mg/day) were not found to impact influenza vaccine response. ³⁸ Similarly, low dose prednisone (mean 8 mg/day) in RA did not adversely affect influenza vaccine response in a multivariant regression analysis when evaluated alongside other DMARD therapy. ²⁷

Recommendations:

Routine yearly influenza vaccines are recommended for all people aged 6 months or older. ¹²³⁹ The European League Against Rheumatism (EULAR) and American College of Rheumatology (ACR) both recommend yearly intramuscular influenza vaccinations for all RA patients. ⁴⁰⁴¹

High-dose influenza vaccines may be more effective in rheumatic disease patients^{42–44}, although at this time the high-dose vaccine is recommended only for adults age 65. ¹² A randomized study of 279 patients with RA found that those receiving the high-dose influenza vaccine were more likely to seroconvert (odds ratio (OR) 2.99, 95% CI 1.46–6.11); this effect was similar in patients on synthetic and biologic DMARDs.⁴²

Rituximab-treated patients should ideally receive the influenza vaccine before initiating rituximab, or as long after the last dose of rituximab and 2–4 weeks before the next dose⁴¹, as compatible with the influenza season. However, when this timing is not compatible with the influenza season, patients on rituximab may still be able to mount a T cell response to the vaccination (although it is not known whether T cell responses correlate with influenza protection.)¹⁷ Patients on MTX can improve influenza vaccination responses by holding MTX for two weeks after vaccination, particularly for those on 15 mg/week; holding methotrexate did not appear to increase disease activity measures, although this group had a small increase in the rate of flares (5.1% vs. 10.6%, p =0.07).²²²³

Pneumococcal Vaccination:

Background:

Two pneumococcal vaccines are commonly used, pneumococcal conjugate vaccine 13valent (PCV13) and pneumococcal polysaccharide vaccine 23-valent (PPSV23). PCV-13 is conjugated to a diphtheria protein and is more immunogenic than the polysaccharide vaccine. Both PCV-13 and PPSV-23 vaccine immunogenicity is typically measured by post-vaccination antibody titers against serotypes found in each vaccine, although the titer level chosen as "protective" can be variable and is arbitrary, as no level of "seroprotection" against most pneumococcal disease has been established.¹¹

Effect of DMARD therapy on vaccine efficacy:

As with most vaccines in the rheumatologic setting, studies have not been large enough to evaluate changes in efficacy related to DMARD usage. Immunogenicity outcomes are achievable in such studies, and it is clear that Rituximab^{141845–47} and MTX^{111448–51} reduce pneumococcal vaccine immunogenicity. JAK-inhibitors³⁰⁵²⁵³ and abatacept²⁵⁴⁵⁴⁶ appear to modestly reduce immunogenicity, while other biologics (TNF, IL-6, IL-12/23, and IL-17 inhibitors) do not impair vaccine immunogenicity.

A meta-analysis reported that rituximab-treated patients had a pooled OR for nonseroconversion (inability to mount a 2-fold increase in antibody concentrations postvaccination) ranging from 4.91 (95% CI 2.32–10.40) to 13.06 (95% CI 2.39–71.34) depending on the pneumococcal serotype.¹¹ The effect of MTX is less than that of rituximab; pooled ORs for non-seroconversion ranged from 2.0 (95% CI 1.06–3.77) to 5.41 (95% CI 2.09–13.98) depending on the serotype.¹¹

Interpretation of data from abatacept studies is complicated by concomitant MTX and/or a lack of controls. In one uncontrolled study of patients on subcutaneous abatacept (most of whom were also on MTX) vaccinated with PPSV23, 34/46 (74%) of patients developed protective antibody titers, consistent with expected response.²⁵ However, another study of 17

patients on IV abatacept vaccinated with PCV7 (13 of whom were receiving concomitant MTX) found a lower likelihood of a 2-fold increase in post-vaccination antibody titer compared to patients on tocilizumab or controls.⁴⁵ Lastly, in a pneumococcal booster study, the booster strategy improved antibody response in 23 abatacept-treated patients (half of whom were on MTX); however the antibody response was lower than in healthy controls.⁴⁶

JAK-inhibitors appear to have a modest impact on the rate of satisfactory responses to pneumococcal vaccinations (defined as a 2-fold increase in antibody concentrations in 6 serotypes), at least to PPSV-23 where there is comparative data published.³⁰⁵³ A placebo-controlled study of RA patients vaccinated after 4 weeks of tofacitinib or placebo found that those on tofacitinib were less likely to develop a satisfactory antibody response compared to placebo (45.1% vs. 68.4%, -23% difference [95% CI -36.6% to -9.6%]), particularly if they were also on MTX (31.6%).³⁰ Temporary interruption in tofacitinib for 1 week pre-vaccination and 1 week post-vaccination modestly improved PPSV23 response when compared to continuous tofacitinib, but this did not reach significance (84.6% vs. 75.0%, -9.6% difference [95% CI -24.0 to 4.7]).³⁰ A final uncontrolled study of 106 baricitinib-treated patients (89% of whom were also on MTX) vaccinated with PCV13 found that approximately 2/3 of patients received a satisfactory antibody response;⁵³ these proportions were similar to another study evaluating PCV-13 responses in healthy controls and RA patients not using DMARDs.⁵⁰

Low-dose glucocorticoids taken concomitantly with other DMARD therapy have not been found to impact pneumococcal vaccine responses, 535758 while high dose-glucocorticoids may adversely impact pneumococcal vaccine immunogenicity.⁵⁹ Among patients with inflammatory diseases vaccinated with the PPV23, 57% of non-responders were taking prednisone >20 mg/day compared with 22% of vaccine responders (p =0.07).⁵⁹ In an uncontrolled baricitinib study where approximately 30% of particpants were taking concomitant low-dose corticosteroids (mean dose 6.2 mg/day), PCV-13 response rates were similar in those taking corticosteroids versus those not taking corticosteroids (71% [95% CI 53.4–83.9] vs 67% [95% CI 55.2–76.5]). ⁵³ Similarly, in a study of patients on methotrexate with or without infliximab, concomitant low-dose glucocorticoids (prednisone equivalent <10 mg/day) did not adversely impact vaccine response.⁵⁸

Recommendations:

The EULAR, ACR, and center for disease control (CDC)) all recommend pneumococcal vaccinations for patients with rheumatic disease taking DMARD therapy.⁴⁰⁶⁰⁶¹ Patients should receive a dose of PCV13 followed by a dose of PPSV23 at least 8 weeks later. A second PPSV23 vaccine should be given 5 years after the first one. PCV13 followed by a booster of PPSV23 improves pneumococcal antibody responses for patients on conventional synthetic DMARDs and partially improves responses for patients on abatacept but may not improve vaccine response for those on rituximab.⁴⁶

Patients should be given their first dose of a pneumococcal vaccine ideally before starting DMARD therapy. Patients on rituximab should receive the required vaccine dose at least 2 weeks before their next dose of rituximab is due. Although extrapolating from influenza

studies and observational data raises the idea that holding methotrexate at the time of vaccination could improve pneumococcal vaccine response, this idea has yet to be studied.

Herpes Zoster Vaccination

Background:

There are two approved herpes zoster vaccines—the recombinant zoster vaccine (RZV) (Shingrix) and the live zoster vaccine (ZVL) (Zostavax). In non-head-to-head studies in the general population, the RZV appears more effective such that the ZVL is no longer marketed in the United States although it is still used in many parts of the world.⁶² Response to zoster vaccine is measured by a humoral varicella zoster virus IgG and/or cell-mediated VZV-specific T cell enumeration. Although both measures correlated with vaccine efficacy, cell-mediated responses correlate more strongly with the risk of future shingles.⁶³

Effect of DMARD therapy on vaccine efficacy:

Few studies have evaluated the immunogenicity of zoster vaccines in rheumatic disease patients.

112 RA patients on MTX were vaccinated with the ZVL and then randomized to start tofacitinib or placebo 2–3 weeks post-vaccination. Patients in both groups had similar post-vaccine responses.⁵² In this study, approximately 40% of placebo patients and 47% of tofacitinib patients were taking concomitant glucocorticoids (mean dose 7.1 and 5.9 mg/day prednisone or equivalent respectively). ZVL vaccine responses were similar in those taking glucocorticoids and those not taking glucocorticoids.⁵² TNF-inhibitor treated patients vaccinated with the ZVL developed 30% increases in humoral and cell-mediated responses relative to a placebo vaccine, which are about half the response observed in initial pivotal trials among healthy subjects.⁶⁴ Zoster vaccines have not been studied in rheumatic disease patients on rituximab, however, among patients with hematologic malignancies on anti-CD20 therapies (alone or in combination with other chemotherapies) the RZV produced significant T-cell responses.⁶⁵ Zoster vaccine immunogenicity data for patients currently taking JAK-inhibitors, abatacept, and other biologics have not been reported.

Safety in patients with rheumatic diseases:

While the ZVL vaccine is contraindicated in immunocompromised patients, given the theoretical concern of potential local or disseminated vaccine-strain varicella with vaccination, available data suggest it is safer than initially thought. In the study of MTX and tofacitinib above, there was 1 case of cutaneous vaccine dissemination in a patient on MTX randomized to start tofacitinib, however, this patient lacked primary immunity to varicella (i.e. they did not have chickenpox as a child) and were not a candidate for the live vaccine.⁵² Among 633 United States Medicare patients inadvertently vaccinated while on biologics, no cases of shingles occurred in the 6 weeks post-vaccination.¹⁰ 600 patients on TNF-inhibitors (with or without MTX and prednisone) randomized 1:1 to receive the ZVL vs placebo and found no cases of varicella infection or zoster within the subsequent 42 day risk period of highest interest.⁶⁴ These data suggest that the ZVL may be given safely to those using TNF-inhibitors with/without MTX and/or prednisone if the RZV is not available.

The recombinant vaccine is not live and is likely safe in patients with rheumatic diseases, however, phase 3 clinical trials excluded patients on immunosuppressive therapy. There has been theoretical concern that the adjuvant in the RZV may cause a flare of underlying inflammatory disease. The first retrospective review of 403 rheumatic disease patients vaccinated with the RZV found a 7% incidence of disease flare within 12 weeks of receiving a vaccine dose; this incidence was considered to be similar to expected rates from clinical trials.⁶⁶ However, a second retrospective review of 359 patients with rheumatic diseases found that 16% had a flare of their disease within 12 weeks of receiving a vaccine dose.⁶⁷ The differences in these results may be related to a difference in flare definition, however neither was prospective or controlled. A post-hoc analysis of clinical trials (NCT01165177 and NCT01165229) pooled data from nearly 2,000 patients (approximately half received vaccine) with self-reported inflammatory disease who were not treated with DMARDs. This analysis found similar high rates of vaccine efficacy and no new safety concerns, however, it is likely that these self-reported individuals had either mild or no disease given their lack of DMARD therapy.⁶⁸ Future prospective, controlled studies are necessary to adequately evaluate safety and efficacy of this vaccine in the rheumatology setting.

