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a b s t r a c t 

The storage and distribution of medical supplies are important parts of epidemic preven- 

tion and control. This paper first proposes a new nonsmooth two-stage stochastic equi- 

librium model of medical supplies in epidemic management. The first stage addresses the 

storage in the pre-disaster phase, and the second stage focuses on the dynamic distri- 

bution by enrolling competitions among multiple hospitals over a period of time in the 

post-disaster phase. The uncertainties are the numbers of infected people treated in mul- 

tiple hospitals during the period of time, which are time-varying around a nominal dis- 

tribution predicted by historical experience. The two-stage stochastic equilibrium model 

is further approximated and transformed to a monotone two-stage stochastic variational 

inequality (SVI) model that is computationally tractable, with the aid of a smooth approxi- 

mation technique. We employ the progressive hedging method (PHM) to solve a case study 

in the city of Wuhan in China suffered from the COVID-19 pandemic. Numerical results are 

presented to demonstrate the effectiveness of the proposed model in planning the storage 

and dynamic distribution of medical supplies in epidemic management. 

© 2021 Elsevier Inc. All rights reserved. 

 

 

 

 

1. Introduction 

In 2020, there are already more than 80 million people infected by the COVID-19pandemic and 1.75 million deaths, and 

the number of infected people is still rising dramatically. Enormous losses in both lives and economics have been caused by

COVID-19, and insufficient medical supplies worsen the treatment of patients. Currently, growing attention has been paid to 

the management of medical supplies in an epidemic. 

In this paper, we focus on the storage of medical supplies before an epidemic occurs, and the dynamic distribution of

medical supplies after an epidemic really outbreaks. The government is the decision maker for the storage plan before an 

epidemic occurs, by taking consideration of the competitions of the hospitals under all possible scenarios of an epidemic. 

The government is considered to be the leader to determine the storage plan, and the hospitals are the followers to compete

each other for providing possible dynamic distribution plans after the storage plan has been given and the scenario of the

epidemic has been grasped. The government eventually decides an optimal dynamic distribution plan for the whole society 

among all the possible dynamic distribution plans that can be obtained from the competitions of the hospitals. 
∗ Corresponding author. 

E-mail addresses: dtlimin2009@163.com (M. Li), zc.njtu@163.com (C. Zhang), sdd97825@126.com (M. Ding), 19121575@bjtu.edu.cn (R. Lv). 

https://doi.org/10.1016/j.apm.2021.09.033 

0307-904X/© 2021 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.apm.2021.09.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/apm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apm.2021.09.033&domain=pdf
mailto:dtlimin2009@163.com
mailto:zc.njtu@163.com
mailto:sdd97825@126.com
mailto:19121575@bjtu.edu.cn
https://doi.org/10.1016/j.apm.2021.09.033


M. Li, C. Zhang, M. Ding et al. Applied Mathematical Modelling 102 (2022) 35–61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In an epidemic, the number of infected people that are treated in every hospital every day is difficult to predict accu-

rately such that decisions have to be taken under uncertainty. Moreover, it is better to consider the dynamic distribution 

over a period of time, rather than the static distribution only once. Because the effective treatment of infected people, the

prevention and control of an epidemic, and the increasing of production capacity for medical supplies all need a key period

which lasts two weeks or even longer, and the demand of medical supplies of a day depends also on distributions of the

previous days. Few studies have explored the dynamic decision problems over a period [1–6] . 

When an epidemic occurs, without storing medical supplies pre-disaster, insufficient or delayed medical supplies cannot 

meet the demand and will lead to heavy loss of life. On the other hand, storing too many medical supplies pre-disaster

will lead to huge economic losses. Therefore, how to store pre-disaster and distribute medical supplies post-disaster of an 

epidemic appropriately is a challenging task. Under such circumstances, two-stage stochastic programming (SP) is one of the 

most popular modeling approaches to support the decision making process, see [7–11] , as it allows the modeler to represent

the pre- and post-disaster phase together via the first- and second-stage decision variables. 