Recommendations:

The CDC recommends the RZV for all patients aged 50 and above.¹² The European Medicines Agency recently approved the RZV for adults over age 18 with immunocompromising conditions⁶⁹, however, very little data exist in this age group and guidelines are not yet available for the use of this vaccine in patients with rheumatic diseases. The ACR recommends use of the ZVL for patients with RA over age 50⁴⁰, and EULAR recommends zoster vaccination in high-risk patients⁴¹, however, neither of these guidelines address the newer RZV. Given that immunocompromised patients with rheumatic diseases are at increased risk of zoster⁶⁷⁰, future guidelines may be expanded to recommend the RZV for high-risk patients at a younger age (e.g. 18 and older).

SARS-CoV-2 Vaccination

Background:

A growing number of SARS-CoV-2 vaccines are in use world-wide, including mRNA, adenoviral vector, protein subunit, and inactivated virus vaccines.⁷¹ We will focus our discussion on 2 mRNA vaccines and 2 adenoviral vector vaccines, which have been most widely studied in patients with rheumatic diseases. In phase III trials, the BNT162b2 (Pfizer/BioNTech) mRNA vaccine was 95% effective (95% CI 90.3–97.6)⁷² and the mRNA01273 (Moderna) vaccine was 94.1% effective (95% CI 89.3–96.8)⁷³ in preventing symptomatic COVID-19 infection following the second dose. Phase III trials found the Ad26.COV2.S (Janssen/Johnson & Johnson) vaccine single dose vaccine to be 66.9% effective (95% CI 59.0–73.4)⁷⁴ and the ChAdOx1 nCoV-19/AZD1222 (University of Oxford/AstraZeneca/Serum Institute of India) vaccine to be 70.4% effective (95% CI 54.8–80.6) following the second dose.⁷⁵

SARS-CoV-2 vaccine immunogenicity can be measured by humoral IgG to spike protein (not nucleocapsid protein) or cellular T-cell reactivity via interferon (IFN)-γ response to

SARS-CoV-2 peptide. Antibody responses are reported as "seroconversion" (newly positive anti-spike protein IgG), or by post-vaccination antibody titers. The role of T cell responses to SARS-CoV-2 vaccines are not fully understood, however emerging evidence suggest that T cell responses may confer protection ⁷⁶⁷⁷ even in the absence of humoral response.⁷⁸⁷⁹ However, we do not yet know how immunogenicity cutoffs correlate with efficacy, whether reduced absolute titers may still be adequate titers, or whether immune responses wane over time, making SARS-CoV-2 immunogenicity studies difficult to fully interpret.

Effect of DMARD therapy on SARS CoV-2 vaccine efficacy:

Early data in this setting is largely consistent with that from other vaccine studies. Data suggest that rituximab^{80–84}, glucocorticoids⁸²⁸⁴, MTX⁸²⁸⁴⁸⁵, abatacept⁸⁴, mycophenolate mofetil⁸⁴ and JAK-inhibitors⁸² impair SARS-CoV-2 vaccine responses in many patients. The mRNA vaccine mechanism and potential impact of DMARD therapy is described in Figure 1.

The largest observational study to date evaluated the BNT162b2 (Pfizer/BioNTech) mRNA vaccine in 686 patients with rheumatic diseases. Compared to controls where 100% seroconverted to vaccination (i.e. newly positive anti-spike IgG), seroconversion rates were significantly lower for patients on rituximab (39% seroconverted, p<0.0001), mycophenolate mofetil (64% seroconverted, p<0.0001), abatacept (71% seroconverted, p<0.0001), JAK-inhibitors (90% seroconverted, p=0.02), MTX (92% seroconverted, p=0.02), and glucocorticoids (mean dose 6.7 mg/day, 77% seroconverted, p < 0.0001), while other DMARDs (leflunomide, hydroxychloroquine, TNF, IL-6 and IL-17-inhibitors) did not significantly impact seroconversion.⁸⁴ A logistic regression further identified anti-CD20 therapy (adjusted OR 0.13, p<0.001), glucocorticoids (adjusted OR 0.48, p=0.02), abatacept (adjusted OR 0.14, p<0.001), and mycophenolate mofetil (adjusted OR 0.1, p=0.0013) as independent predictors of a poor vaccine response.⁸⁴ Another prospective study of 133 patients with immune mediated inflammatory diseases on various DMARD therapies and 53 controls vaccinated with mRNA vaccines found that rituximab significantly reduced mRNA vaccine immunogenicity, JAK-inhibitors and MTX moderately reduced antibody titers, and other therapies (TNF, IL-12/23, and integrin inhibitors) had a modest impact on antibody formation.82

Risk factors for a poor humoral response on rituximab include a shorter duration between rituximab dose and vaccine, and lack of B-cell reconstitution.⁸¹⁸⁶ Rituximab-treated patients vaccinated 6 months after their last rituximab dose had a seropositivity rate around 20%, and those vaccinated 1 year after the last rituximab dose had rates around 50%.⁸⁴ Despite a reduced humoral response, early data suggests that rituximab-treated patients may still mount a normal cellular vaccine response, such that the net impact on clinical protection is not clear. ⁸⁶

MTX appears to reduce some aspects of the SARS-CoV-2 vaccine response.⁸²⁸⁴⁸⁵ In a New York cohort of patients with immune mediated inflammatory disease, 72% of MTX-treated patients had adequate humoral antibody titers (defined as IgG to spike protein >5,000 units) compared to 92.3% of patient with rheumatic disease not on MTX and 96.1% of healthy controls (p=0.023).⁸⁵ Patients on MTX also had reduced activated CD8+ T cells response

but a preserved CD4+ T cell response.⁸⁵ In the Furer et al. cohort of 176 MTX-treated patients, 84% of all MTX-treated patients and 92% of patients on MTX-monotherapy seroconverted, compared to 100% of controls (p<0.05).⁸⁴

TNF-inhibitors appear to reduce SARS-CoV-2 post-vaccination titers⁸²⁸⁷⁸⁸, but do not seem to substantially impact rates of seroconversion⁸³⁸⁷⁸⁸⁸⁴—although antibody cutoffs for seroprotection are not defined. Among 865 infliximab-treated inflammatory bowel disease patients given a single vaccine dose of the BNT162b2 mRNA vaccine or the ChAdOx1 nCoV-19 adenoviral vaccine had lower antibody concentrations and seroconversion rates compared to those on vedolizumab.⁸⁸ However, in the 27 patients who were studied after a second vaccine dose of the mRNA vaccine, there was no difference in the rate of seroconversion (85% vs. 86%, p=0.68).⁸⁸ Similarly, in the Furer et al. cohort, 172 patients on TNF-inhibitors fully vaccinated with BNT162b2 mRNA vaccine showed no significant difference in seroconversion rates compared to healthy controls⁸⁴ Whether reductions in quantitative humoral responses is of clinical significance is unknown.

JAK inhibitors likely reduce antibody titers and have a mild effect on seroconversion, although the clinical important of these observations is unknown and data are scant. The 10 patients on JAK-inhibitors in the Deepak et al. cohort had a >6-fold reduction in titers compared to controls (95% CI 2.9–15.3, p<0.05.)⁸² However, in the Furer et al. study, among 21 patients on JAK-inhibitor monotherapy and 24 on combination therapy, 19 (90%) and 22 (92%) respectively seroconverted, neither of which were significantly different from controls.⁸⁴

Safety in patients with rheumatic diseases:

Because of its substantial immunogenicity, there is concern that the SARS-CoV-2 vaccine may induce flares in patients with inflammatory diseases. This concern is supported by reports of thrombocytopenic purpura^{89–92} and myocarditis/pericarditis^{93–95} after vaccination. There have additionally been observational reports of new onset immune-mediated disease⁹⁶ and/or disease flares after SARS-CoV-2 vaccination⁹⁶⁹⁷, which must be balanced against the risk of immune-mediated disease resulting from SARS-CoV-2 infection itself.^{98–100}

The Furer et al. cohort of rheumatic disease patients documented two fatalities postvaccination; one ANCA-vasculitis patient developed cutaneous vasculitis with subsequent fatal sepsis three weeks after the second vaccine dose and the second had a history of cardiovascular disease and died of a myocardial infarction 2 months after the second vaccine dose. Other adverse events of note were two cases of uveitis, one case of pericarditis, six cases of herpes zoster, and one case of herpes labialis, while risks of typical side effects were similar to the controls.⁸⁴ Small prospective studies thus far have not found an increased in underlying inflammatory disease activity measures after SARS-CoV-2 vaccination,⁸⁴⁸⁷ however, more prospective data are needed to understand the safety of these vaccines and risk of disease flare in patients with rheumatic diseases.

Recommendations:

The ACR has provided detailed recommendations for management of DMARD therapy in the setting of the SARS-CoV-2 vaccine (Table 2).¹⁰¹ EULAR is also developing guidelines for SARS-CoV-2 vaccines in patients with rheumatic diseases, which should be available in the near future. All patients with rheumatic diseases should receive the SARS-CoV-2 vaccine as per general population recommendations.

Hepatitis B Vaccination

Background:

There are three different single-antigen recombinant HBV vaccines available worldwide and several combination vaccines; however, the most common HBV vaccine is a yeast-derived single-antigen vaccine. HBV vaccine immunogenicity is measured by anti-HBV surface antibody, where a titer of 10 IU/L is considered to be seroprotective. ¹⁰²

Effect of DMARD therapy on vaccine efficacy:

TNF and IL-12/23 inhibitors have been found to reduce HBV vaccine immunogenicity^{103–105}, while most other medications have not been extensively evaluated.

TNF-inhibitors reduce HBV vaccine immunogenicity,^{103–105} although there may be differences among TNF-inhibitors, with the lower antibody response rates for infliximab and higher response rates for etanercept.¹⁰⁵ Ustekinumab was evaluated in one study of 25 patients where vaccine responses were moderately reduced.¹⁰⁵ A recent trial of a high dose HBV vaccine in DMARD-treated patients resulted in higher antibody response rates (anti-HBs titer over 10 iU/mL) when compared with a standard-dose vaccine, however this result did not reach significance (61.1% vs. 49.3%, p>0.05).¹⁰⁵

Recommendations:

In the United States, HBV vaccination is recommended for adults at high risk (Table 1).^{1261106–108} Ideally patients who require HBV vaccination should be vaccinated prior to starting DMARD therapy, particularly for high-risk patients starting rituximab. ¹⁰⁹

Human Papilloma Virus Vaccination

Background:

Three HPV vaccines are approved; however, the 9-valent vaccine is the only HPV vaccine currently available in the United States. Women with rheumatic diseases on immunosuppressive therapies are at increased risk of HPV and cervical cancer; this has been particularly well described in SLE but is seen in other inflammatory diseases.^{110–115} HPV vaccine immunogenicity is measured by seroconversion to subtypes contained in the vaccine, although a minimum threshold for seroprotection is not defined.

Effect of DMARD therapy on vaccine efficacy:

MTX and TNF-inhibitors have been evaluated in patients with juvenile idiopathic arthritis (JIA), juvenile dermatomyositis, inflammatory bowel disease and systemic

lupus erythematosus (SLE); in these patients, MTX and TNF-inhibitors do not appear to impact post-vaccination seroconversion rates.^{116–119} Patients with SLE on combination mycophenolate mofetil and low dose glucocorticoids show moderately reduced seroconversion rates for HPV6 and 18, but not for other subtypes.¹¹⁸ Other DMARD therapies have not been evaluated in patients with rheumatic diseases.

Recommendations:

The CDC recommends HPV vaccination for all patients (regardless of sex) at age 11 or 12 up through age 26.¹² No specific changes in medications are recommended for the HPV vaccines. It is important to remember that HPV vaccines are given as a series and the treating rheumatologist should ensure that the entire series have been completed.

Tetanus Vaccination

Background:

The tetanus toxoid, reduced diphtheria toxoid and acellular pertussis (Tdap) vaccine is a single dose vaccine. Tetanus toxoid is a T cell-dependent antigen. Tetanus vaccine immunogenicity is typically measured by anti-tetanus toxoid IgG concentrations 4 weeks post-vaccination, where an antibody concentration of 0.10 IU/mL is typically considered seroprotective, however, an endpoint of 4-fold increase in antibody concentration is also sometimes used.¹²⁰

Effect of DMARD therapy on vaccine efficacy:

Rituximab reduces response to the tetanus vaccine, however, the degree of this reduction is inconsistent between studies.¹⁸¹²¹ Studies of abatacept¹²²¹²³, JAK-inhibitors⁵³¹²⁰, and TNF-inhibitors¹²¹¹²⁴ suggest a modest impairment in immunogenicity. IL-6⁵⁵, IL-17⁵⁵, and IL-12/23⁵⁴ inhibitors have not been shown to impair tetanus vaccine immunogenicity.

Rituximab may have less of a profound impact on tetanus immunogenicity than other vaccines, possibly because most patients have previously had tetanus vaccine and may have residual tetanus-specific memory B cells. RA patients on rituximab + MTX and MTX monotherapy were able to mount similar rates of humoral response, defined as a 4-fold rise in anti-tetanus IgG (39.1% vs. 42.3%, 95% CI –25.7 to 19.2).¹⁸ However, another study found that rituximab was associated with lower rates of protective antibodies titers (0.1 IU/mL) compared to other inflammatory disease patients or controls (73% vs. 96–100%) and only 9% of rituximab-treated patients had a 4 fold rise in antibody titers.¹²¹

A study of patients with inflammatory bowel disease on TNF-inhibitors found lower antibody titers relative to those on thiopurines or healthy controls (p<0.001), though average titers were still in the protective range.¹²⁴ Other data have shown similar antibody response rates in TNF-treated patients relative to health controls.¹²¹ An uncontrolled study of subcutaneous abatacept found satisfactory tetanus vaccine response in 219 juvenile idiopathic arthritis patients (regardless of MTX or concomitant glucocorticoids),¹²² while a smaller study of 20 adults vaccinated 2 weeks after a single dose of intravenous abatacept found approximately 10% lower rates of protective antibody development relative

to controls.¹²³ Delaying the tetanus vaccine to 8 weeks after abatacept improved response rates to close to that of healthy controls.¹²³ Studies of JAK inhibitors are uncontrolled, making it difficult to estimate the drug effect. However, relative to expected responses in the general population, baricitinib plus MTX-treated patients with RA show reduced anti-tetanus antibody concentrations⁵³, while tofacitinib-treated patients with psoriasis mount a seemingly satisfactory response.¹²⁰ In a study of baricitinib and tetanus vaccination, concomitant glucocorticoids did not appear to have an adverse effect on rates of adequate humoral response; 52% (95% CI 34.8–68) of those taking glucocorticoids vs 39% (95% CI 28.9–51.1) of those not taking glucocorticoids.⁵³

Studies of psoriasis patients on ustekinumab⁵⁴ and ixekizumab⁵⁵ did not find any change in post-vaccination tetanus antibody response relative to untreated controls. Tocilizumab similarly does not appear to hamper antibody response to the tetanus vaccine.¹²⁵

Recommendations:

Adults and adolescents should receive a Tdap followed by boosters of tetanus and diphtheria toxoids (Td) every 10 years or when indicated due to a wound, although a booster may be either Td or Tdap. ¹² Tetanus vaccination should ideally be done prior to starting rituximab therapy.

Yellow Fever vaccination

Background:

The YF vaccine is recommended to immunocompetent persons who live or travel to endemic areas.⁶¹¹²⁶ However, this vaccine is live and is contraindicated in immunosuppressed patients including those receiving biologics and JAKi.⁴¹ YF vaccine immunogenicity is measured by post-vaccination neutralizing antibody titers.

Effect of DMARD therapy on vaccine efficacy:

Because the YF vaccine is live, few studies have addressed the immunogenicity of this vaccine in patients with rheumatic diseases. A study from Brazil evaluated 31 patients who were inadvertently re-vaccinated (patients had primary immunity from a previous vaccine) while on biologics; these patients had lower, yet adequate antibody titers.¹²⁷ Another 17 patients on infliximab + MTX achieved satisfactory antibody levels in all but 1 patient.¹²⁸ Among 15 patients on MTX, all achieved seroprotection.¹²⁹ Patients on corticosteroids (mean 7 mg/day, range 5–20 mg/day), 18/34 of whom were vaccine naive, also appeared to have satisfactory titers.¹³⁰

Safety in patients with rheumatic diseases:

Small studies suggest that the vaccine may be safer than previously thought for patients on MTX¹²⁷¹²⁹¹³¹, infliximab¹²⁷¹²⁸ and corticosteroids <20 mg/day¹³⁰. A retrospective Swiss study of 92 patients on immunosuppressive medications (16 on MTX, 40 on corticosteroids, small numbers on other medications) who received the yellow fever vaccine developed similar rates of side effects as healthy controls (controls had a similar proportion of patients with a primary YF vaccine history) and no serious adverse events.¹³¹ A prospective study

of 15 patients on MTX (20 mg/week) receiving a primary YF vaccine found slightly increased rates of yellow fever RNA viremia in MTX-treated patients relative to controls (p>0.39), however these levels were never of clinical significance.¹²⁹In the study from Brazil above, 31 patients re-vaccinated on biologics had no adverse events.¹²⁷

Recommendations:

The yellow fever vaccine should be avoided in patients who are immunosuppressed. In travels or patients in endemic areas at very high risk, patients and their providers may consider holding immunosuppressive therapy for vaccination. The typical requirement for doing this would be to hold for a sufficient time to allow for the medication to wash out and its biologic effect to dissipate depending on half-life, then vaccinate, and then wait 2–4 weeks before resuming medication.

Conclusion:

Vaccinations are critical in the care of patients with inflammatory diseases, especially for those on DMARD therapy, yet DMARD therapy can impair vaccine response. This issue is only becoming more important with the emergence of novel pathogens and resultant innovative vaccines. In this review we have summarized the available data regarding DMARDs and vaccine responses. While the impact of DMARD therapy on vaccines is variable, there are consistent themes. Rituximab substantially reduces antibody response to vaccines, although T cell responses may be preserved. MTX and abatacept reduce the immunogenicity of many vaccines. TNF and JAK-inhibitors typically reduce absolute postvaccination antibody titers, though most patients (particularly those on TNF-inhibitors) still achieve seroprotective levels. Other anti-cytokine therapies, including IL-6, IL-12/23, and IL-17 inhibitors do not appear to have a measurable impact on vaccine immunogenicity.

Vaccine immunogenicity studies are limited by inconsistency in immunogenicity measures and heterogeneity of control groups. More data are needed for the SARS-CoV-2, HBV, HPV and zoster vaccines, and for less common medications such as belimumab and newer anticytokine therapies. Lastly, few clinical trials have directly evaluated strategies to overcome this issue, such as timing vaccines around DMARD dosing, or utilizing drug-holidays. As our arsenal of DMARD therapy and vaccines grow, more clinical trials will be needed to assess the impact of DMARD therapy on vaccines, and to test strategies to optimize vaccine response.

Funding:

MAF receives support from the NIH (KL2TR002370) and the Oregon Health & Science University Department of Medicine Wheels Up program.

JRC receives support from the NIH (P30AR072583).

KLW receives support from BMS and Pfizer.

Competing Interests:

MAF has received consulting fees for Revolo.

JTR serves on ACIP HZ Workgroup, lead of ACR COVID Vaccine Guidance Task Force, member of ACR COVID-19 Vaccine Clinical Guideline Task Force, and is a member of EULAR Vaccine Guidance Task Force. JTR receives research grants and/or consulting for unrelated work: Amgen, Abbvie, BMS, CORRONA, Genentech, GSK, Lilly, Janssen, Novartis, Pfizer, UCB

KLW receives support from BMS and Pfizer. KLW has received consulting fees from Pfizer, AbbVie, Union Chimique Belge (UCB), Eli Lilly & Company, Galapagos, GlaxoSmithKline (GSK), Roche, Gilead, BMS, Regeneron, Sanofi, AstraZeneca and Novartis