Another important issue is that an unfair distribution of supplies will make humans’ lives different and will also cause 

social confliction. It is a natural requirement that the distribution of medical supplies should be fair, which means that there

should be no privilege for certain groups of individuals. Fair distribution is usually captured by the concepts of equity [12] ,

including equitability and balance. Equitability means servicing a set of indistinguishable entities. Balance means servicing a 

set of entities while they are different from each other regarding their demands, claims, and preferences. In balance, an ideal

solution may give each entity a different proportion of the total assignment. The proportion, however, is given by disaster 

managers, rather than decided by agents. 

In this paper, we concentrate on a certain period of time that the number of infected people is high, and the hospitals are

extremely short of medical supplies. The nominal values of the numbers of infected people during the period are assumed 

to be known ahead based on historical information. There are finite possibilities of the unknown numbers of infected people 

that are within a band around the nominal values. 

We first develop a two-stage stochastic equilibrium model. The first stage determines the storage plan that has to be 

made before an epidemic occurs. It tries to minimize the storage costs as well as the costs occurred from all possible

scenarios of distributions to hospitals in the second stage. The second stage is a non-cooperative multi-agent game model 

that determines the dynamic distribution of medical supplies based on time-variant demand. In the second stage, each 

hospital competes to minimize its own costs composed of transportation costs, purchase costs, as well as penalty costs if 

the demand is unmet during the period of time. The term of penalty costs indeed plays an important role in fairness. 

There are two main difficulties of solving the two-stage stochastic equilibrium model. Firstly, the minimization problem 

of one hospital contains the other hospitals’ strategies, not yet known at the decision horizon. Thus the minimization prob- 

lem cannot be solved directly. One hospital’s objective is in conflict with the others’. Thus one hospital has to make its

decision by taking other hospitals’ decisions into account. Hospitals compete to reach a steady state. That is, no hospital can

further cut down its costs by unilaterally changing its own strategy for distribution. Secondly, the term of penalty costs in

the objective function of the minimization problem for each hospital involves the max operator that is nonsmooth. 

In order to overcome the above two difficulties, we use a smoothing function to approximate the term of penalty costs.

We then transform the optimistic version of the two-stage stochastic equilibrium model into an equivalent two-stage SP, 

and then transform the two-stage SP equivalently into a two-stage SVI. It is worth mentioning that the multi-stage SVI was

introduced by Rockafellar and Wets [13] in 2017, which is powerful to model general multi-stage SP problems and equilib-

rium problems. The two-stage SVI model in this paper is shown to be monotone and is solved by the PHM [14] proposed by

Rockafellar and Sun in 2019, and the efficient semismooth Newton method is adopted for solving the problem corresponding 

to each scenario in the PHM. Numerical results demonstrate the effectiveness of the two-stage SVI model in describing the 

storage and dynamic distribution of medical supplies in epidemic prevention and control. 

The main contributions of the paper are summarized as follows. 

• We develop a two-stage stochastic equilibrium model for the storage and dynamic distribution of medical supplies in a 

period of time. 
• We use a smoothing function to approximate the term of penalty costs in the nonsmooth two-stage stochastic equi- 

librium model, and transform its optimistic version into an equivalent smooth monotone two-stage SVI model that is 

computationally tractable. The PHM is employed to solve the two-stage SVI model, which has global convergence prop- 

erty. The subproblem for each scenario is solved by the semismooth Newton method. 
• A realistic application to the city of Wuhan in China that was suffered from COVID-19 is considered in numerical exper-

iments, which demonstrates that our proposed two-stage SVI model solved by the PHM provides good decisions of the 

storage and dynamic distribution of medical supplies. 