References

- Furer V, Rondaan C, Heijstek M, et al. Incidence and prevalence of vaccine preventable infections in adult patients with autoimmune inflammatory rheumatic diseases (AIIRD): a systemic literature review informing the 2019 update of the EULAR recommendations for vaccination in adult patients with AIIRD. RMD Open 2019;5(2):e001041. doi: 10.1136/rmdopen-2019-001041 [published Online First: 2019/11/02] [PubMed: 31673420]
- 2. Wolfe F, Mitchell DM, Sibley JT, et al. The mortality of rheumatoid arthritis. Arthritis Rheum 1994;37(4):481–94. doi: 10.1002/art.1780370408 [published Online First: 1994/04/01] [PubMed: 8147925]
- Gluck T, Muller-Ladner U. Vaccination in patients with chronic rheumatic or autoimmune diseases. Clin Infect Dis 2008;46(9):1459–65. doi: 10.1086/587063 [published Online First: 2008/04/19] [PubMed: 18419456]
- Crowson CS, Hoganson DD, Fitz-Gibbon PD, et al. Development and validation of a risk score for serious infection in patients with rheumatoid arthritis. Arthritis Rheum 2012;64(9):2847–55. doi: 10.1002/art.34530 [published Online First: 2012/05/12] [PubMed: 22576809]
- Doran MF, Crowson CS, Pond GR, et al. Predictors of infection in rheumatoid arthritis. Arthritis Rheum 2002;46(9):2294–300. doi: 10.1002/art.10529 [published Online First: 2002/10/02] [PubMed: 12355476]
- 6. Yun H, Xie F, Delzell E, et al. Risks of herpes zoster in patients with rheumatoid arthritis according to biologic disease-modifying therapy. Arthritis Care Res (Hoboken) 2015;67(5):731–6. doi: 10.1002/acr.22470 [published Online First: 2014/09/10] [PubMed: 25201241]
- Nakafero G, Grainge MJ, Myles PR, et al. Effectiveness of inactivated influenza vaccine in autoimmune rheumatic diseases treated with disease-modifying anti-rheumatic drugs. Rheumatology (Oxford) 2020;59(12):3666–75. doi: 10.1093/rheumatology/keaa078 [published Online First: 2020/03/12] [PubMed: 32160295]
- Zhang J, Delzell E, Xie F, et al. The use, safety, and effectiveness of herpes zoster vaccination in individuals with inflammatory and autoimmune diseases: a longitudinal observational study. Arthritis Res Ther 2011;13(5):R174. doi: 10.1186/ar3497 [published Online First: 2011/10/26] [PubMed: 22024532]
- Hmamouchi I, Winthrop K, Launay O, et al. Low rate of influenza and pneumococcal vaccine coverage in rheumatoid arthritis: data from the international COMORA cohort. Vaccine 2015;33(12):1446–52. doi: 10.1016/j.vaccine.2015.01.065 [published Online First: 2015/02/11] [PubMed: 25659279]
- Zhang J, Xie F, Delzell E, et al. Association between vaccination for herpes zoster and risk of herpes zoster infection among older patients with selected immune-mediated diseases. JAMA 2012;308(1):43–9. doi: 10.1001/jama.2012.7304 [published Online First: 2012/07/05] [PubMed: 22760290]
- van Aalst M, Langedijk AC, Spijker R, et al. The effect of immunosuppressive agents on immunogenicity of pneumococcal vaccination: A systematic review and meta-analysis. Vaccine 2018;36(39):5832–45. doi: 10.1016/j.vaccine.2018.07.039 [published Online First: 2018/08/21] [PubMed: 30122649]
- Freedman MS, Ault K, Bernstein H. Advisory Committee on Immunization Practices Recommended Immunization Schedule for Adults Aged 19 Years or Older - United States, 2021. MMWR Morb Mortal Wkly Rep 2021;70(6):193–96. doi: 10.15585/mmwr.mm7006a2 [published Online First: 2021/02/12] [PubMed: 33571173]

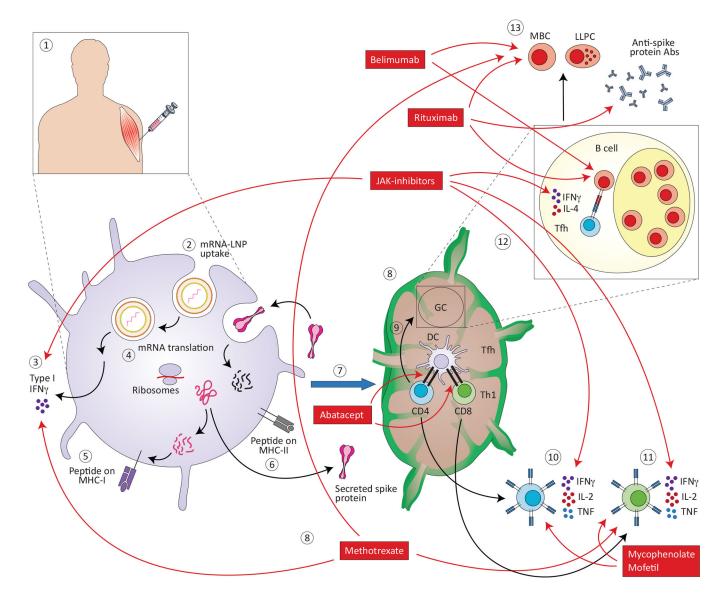
- Grohskopf LA, Alyanak E, Broder KR, et al. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices -United States, 2020–21 Influenza Season. MMWR Recomm Rep 2020;69(8):1–24. doi: 10.15585/ mmwr.rr6908a1 [published Online First: 2020/08/22]
- 14. Hua C, Barnetche T, Combe B, et al. Effect of methotrexate, anti-tumor necrosis factor alpha, and rituximab on the immune response to influenza and pneumococcal vaccines in patients with rheumatoid arthritis: a systematic review and meta-analysis. Arthritis Care Res (Hoboken) 2014;66(7):1016–26. doi: 10.1002/acr.22246 [published Online First: 2013/12/18] [PubMed: 24339395]
- Oren S, Mandelboim M, Braun-Moscovici Y, et al. Vaccination against influenza in patients with rheumatoid arthritis: the effect of rituximab on the humoral response. Ann Rheum Dis 2008;67(7):937–41. doi: 10.1136/ard.2007.077461 [published Online First: 2007/11/06] [PubMed: 17981914]
- Rehnberg M, Brisslert M, Amu S, et al. Vaccination response to protein and carbohydrate antigens in patients with rheumatoid arthritis after rituximab treatment. Arthritis Res Ther 2010;12(3):R111. doi: 10.1186/ar3047 [published Online First: 2010/06/10] [PubMed: 20529331]
- Arad U, Tzadok S, Amir S, et al. The cellular immune response to influenza vaccination is preserved in rheumatoid arthritis patients treated with rituximab. Vaccine 2011;29(8):1643–8. doi: 10.1016/j.vaccine.2010.12.072 [published Online First: 2011/01/08] [PubMed: 21211590]
- Bingham CO 3rd, Looney RJ, Deodhar A, et al. Immunization responses in rheumatoid arthritis patients treated with rituximab: results from a controlled clinical trial. Arthritis Rheum 2010;62(1):64–74. doi: 10.1002/art.25034 [published Online First: 2009/12/30] [PubMed: 20039397]
- Lakota K, Perdan-Pirkmajer K, Sodin-Semrl S, et al. The immunogenicity of seasonal and pandemic influenza vaccination in autoimmune inflammatory rheumatic patients-a 6-month follow-up prospective study. Clin Rheumatol 2019;38(5):1277–92. doi: 10.1007/ s10067-019-04439-y [published Online First: 2019/02/15] [PubMed: 30761436]
- Richi P, Martin MD, Navio MT, et al. Antibody responses to influenza vaccine in patients on biological therapy: Results of RIER cohort study. Med Clin (Barc) 2019;153(10):380–86. doi: 10.1016/j.medcli.2019.02.003 [published Online First: 2019/05/08] [PubMed: 31060878]
- van Assen S, Holvast A, Benne CA, et al. Humoral responses after influenza vaccination are severely reduced in patients with rheumatoid arthritis treated with rituximab. Arthritis Rheum 2010;62(1):75–81. doi: 10.1002/art.25033 [published Online First: 2009/12/30] [PubMed: 20039396]
- 22. Park JK, Lee MA, Lee EY, et al. Effect of methotrexate discontinuation on efficacy of seasonal influenza vaccination in patients with rheumatoid arthritis: a randomised clinical trial. Ann Rheum Dis 2017;76(9):1559–65. doi: 10.1136/annrheumdis-2017-211128 [published Online First: 2017/05/05] [PubMed: 28468794]
- 23. Park JK, Lee YJ, Shin K, et al. Impact of temporary methotrexate discontinuation for 2 weeks on immunogenicity of seasonal influenza vaccination in patients with rheumatoid arthritis: a randomised clinical trial. Ann Rheum Dis 2018;77(6):898–904. doi: 10.1136/ annrheumdis-2018-213222 [published Online First: 2018/03/25] [PubMed: 29572291]
- Adler S, Krivine A, Weix J, et al. Protective effect of A/H1N1 vaccination in immune-mediated disease--a prospectively controlled vaccination study. Rheumatology (Oxford) 2012;51(4):695– 700. doi: 10.1093/rheumatology/ker389 [published Online First: 2011/12/16] [PubMed: 22171015]
- Alten R, Bingham CO 3rd, Cohen SB, et al. Antibody response to pneumococcal and influenza vaccination in patients with rheumatoid arthritis receiving abatacept. BMC Musculoskelet Disord 2016;17:231. doi: 10.1186/s12891-016-1082-z [published Online First: 2016/05/28] [PubMed: 27229685]
- 26. Ribeiro AC, Laurindo IM, Guedes LK, et al. Abatacept and reduced immune response to pandemic 2009 influenza A/H1N1 vaccination in patients with rheumatoid arthritis. Arthritis Care Res (Hoboken) 2013;65(3):476–80. doi: 10.1002/acr.21838 [published Online First: 2012/09/06] [PubMed: 22949223]

- Fomin I, Caspi D, Levy V, et al. Vaccination against influenza in rheumatoid arthritis: the effect of disease modifying drugs, including TNF alpha blockers. Ann Rheum Dis 2006;65(2):191–4. doi: 10.1136/ard.2005.036434 [published Online First: 2005/07/15] [PubMed: 16014674]
- Gelinck LB, van der Bijl AE, Beyer WE, et al. The effect of anti-tumour necrosis factor alpha treatment on the antibody response to influenza vaccination. Ann Rheum Dis 2008;67(5):713–6. doi: 10.1136/ard.2007.077552 [published Online First: 2007/10/30] [PubMed: 17965123]
- Franca IL, Ribeiro AC, Aikawa NE, et al. TNF blockers show distinct patterns of immune response to the pandemic influenza A H1N1 vaccine in inflammatory arthritis patients. Rheumatology (Oxford) 2012;51(11):2091–8. doi: 10.1093/rheumatology/kes202 [published Online First: 2012/08/22] [PubMed: 22908326]
- Winthrop KL, Silverfield J, Racewicz A, et al. The effect of tofacitinib on pneumococcal and influenza vaccine responses in rheumatoid arthritis. Ann Rheum Dis 2016;75(4):687–95. doi: 10.1136/annrheumdis-2014-207191 [published Online First: 2015/03/22] [PubMed: 25795907]
- 31. Tsuru T, Terao K, Murakami M, et al. Immune response to influenza vaccine and pneumococcal polysaccharide vaccine under IL-6 signal inhibition therapy with tocilizumab. Mod Rheumatol 2014;24(3):511–6. doi: 10.3109/14397595.2013.843743 [published Online First: 2013/11/21] [PubMed: 24252023]
- Doornekamp L, Goetgebuer RL, Schmitz KS, et al. High Immunogenicity to Influenza Vaccination in Crohn's Disease Patients Treated with Ustekinumab. Vaccines (Basel) 2020;8(3) doi: 10.3390/ vaccines8030455 [published Online First: 2020/08/23]
- 33. Chioato A, Noseda E, Stevens M, et al. Treatment with the interleukin-17A-blocking antibody secukinumab does not interfere with the efficacy of influenza and meningococcal vaccinations in healthy subjects: results of an open-label, parallel-group, randomized single-center study. Clin Vaccine Immunol 2012;19(10):1597–602. doi: 10.1128/CVI.00386-12 [published Online First: 2012/08/10] [PubMed: 22875601]
- 34. Furer V, Zisman D, Kaufman I, et al. Immunogenicity and safety of vaccination against seasonal influenza vaccine in patients with psoriatic arthritis treated with secukinumab. Vaccine 2020;38(4):847–51. doi: 10.1016/j.vaccine.2019.10.081 [published Online First: 2019/11/27] [PubMed: 31767465]
- 35. Richi P, Martin MD, de Ory F, et al. Secukinumab does not impair the immunogenic response to the influenza vaccine in patients. RMD Open 2019;5(2):e001018. doi: 10.1136/ rmdopen-2019-001018 [published Online First: 2019/10/01] [PubMed: 31565246]
- 36. Park JK, Lee YJ, Bitoun S, et al. Interaction between B-cell activation factor and methotrexate impacts immunogenicity of seasonal influenza vaccination in patients with rheumatoid arthritis. Ann Rheum Dis 2019;78(2):282–84. doi: 10.1136/annrheumdis-2018-214025 [published Online First: 2018/10/10] [PubMed: 30297326]
- Pepin S, Donazzolo Y, Jambrecina A, et al. Safety and immunogenicity of a quadrivalent inactivated influenza vaccine in adults. Vaccine 2013;31(47):5572–8. doi: 10.1016/ j.vaccine.2013.08.069 [published Online First: 2013/09/11] [PubMed: 24016810]
- 38. Elkayam O, Bashkin A, Mandelboim M, et al. The effect of infliximab and timing of vaccination on the humoral response to influenza vaccination in patients with rheumatoid arthritis and ankylosing spondylitis. Semin Arthritis Rheum 2010;39(6):442–7. doi: 10.1016/ j.semarthrit.2008.12.002 [published Online First: 2009/02/28] [PubMed: 19246078]
- Fiore AE, Uyeki TM, Broder K, et al. Prevention and control of influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2010. MMWR Recomm Rep 2010;59(RR-8):1–62. [published Online First: 2010/08/07]
- 40. Singh JA, Saag KG, Bridges SL Jr., et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol 2016;68(1):1–26. doi: 10.1002/ art.39480 [published Online First: 2015/11/08]
- Furer V, Rondaan C, Heijstek MW, et al. 2019 update of EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann Rheum Dis 2020;79(1):39–52. doi: 10.1136/annrheumdis-2019-215882 [published Online First: 2019/08/16] [PubMed: 31413005]
- 42. Colmegna I, Useche ML, Rodriguez K, et al. Immunogenicity and safety of high-dose versus standard-dose inactivated influenza vaccine in rheumatoid arthritis patients: a randomised,

double-blind, active-comparator trial. The Lancet Rheumatology 2020;2(1):e14-e23. doi: 10.1016/S2665-9913(19)30094-3.

- 43. Stapleton JT, Wagner N, Tuetken R, et al. High dose trivalent influenza vaccine compared to standard dose vaccine in patients with rheumatoid arthritis receiving TNF-alpha inhibitor therapy and healthy controls: Results of the DMID 10–0076 randomized clinical trial. Vaccine 2020;38(23):3934–41. doi: 10.1016/j.vaccine.2020.04.002 [published Online First: 2020/04/17] [PubMed: 32295718]
- 44. Caldera F, Hillman L, Saha S, et al. Immunogenicity of High Dose Influenza Vaccine for Patients with Inflammatory Bowel Disease on Anti-TNF Monotherapy: A Randomized Clinical Trial. Inflamm Bowel Dis 2020;26(4):593–602. doi: 10.1093/ibd/izz164 [published Online First: 2019/09/11] [PubMed: 31504526]
- 45. Crnkic Kapetanovic M, Saxne T, Jonsson G, et al. Rituximab and abatacept but not tocilizumab impair antibody response to pneumococcal conjugate vaccine in patients with rheumatoid arthritis. Arthritis Res Ther 2013;15(5):R171. doi: 10.1186/ar4358 [published Online First: 2013/11/30] [PubMed: 24286269]
- 46. Nived P, Jonsson G, Settergren B, et al. Prime-boost vaccination strategy enhances immunogenicity compared to single pneumococcal conjugate vaccination in patients receiving conventional DMARDs, to some extent in abatacept but not in rituximab-treated patients. Arthritis Res Ther 2020;22(1):36. doi: 10.1186/s13075-020-2124-3 [published Online First: 2020/02/24] [PubMed: 32087733]
- Ben Nessib D, Fazaa A, Miladi S, et al. Do immunosuppressive agents hamper the vaccination response in patients with rheumatic diseases? A review of the literature. Therapie 2020 doi: 10.1016/j.therap.2020.08.002 [published Online First: 2020/09/22]
- Kapetanovic MC, Roseman C, Jonsson G, et al. Antibody response is reduced following vaccination with 7-valent conjugate pneumococcal vaccine in adult methotrexate-treated patients with established arthritis, but not those treated with tumor necrosis factor inhibitors. Arthritis Rheum 2011;63(12):3723–32. doi: 10.1002/art.30580 [published Online First: 2011/08/13] [PubMed: 21834061]
- Kapetanovic MC, Nagel J, Nordstrom I, et al. Methotrexate reduces vaccine-specific immunoglobulin levels but not numbers of circulating antibody-producing B cells in rheumatoid arthritis after vaccination with a conjugate pneumococcal vaccine. Vaccine 2017;35(6):903–08. doi: 10.1016/j.vaccine.2016.12.068 [published Online First: 2017/01/14] [PubMed: 28081972]
- 50. Nived P, Saxne T, Geborek P, et al. Antibody response to 13-valent pneumococcal conjugate vaccine is not impaired in patients with rheumatoid arthritis or primary Sjogren's syndrome without disease modifying treatment. BMC Rheumatol 2018;2:12. doi: 10.1186/ s41927-018-0019-6 [published Online First: 2019/03/20] [PubMed: 30886963]
- 51. Rasmussen SL, Fuursted K, Nielsen KA, et al. Pneumococcal antibody protection in patients with autoimmune inflammatory rheumatic diseases with varying vaccination status. Scand J Rheumatol 2020;49(5):353–60. doi: 10.1080/03009742.2020.1732459 [published Online First: 2020/05/30] [PubMed: 32468899]
- 52. Winthrop KL, Wouters AG, Choy EH, et al. The Safety and Immunogenicity of Live Zoster Vaccination in Patients With Rheumatoid Arthritis Before Starting Tofacitinib: A Randomized Phase II Trial. Arthritis Rheumatol 2017;69(10):1969–77. doi: 10.1002/art.40187 [published Online First: 2017/08/29] [PubMed: 28845577]
- 53. Winthrop KL, Bingham CO 3rd, Komocsar WJ, et al. Evaluation of pneumococcal and tetanus vaccine responses in patients with rheumatoid arthritis receiving baricitinib: results from a long-term extension trial substudy. Arthritis Res Ther 2019;21(1):102. doi: 10.1186/s13075-019-1883-1 [published Online First: 2019/04/20] [PubMed: 30999933]
- 54. Brodmerkel C, Wadman E, Langley RG, et al. Immune response to pneumococcus and tetanus toxoid in patients with moderate-to-severe psoriasis following long-term ustekinumab use. J Drugs Dermatol 2013;12(10):1122–9. [published Online First: 2013/10/03] [PubMed: 24085047]
- 55. Gomez EV, Bishop JL, Jackson K, et al. Response to Tetanus and Pneumococcal Vaccination Following Administration of Ixekizumab in Healthy Participants. BioDrugs 2017;31(6):545–54. doi: 10.1007/s40259-017-0249-y [published Online First: 2017/11/09] [PubMed: 29116597]

- 56. Kapetanovic MC, Saxne T, Sjoholm A, et al. Influence of methotrexate, TNF blockers and prednisolone on antibody responses to pneumococcal polysaccharide vaccine in patients with rheumatoid arthritis. Rheumatology (Oxford) 2006;45(1):106–11. doi: 10.1093/rheumatology/ kei193 [published Online First: 2005/11/17] [PubMed: 16287919]
- 57. Richi P, Yuste J, Navio T, et al. Impact of Biological Therapies on the Immune Response after Pneumococcal Vaccination in Patients with Autoimmune Inflammatory Diseases. Vaccines (Basel) 2021;9(3) doi: 10.3390/vaccines9030203 [published Online First: 2021/03/07]
- 58. Visvanathan S, Keenan GF, Baker DG, et al. Response to pneumococcal vaccine in patients with early rheumatoid arthritis receiving infliximab plus methotrexate or methotrexate alone. J Rheumatol 2007;34(5):952–7. [published Online First: 2007/04/21] [PubMed: 17444589]
- Fischer L, Gerstel PF, Poncet A, et al. Pneumococcal polysaccharide vaccination in adults undergoing immunosuppressive treatment for inflammatory diseases--a longitudinal study. Arthritis Res Ther 2015;17:151. doi: 10.1186/s13075-015-0663-9 [published Online First: 2015/06/07] [PubMed: 26048579]
- van Assen S, Agmon-Levin N, Elkayam O, et al. EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann Rheum Dis 2011;70(3):414–22. doi: 10.1136/ard.2010.137216 [published Online First: 2010/12/07] [PubMed: 21131643]
- Freedman M, Kroger A, Hunter P, et al. Recommended Adult Immunization Schedule, United States, 2020. Ann Intern Med 2020;172(5):337–47. doi: 10.7326/M20-0046 [published Online First: 2020/02/06] [PubMed: 32016359]
- Lal H, Cunningham AL, Godeaux O, et al. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med 2015;372(22):2087–96. doi: 10.1056/NEJMoa1501184 [published Online First: 2015/04/29] [PubMed: 25916341]
- Cunningham AL, Heineman TC, Lal H, et al. Immune Responses to a Recombinant Glycoprotein E Herpes Zoster Vaccine in Adults Aged 50 Years or Older. J Infect Dis 2018;217(11):1750–60. doi: 10.1093/infdis/jiy095 [published Online First: 2018/03/13] [PubMed: 29529222]
- 64. Curtis J BS, Cofield S, Bassler J, Ford T, Lindsey S, Kivitz A, Messaoudi I, Michaud K, Huffstutter J, Mikuls T, Ridley D, Shergy W, Siegel S, Winthrop K. Results from a Randomized Controlled Trial of the Safety of the Live Varicella Vaccine in TNF-Treated Patients [abstract]. Arthritis Rheumatol 2019;71 (suppl 10).
- 65. Parrino J, McNeil SA, Lawrence SJ, et al. Safety and immunogenicity of inactivated varicellazoster virus vaccine in adults with hematologic malignancies receiving treatment with anti-CD20 monoclonal antibodies. Vaccine 2017;35(14):1764–69. doi: 10.1016/j.vaccine.2016.10.055 [published Online First: 2017/03/08] [PubMed: 28268074]
- 66. Stevens E, Weinblatt ME, Massarotti E, et al. Safety of the Zoster Vaccine Recombinant Adjuvanted in Rheumatoid Arthritis and Other Systemic Rheumatic Disease Patients: A Single Center's Experience With 400 Patients. ACR Open Rheumatol 2020;2(6):357–61. doi: 10.1002/ acr2.11150 [published Online First: 2020/05/16] [PubMed: 32412669]
- 67. Lenfant T, Jin Y, Kirchner E, et al. Safety of Recombinant Zoster Vaccine: a Retrospective Study of 622 Rheumatology Patients. Rheumatology (Oxford) 2021 doi: 10.1093/rheumatology/keab139 [published Online First: 2021/02/10]
- 68. Dagnew AF, Rausch D, Herve C, et al. Efficacy and serious adverse events profile of the adjuvanted recombinant zoster vaccine in adults with pre-existing potential immune-mediated diseases: a pooled post hoc analysis on two parallel randomized trials. Rheumatology (Oxford) 2021;60(3):1226–33. doi: 10.1093/rheumatology/keaa424 [published Online First: 2020/09/11] [PubMed: 32910152]
- 69. Agency EM. Shingrix 2020 [Available from: https://www.ema.europa.eu/en/medicines/human/ EPAR/shingrix accessed 6/29/2021 2021.
- 70. Insinga RP, Itzler RF, Pellissier JM, et al. The incidence of herpes zoster in a United States administrative database. J Gen Intern Med 2005;20(8):748–53. doi: 10.1111/ j.1525-1497.2005.0150.x [published Online First: 2005/07/30] [PubMed: 16050886]
- 71. Creech CB, Walker SC, Samuels RJ. SARS-CoV-2 Vaccines. JAMA 2021;325(13):1318–20. doi: 10.1001/jama.2021.3199 [published Online First: 2021/02/27] [PubMed: 33635317]


- 72. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med 2020;383(27):2603–15. doi: 10.1056/NEJMoa2034577 [published Online First: 2020/12/11] [PubMed: 33301246]
- 73. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med 2021;384(5):403–16. doi: 10.1056/NEJMoa2035389 [published Online First: 2020/12/31] [PubMed: 33378609]
- 74. Sadoff J, Gray G, Vandebosch A, et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N Engl J Med 2021;384(23):2187–201. doi: 10.1056/NEJMoa2101544 [published Online First: 2021/04/22] [PubMed: 33882225]
- 75. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021;397(10269):99–111. doi: 10.1016/S0140-6736(20)32661-1 [published Online First: 2020/12/12] [PubMed: 33306989]
- 76. Sattler A, Angermair S, Stockmann H, et al. SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J Clin Invest 2020;130(12):6477–89. doi: 10.1172/JCI140965 [published Online First: 2020/08/25] [PubMed: 32833687]
- 77. Tan AT, Linster M, Tan CW, et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep 2021;34(6):108728. doi: 10.1016/j.celrep.2021.108728 [published Online First: 2021/02/01] [PubMed: 33516277]
- 78. Schwarzkopf S, Krawczyk A, Knop D, et al. Cellular Immunity in COVID-19 Convalescents with PCR-Confirmed Infection but with Undetectable SARS-CoV-2-Specific IgG. Emerg Infect Dis 2021;27(1) doi: 10.3201/2701.203772 [published Online First: 2020/10/16]
- 79. Wang Z, Yang X, Zhong J, et al. Exposure to SARS-CoV-2 generates T-cell memory in the absence of a detectable viral infection. Nat Commun 2021;12(1):1724. doi: 10.1038/s41467-021-22036-z [published Online First: 2021/03/21] [PubMed: 33741972]
- Etemadifar M, Sigari AA, Sedaghat N, et al. Acute relapse and poor immunization following COVID-19 vaccination in a rituximab-treated multiple sclerosis patient. Hum Vaccin Immunother 2021:1–3. doi: 10.1080/21645515.2021.1928463 [published Online First: 2021/05/21]
- Spiera R, Jinich S, Jannat-Khah D. Rituximab, but not other antirheumatic therapies, is associated with impaired serological response to SARS- CoV-2 vaccination in patients with rheumatic diseases. Ann Rheum Dis 2021 doi: 10.1136/annrheumdis-2021-220604 [published Online First: 2021/05/13]
- Deepak P, Kim W, Paley MA, et al. Glucocorticoids and B Cell Depleting Agents Substantially Impair Immunogenicity of mRNA Vaccines to SARS-CoV-2. medRxiv 2021 doi: 10.1101/2021.04.05.21254656 [published Online First: 2021/04/15]
- Boyarsky BJ, Ruddy JA, Connolly CM, et al. Antibody response to a single dose of SARS-CoV-2 mRNA vaccine in patients with rheumatic and musculoskeletal diseases. Ann Rheum Dis 2021 doi: 10.1136/annrheumdis-2021-220289 [published Online First: 2021/03/25]
- 84. Furer VA-O, Eviatar T, Zisman D, et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: a multicentre study. LID - annrheumdis-2021–220647 [pii] LID - 10.1136/ annrheumdis-2021-220647 [doi]. 2021(1468–2060 (Electronic))
- Haberman RH, Herati R, Simon D, et al. Methotrexate hampers immunogenicity to BNT162b2 mRNA COVID-19 vaccine in immune-mediated inflammatory disease. Ann Rheum Dis 2021 doi: 10.1136/annrheumdis-2021-220597 [published Online First: 2021/05/27]
- 86. Bonelli MM, Mrak D, Perkmann T, et al. SARS-CoV-2 vaccination in rituximab-treated patients: evidence for impaired humoral but inducible cellular immune response. Ann Rheum Dis 2021 doi: 10.1136/annrheumdis-2021-220408 [published Online First: 2021/05/08]
- 87. Geisen UM, Berner DK, Tran F, et al. Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort. Ann Rheum Dis 2021 doi: 10.1136/annrheumdis-2021-220272 [published Online First: 2021/03/26]

- Kennedy NA, Lin S, Goodhand JR, et al. Infliximab is associated with attenuated immunogenicity to BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines in patients with IBD. Gut 2021 doi: 10.1136/gutjnl-2021-324789 [published Online First: 2021/04/28]
- Greinacher A, Thiele T, Warkentin TE, et al. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N Engl J Med 2021;384(22):2092–101. doi: 10.1056/NEJMoa2104840 [published Online First: 2021/04/10] [PubMed: 33835769]
- 90. Schultz NH, Sorvoll IH, Michelsen AE, et al. Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. N Engl J Med 2021;384(22):2124–30. doi: 10.1056/NEJMoa2104882 [published Online First: 2021/04/10] [PubMed: 33835768]
- Lee EJ, Cines DB, Gernsheimer T, et al. Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination. Am J Hematol 2021;96(5):534–37. doi: 10.1002/ajh.26132 [published Online First: 2021/02/20] [PubMed: 33606296]
- 92. Welsh KJ, Baumblatt J, Chege W, et al. Thrombocytopenia including immune thrombocytopenia after receipt of mRNA COVID-19 vaccines reported to the Vaccine Adverse Event Reporting System (VAERS). Vaccine 2021;39(25):3329–32. doi: 10.1016/j.vaccine.2021.04.054 [published Online First: 2021/05/20] [PubMed: 34006408]
- 93. Gargano JW, Wallace M, Hadler SC, et al. Use of mRNA COVID-19 Vaccine After Reports of Myocarditis Among Vaccine Recipients: Update from the Advisory Committee on Immunization Practices - United States, June 2021. MMWR Morb Mortal Wkly Rep 2021;70(27):977–82. doi: 10.15585/mmwr.mm7027e2 [published Online First: 2021/07/09] [PubMed: 34237049]
- 94. Montgomery J, Ryan M, Engler R, et al. Myocarditis Following Immunization With mRNA COVID-19 Vaccines in Members of the US Military. JAMA Cardiol 2021 doi: 10.1001/ jamacardio.2021.2833 [published Online First: 2021/06/30]
- 95. Kim HW, Jenista ER, Wendell DC, et al. Patients With Acute Myocarditis Following mRNA COVID-19 Vaccination. JAMA Cardiol 2021 doi: 10.1001/jamacardio.2021.2828 [published Online First: 2021/06/30]
- 96. Watad A, De Marco G, Mahajna H, et al. Immune-Mediated Disease Flares or New-Onset Disease in 27 Subjects Following mRNA/DNA SARS-CoV-2 Vaccination. Vaccines (Basel) 2021;9(5) doi: 10.3390/vaccines9050435 [published Online First: 2021/05/06]
- 97. Munguia-Calzada P, Drake-Monfort M, Armesto S, et al. Psoriasis flare after influenza vaccination in Covid-19 era: A report of four cases from a single center. Dermatol Ther 2021;34(1):e14684. doi: 10.1111/dth.14684 [published Online First: 2020/12/18] [PubMed: 33331024]
- Chang SE, Feng A, Meng W, et al. New-Onset IgG Autoantibodies in Hospitalized Patients with COVID-19. medRxiv 2021 doi: 10.1101/2021.01.27.21250559 [published Online First: 2021/02/04]
- Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases. Curr Opin Rheumatol 2021;33(2):155–62. doi: 10.1097/BOR.000000000000776 [published Online First: 2020/12/18] [PubMed: 33332890]
- 100. Galeotti C, Bayry J. Autoimmune and inflammatory diseases following COVID-19. Nat Rev Rheumatol 2020;16(8):413–14. doi: 10.1038/s41584-020-0448-7 [published Online First: 2020/06/06] [PubMed: 32499548]
- 101. Curtis JR, Johnson SR, Anthony DD, et al. American College of Rheumatology Guidance for COVID-19 Vaccination in Patients with Rheumatic and Musculoskeletal Diseases - Version 1. Arthritis Rheumatol 2021 doi: 10.1002/art.41734 [published Online First: 2021/03/18]
- 102. Kwon SY, Lee CH. Epidemiology and prevention of hepatitis B virus infection. Korean J Hepatol 2011;17(2):87–95. doi: 10.3350/kjhep.2011.17.2.87 [published Online First: 2011/07/16] [PubMed: 21757978]
- 103. Gisbert JP, Villagrasa JR, Rodriguez-Nogueiras A, et al. Efficacy of hepatitis B vaccination and revaccination and factors impacting on response in patients with inflammatory bowel disease. Am J Gastroenterol 2012;107(10):1460–6. doi: 10.1038/ajg.2012.79 [published Online First: 2012/10/05] [PubMed: 23034605]
- 104. Salinas GF, De Rycke L, Barendregt B, et al. Anti-TNF treatment blocks the induction of T cell-dependent humoral responses. Ann Rheum Dis 2013;72(6):1037–43. doi: 10.1136/ annrheumdis-2011-201270 [published Online First: 2012/09/13] [PubMed: 22968102]

- 105. Haykir Solay A, Eser F. High dose hepatitis B vaccine is not effective in patients using immunomodulatory drugs: a pilot study. Hum Vaccin Immunother 2019;15(5):1177–82. doi: 10.1080/21645515.2019.1574151 [published Online First: 2019/01/25] [PubMed: 30676860]
- 106. Abara WE, Qaseem A, Schillie S, et al. Hepatitis B Vaccination, Screening, and Linkage to Care: Best Practice Advice From the American College of Physicians and the Centers for Disease Control and Prevention. Ann Intern Med 2017;167(11):794–804. doi: 10.7326/ M17-1106 [published Online First: 2017/11/22] [PubMed: 29159414]
- 107. Terrault NA, Lok ASF, McMahon BJ, et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology 2018;67(4):1560–99. doi: 10.1002/hep.29800 [published Online First: 2018/02/07] [PubMed: 29405329]
- 108. Schillie S, Vellozzi C, Reingold A, et al. Prevention of Hepatitis B Virus Infection in the United States: Recommendations of the Advisory Committee on Immunization Practices. MMWR Recomm Rep 2018;67(1):1–31. doi: 10.15585/mmwr.rr6701a1 [published Online First: 2018/06/26]
- 109. Myint A, Tong MJ, Beaven SW. Reactivation of Hepatitis B Virus: A Review of Clinical Guidelines. Clin Liver Dis (Hoboken) 2020;15(4):162–67. doi: 10.1002/cld.883 [published Online First: 2020/05/13] [PubMed: 32395244]
- 110. Kim SC, Glynn RJ, Giovannucci E, et al. Risk of high-grade cervical dysplasia and cervical cancer in women with systemic inflammatory diseases: a population-based cohort study. Ann Rheum Dis 2015;74(7):1360–7. doi: 10.1136/annrheumdis-2013-204993 [published Online First: 2014/03/13] [PubMed: 24618265]
- 111. Zard E, Arnaud L, Mathian A, et al. Increased risk of high grade cervical squamous intraepithelial lesions in systemic lupus erythematosus: A meta-analysis of the literature. Autoimmun Rev 2014;13(7):730–5. doi: 10.1016/j.autrev.2014.03.001 [published Online First: 2014/03/25] [PubMed: 24657969]
- 112. Dreyer L, Faurschou M, Mogensen M, et al. High incidence of potentially virus-induced malignancies in systemic lupus erythematosus: a long-term followup study in a Danish cohort. Arthritis Rheum 2011;63(10):3032–7. doi: 10.1002/art.30483 [published Online First: 2011/09/29] [PubMed: 21953088]
- 113. Santana IU, Gomes Ado N, Lyrio LD, et al. Systemic lupus erythematosus, human papillomavirus infection, cervical pre-malignant and malignant lesions: a systematic review. Clin Rheumatol 2011;30(5):665–72. doi: 10.1007/s10067-010-1606-0 [published Online First: 2010/11/13] [PubMed: 21072553]
- 114. Feldman CH, Kim SC. Should we target patients with autoimmune diseases for human papillomavirus vaccine uptake? Expert Rev Vaccines 2014;13(8):931–4. doi: 10.1586/14760584.2014.930346 [published Online First: 2014/06/18] [PubMed: 24935354]
- 115. Kane S, Khatibi B, Reddy D. Higher incidence of abnormal Pap smears in women with inflammatory bowel disease. Am J Gastroenterol 2008;103(3):631–6. doi: 10.1111/ j.1572-0241.2007.01582.x [published Online First: 2007/10/19] [PubMed: 17941962]
- 116. Pellegrino P, Radice S, Clementi E. Immunogenicity and safety of the human papillomavirus vaccine in patients with autoimmune diseases: A systematic review. Vaccine 2015;33(30):3444–9. doi: 10.1016/j.vaccine.2015.05.041 [published Online First: 2015/06/04] [PubMed: 26036945]
- 117. Heijstek MW, Scherpenisse M, Groot N, et al. Immunogenicity and safety of the bivalent HPV vaccine in female patients with juvenile idiopathic arthritis: a prospective controlled observational cohort study. Ann Rheum Dis 2014;73(8):1500–7. doi: 10.1136/ annrheumdis-2013-203429 [published Online First: 2013/06/01] [PubMed: 23723319]
- 118. Mok CC, Ho LY, Fong LS, et al. Immunogenicity and safety of a quadrivalent human papillomavirus vaccine in patients with systemic lupus erythematosus: a case-control study. Ann Rheum Dis 2013;72(5):659–64. doi: 10.1136/annrheumdis-2012-201393 [published Online First: 2012/05/17] [PubMed: 22589375]
- 119. Rotstein Grein IH, Pinto NF, Lobo A, et al. Safety and immunogenicity of the quadrivalent human papillomavirus vaccine in patients with childhood systemic lupus erythematosus: a real-world interventional multi-centre study. Lupus 2020;29(8):934–42. doi: 10.1177/0961203320928406 [published Online First: 2020/06/06] [PubMed: 32501172]

- 120. Winthrop KL, Korman N, Abramovits W, et al. T-cell-mediated immune response to pneumococcal conjugate vaccine (PCV-13) and tetanus toxoid vaccine in patients with moderateto-severe psoriasis during tofacitinib treatment. J Am Acad Dermatol 2018;78(6):1149–55 e1. doi: 10.1016/j.jaad.2017.09.076 [published Online First: 2017/10/31] [PubMed: 29080806]
- 121. Buhler S, Jaeger VK, Adler S, et al. Safety and immunogenicity of tetanus/diphtheria vaccination in patients with rheumatic diseases-a prospective multi-centre cohort study. Rheumatology (Oxford) 2019;58(9):1585–96. doi: 10.1093/rheumatology/kez045 [published Online First: 2019/03/17] [PubMed: 30877773]
- 122. Brunner HI, Tzaribachev N, Cornejo GV, et al. Maintenance of antibody response to diphtheria/ tetanus vaccine in patients aged 2–5 years with polyarticular-course juvenile idiopathic arthritis receiving subcutaneous abatacept. Pediatr Rheumatol Online J 2020;18(1):19. doi: 10.1186/ s12969-020-0410-x [published Online First: 2020/02/24] [PubMed: 32087715]
- 123. Tay L, Leon F, Vratsanos G, et al. Vaccination response to tetanus toxoid and 23-valent pneumococcal vaccines following administration of a single dose of abatacept: a randomized, open-label, parallel group study in healthy subjects. Arthritis Res Ther 2007;9(2):R38. doi: 10.1186/ar2174 [published Online First: 2007/04/12] [PubMed: 17425783]
- 124. Caldera F, Saha S, Wald A, et al. Lower Sustained Diphtheria and Pertussis Antibody Concentrations in Inflammatory Bowel Disease Patients. Dig Dis Sci 2018;63(6):1532–40. doi: 10.1007/s10620-018-5043-2 [published Online First: 2018/03/30] [PubMed: 29594970]
- 125. Bingham CO 3rd, Rizzo W, Kivitz A, et al. Humoral immune response to vaccines in patients with rheumatoid arthritis treated with tocilizumab: results of a randomised controlled trial (VISARA). Ann Rheum Dis 2015;74(5):818–22. doi: 10.1136/annrheumdis-2013-204427 [published Online First: 2014/01/23] [PubMed: 24448345]
- 126. Staples JE, Gershman M, Fischer M, et al. Yellow fever vaccine: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2010;59(RR-7):1–27. [published Online First: 2010/07/31]
- 127. Oliveira AC, Mota LM, Santos-Neto LL, et al. Seroconversion in patients with rheumatic diseases treated with immunomodulators or immunosuppressants, who were inadvertently revaccinated against yellow fever. Arthritis Rheumatol 2015;67(2):582–3. doi: 10.1002/art.38960 [published Online First: 2014/11/25] [PubMed: 25418753]
- 128. Scheinberg M, Guedes-Barbosa LS, Mangueira C, et al. Yellow fever revaccination during infliximab therapy. Arthritis Care Res (Hoboken) 2010;62(6):896–8. doi: 10.1002/acr.20045 [published Online First: 2010/06/11] [PubMed: 20535801]
- 129. Buhler S, Jaeger VK, Eperon G, et al. Safety and immunogenicity of a primary yellow fever vaccination under low-dose methotrexate therapy-a prospective multi-centre pilot study1. J Travel Med 2020;27(6) doi: 10.1093/jtm/taaa126 [published Online First: 2020/07/31]
- 130. Kerneis S, Launay O, Ancelle T, et al. Safety and immunogenicity of yellow fever 17D vaccine in adults receiving systemic corticosteroid therapy: an observational cohort study. Arthritis Care Res (Hoboken) 2013;65(9):1522–8. doi: 10.1002/acr.22021 [published Online First: 2013/04/05] [PubMed: 23554297]
- 131. Huber F, Ehrensperger B, Hatz C, et al. Safety of live vaccines on immunosuppressive or immunomodulatory therapy-a retrospective study in three Swiss Travel Clinics. J Travel Med 2018;25(1) doi: 10.1093/jtm/tax082 [published Online First: 2018/02/03]
- 132. Jacobson DL, Bousvaros A, Ashworth L, et al. Immunogenicity and tolerability to human papillomavirus-like particle vaccine in girls and young women with inflammatory bowel disease. Inflamm Bowel Dis 2013;19(7):1441–9. doi: 10.1097/MIB.0b013e318281341b [published Online First: 2013/04/10] [PubMed: 23567780]
- 133. Grein IHR, Pinto NBF, Groot N, et al. Safety and immunogenicity of the quadrivalent human papillomavirus vaccine in patients with juvenile dermatomyositis: a real-world multicentre study. Pediatr Rheumatol Online J 2020;18(1):87. doi: 10.1186/s12969-020-00479-w [published Online First: 2020/11/13] [PubMed: 33176806]
- 134. Nazi I, Kelton JG, Larche M, et al. The effect of rituximab on vaccine responses in patients with immune thrombocytopenia. Blood 2013;122(11):1946–53. doi: 10.1182/blood-2013-04-494096 [published Online First: 2013/07/16] [PubMed: 23851398]

- 135. Curtis JR, Johnson SR, Anthony DD, et al. American College of Rheumatology Guidance for COVID-19 Vaccination in Patients With Rheumatic and Musculoskeletal Diseases: Version 1. Arthritis Rheumatol 2021 doi: 10.1002/art.41734 [published Online First: 2021/03/18]
- 136. Cagigi A, Lore K. Immune Responses Induced by mRNA Vaccination in Mice, Monkeys and Humans. Vaccines (Basel) 2021;9(1) doi: 10.3390/vaccines9010061 [published Online First: 2021/01/23]
- 137. Bettini E, Locci M. SARS-CoV-2 mRNA Vaccines: Immunological Mechanism and Beyond. Vaccines (Basel) 2021;9(2) doi: 10.3390/vaccines9020147 [published Online First: 2021/03/07]
- 138. Cronstein BN, Aune TM. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat Rev Rheumatol 2020;16(3):145–54. doi: 10.1038/s41584-020-0373-9 [published Online First: 2020/02/19] [PubMed: 32066940]
- 139. Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 2000;47(2–3):85–118. doi: 10.1016/s0162-3109(00)00188-0 [published Online First: 2000/07/06] [PubMed: 10878285]
- 140. Moreland L, Bate G, Kirkpatrick P. Abatacept. Nat Rev Drug Discov 2006;5(3):185–6. doi: 10.1038/nrd1989 [published Online First: 2006/03/25] [PubMed: 16557658]
- 141. O'Shea JJ, Gadina M. Selective Janus kinase inhibitors come of age. Nat Rev Rheumatol 2019;15(2):74–75. doi: 10.1038/s41584-018-0155-9 [published Online First: 2019/01/10] [PubMed: 30622297]
- 142. Cragg MS, Walshe CA, Ivanov AO, et al. The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun 2005;8:140–74. doi: 10.1159/000082102 [published Online First: 2004/11/27] [PubMed: 15564720]
- 143. Engel P, Gomez-Puerta JA, Ramos-Casals M, et al. Therapeutic targeting of B cells for rheumatic autoimmune diseases. Pharmacol Rev 2011;63(1):127–56. doi: 10.1124/pr.109.002006 [published Online First: 2011/01/20] [PubMed: 21245206]

Figure 1: Mechanism of the mRNA SARS-CoV-2 vaccine and potential impact of DMARD therapy:

1) The mRNA vaccine is given as an intramuscular injection. 2) Lipid nanoparticles (LPN) coating the mRNA allow uptake into antigen presenting cells (APCs).¹³⁶ 3) mRNA is recognized by toll-like receptors (TLR)/retinoic acid-inducible gene (RIG)-I, triggering a type I interferon (IFN) response. 4) mRNA is translated by ribosomes into peptides. 5) Peptides are processed by the proteasome and presented on MHC-I or 6) post-translationally modified into secreted proteins, which can then be taken up by APCs and presented by MHC-II. 7) Dendritic cells (DCs) are trafficked to lymph nodes where they 8) prime CD4+ and CD8+ T cells. 9) CD4+ T cells differentiate into T follicular helper (Tfh) cells, which form germinal centers (GC) or 10) Th1 cells. 11) CD8+ T cells become circulating cytotoxic T cells. 12) In the GC, Tfh cells interact with B cells, resulting in 13) memory B cells (MBC) and long-lived plasma cells (LLPCs) secreting anti-spike protein antibodies (Abs).¹³⁶¹³⁷ Low dose methotrexate (MTX) impacts expression of cytokines¹³⁸, B cell and CD8+ T cell responses, with apparent preservation of CD4+ response.⁸⁵ Mycophenolate

mofetil reduces B and T lymphocyte proliferation.¹³⁹ Abatacept is a soluble fusion CTLA-4 IgG, which prevents T cell costimulation.¹⁴⁰ Janus kinase (JAK)-inhibitors reduce signaling by numerous cytokines, of particular importance in mRNA vaccines response are IFN γ , interleukin (IL)-4 and IL-2 signaling.¹⁴¹ Rituximab depletes B cells by targeting CD20, which is expressed by early B cells but not mature plasma cells.¹⁴² Belimumab binds soluble B lymphocyte stimulator (BLyS), reducing B cell survival.¹⁴³ SARS-CoV-2 mRNA vaccine mechanisms depictions are modified from figures attributed to Cagigi/Loré ¹³⁶ and Bettini/Locci¹³⁷, licensed under CC BY 4.0.

Table 1:

Impact of disease modifying antirheumatic drugs on vaccine immunogenicity:

Influenza Pneumococcal Tetanus Human SARS-CoV-2 Herpes Hepatitis papilloma (mRNA) в Zoster virus ↓142224 OK ↓828485 ↓5051 (ZVL)52 OK117132133 ↓121 Methotrexate ↓103–105 OK121124* **TNF-inhibitors** OK1416202728 OK1456 OK (ZVL) OK 117132 OK 848588 Rituximab ↓ ↓ 14–1719–2124134 ↓↓141845-47 ↓18121 ↓↓8182-84 ↓2426 ↓4546 $\underset{\downarrow(\mathrm{IV})^{123}}{\overset{122}{\to}}$ ↓84 Abatacept OK³⁰ ↓30 JAK-inhibitor OK (tofacitinib)120 ↓8284 ↓(baricitinib)⁵³ OK125 OK⁵⁴ IL-6R inhibitor OK31 OK31 ↓105 IL-12/23 OK32 OK⁵⁴ OK⁸⁴ OK 82 inhibitor OK⁸⁴ IL-17 inhibitor OK³³⁻³⁵ OK⁵⁵ OK55

 IL-17 Inhibitor
 OK^{25} OK^{25} OK^{25}

 OK: No significant/meaningful effect on vaccine immunogenicity (may include reduction in absolute post-vaccination titers if rates of protective titers are unchanged.) \downarrow : Reduces vaccine immunogenicity. $\downarrow\downarrow$: Significantly reduces vaccine immunogenicity. For OK, \downarrow , and $\downarrow\downarrow$: if no control group is available, data are compared to expected vaccine responses in the general population. Empty cells indicate a lack of data. TNF = tumor

necrosis factor, JAK = Janus kinase, IL = interleukin, ZVL = zoster vaccine live, RZV = recombinant zoster vaccine, SQ = subcutaneous

Table 2:

Vaccination Schedule Recommendations for Patients with Rheumatic Diseases:

	Vaccination recommendation	Recommended modification of DMARD therapy relative to vaccine timing based on guidelines and best available evidence [*] , as compatible with disease activity.
Influenza	Yearly quadrivalent vaccination for all patients. $\overset{\dot{\tau} \neq \$}{}$ Patients older than 65 should receive the high-dose quadrivalent vaccine. $\overset{\dot{\tau}}{}$ *May consider high-dose vaccine for all immunocompromised patients. ⁴²⁴⁴	Rituximab: vaccinate before starting rituximab, or as long as possible after the last dose (ideally 6 months) and 4 weeks before the next dose. Methotrexate: consider holding for two weeks after vaccination. *2223
Pneumococcal	Recommended for all immunosuppressed patients. $\frac{\dot{\tau} \ddagger \$}{\xi}$ Give 1 dose of PCV13 followed by PPSV23 at least 8 weeks later. Give a second PPSV23 dose 5 years after the first PPSV23 dose. $\dot{\tau}$	Rituximab: vaccinate before starting rituximab, or as long as possible after the last dose (ideally 6 months) and 4 weeks before the next dose. $\$$ Methotrexate: consider holding MTX for two weeks after vaccination. $*$
Herpes zoster	Recombinant zoster vaccine for adults over age 50. $\stackrel{?}{\#}$ Use live Zoster vaccine where recombinant is not available. Consider in all high-risk rheumatic disease patients. $\stackrel{?}{\#}$	Rituximab: vaccinate before starting rituximab, or as long as possible after the last dose (ideally 6 months) and 4 weeks before the next dose.*
Hepatitis B	All nonimmune adults at risk for HBV infection. $\pounds \uparrow \ddagger \$$	Rituximab: vaccinate before starting rituximab, or as long as possible after the last dose (ideally 6 months) and 4 weeks before the next dose. $\$$
Human papilloma virus	As per general population guidelines, especially for SLE patients. $\$\ddagger$	Rituximab: vaccinate before starting rituximab, or as long as possible after the last dose (ideally 6 months) and 4 weeks before the next dose. $\$$
Tetanus	As per general population and consider for all rituximab treated patients. $^{\$}$	Rituximab: vaccinate before starting rituximab. $\$$
Yellow fever	Avoid for immunocompromised patients.	N/A, contraindicated
SARS-CoV-2	All patients as per the general population. ¹³⁵	ACR guidance summary: ¹³⁵ Rituximab: as long as possible after the last dose, 2–4 weeks before the next dose. MTX: hold for 1 week after each mRNA dose; hold for 2 weeks after single-dose vaccine. MMF and JAK inhibitors: hold for 1 week after each vaccine dose. Abatacept subcutaneous: hold one week before and one week after the first vaccine dose, no interruption for the second vaccine dose. Abatacept intravenous: time the first vaccine dose 4 weeks after abatacept and postpone next infusion by 1 week; no adjustment for the second vaccine dose. TNF, IL-6R, IL-1, IL-17, IL-12/23, IL-23, oral calcineurin inhibitors, belimumab ^{**} , azathioprine, sulfasalazine, leflunomide, hydroxychloroquine, apremilast, IVIG and glucocorticoids <20 mg/ day ^{**} : no modification

Authors' recommendations based on best available evidence

[†]2021 Advisory Committee on Immunization Practices recommendations¹²

 t_{2015}^{t} American College of Rheumatology guideline for the treatment of rheumatoid arthritis 40

\$2019 European League Against Rheumatism recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases 41

[¶]Per CDC guidelines, adults with immunocompromising conditions were not included in initial clinical trials and therefore no recommendations regarding vaccination age for this population was made. However, this may change in the future.

 ${}^{\pounds}$ Risk factors include: persons at risk through sexual exposure (sex partners of hepatitis B surface antigen positive persons, sexually active persons not in a long term monogamous relationship, persons seeking evaluation or treatment for a sexually transmitted disease, men who have sex with men), persons with a history of current or recent injection drug use, persons at risk for infection by percutaneous or mucosal exposure to blood (household contact or sexual partner who is hepatitis B surface antigen positive, resident or staff of a facility for the developmentally disabled, health care or public safety workers with anticipated risk for exposure to body fluids, patients with end-stage renal disease, persons with diabetes mellitus aged <60 or those over age 60 at the discretion of the treating physicians), travelers to endemic areas, patients with chronic liver disease or hepatitis C infection, incarcerated persons, and patients with human immunodeficiency virus.

** Data published since guideline development suggest that lower doses of prednisone and belimumab may adversely impact the SARS-CoV-2 mRNA vaccine immunogenicity. 84