The rest of the paper is organized as follows. In Section 2 , the relevant literature is reviewed. Section 3 develops the

proposed two-stage stochastic equilibrium model. In Section 4 , we present its smooth approximation and transform its 

optimistic version equivalently to a smooth two-stage SP. We then transform the smooth two-stage SP equivalently to a 

monotone two-stage SVI. Section 5 presents the PHM with the updating rule for the smoothing parameter to solve the 

two-stage SVI model. Section 6 implements the model on real data in Wuhan suffered from the COVID-19 pandemic and 

analyzes the important role of the penalty in fairness. The conclusions and directions for future research are provided in the

final section. 
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2. Literature review 

This section presents a review of the literature related to our problem including two-stage SP models for disaster man- 

agement, dynamic distribution, fairness, and stochastic variational inequalities (SVIs). 

Disaster management has a two-stage nature: choosing the level of preparedness such as the location and inventory 

level of medical supplies before the disaster occurs, and then reacting once the uncertainty has been revealed. Barbaroso ̌glu

and Arda [8] introduced for the first time a two-stage SP model for both the pre-disaster and post-disaster stage where the

supply capacities and demands are considered as random variables captured by a set of scenarios. Liu et al. [15] modeled

the network retrofit problem as a two-stage SP to optimize a mean-risk objective of the system losses. Fan and Liu [16] for-

mulated a two-stage SP with equilibrium constraints on pre-disaster transportation network protection problems against 

uncertain future disasters. They demonstrated the applicability of the progressive hedging-based method for solving the 

two-stage SP model. Mete and Zabinsky [17] developed a two-stage SP for the storage and distribution of medical supplies

in disaster management. Noyan [10] considered a risk-averse two-stage SP model for disaster management and discussed 

the importance of incorporating a risk measure to derive optimal decisions. Two decomposition algorithms based on the 

generic Benders decomposition approach are constructed to solve such problems. We refer to the excellent survey papers 

[9] , [11] and the references therein for more literature of two-stage SP models for disaster management. 

Dynamic distribution of emergency supplies is important. It is necessary to adjust the plans incorporating new infor- 

mation along time horizons. Rawls and Turnquist [1] considered the dynamic allocation to satisfy short-term demands for 

emergency supplies. Bozorgi-Amiri and Khorsi [6] considered a multi-objective dynamic SP model by integrating pre-disaster 

plans and post-disaster decisions. The above papers mainly dedicated to the short-term dynamic distribution of emergency 

supplies. Little attention has been paid to the long-term preparedness of emergency supplies. Yang et al. [2] proposed a

distributionally robust optimization model for the dynamic distribution of emergency supplies under demand uncertainty 

within a relatively long period of time. 

Fairness is important for medical supplies. The balance concept related to fairness is often considered in various real life 

allocation problems [18] . In a disaster, different locations have different priorities because of different amounts of population 

and degrees of severity suffered from the disaster [19] , [20] . Hence, balance should be satisfied among demand points in

the distribution of relief commodities for preventing a possible social disaster [21] . Bertsimas et al. [22] discussed different

fairness concepts that are used to ensure fair allocation of resources. They also focused on balancing efficiency and equity 

in resource allocation settings [23] . Bertsimas et al. [24] proposed a modeling framework for general dynamic resource 

allocation problems where there is a concern of equitably distributing the delay among the resource requests. Cayirli and 

Veral [25] stated that fairness across patients need to be considered while designing appointment systems. Turkcan et al. 

[26] introduced a constrained model for sequential clinical scheduling. The proposed unfairness measures are based on the 

expected waiting times at each slot and the number of patients in the system at the beginning of each slot. 

Two-stage SVI has wide applications in economics, traffic network, electricity markets, supply chain problems, finance, 

and risk management under uncertain environment. Rockafellar and Wets [13] first introduced the formal definition of 

multi-stage SVIs in 2017. Two-stage SVI involves making a “here-and-now” decision at present to meet the uncertainty that is 

revealed later. This is one of the motivations of both two-stage SP and two-stage SVI. Chen, Pong and Wets [27] investigated

a two-stage SVI model, and an expected residual minimization procedure is used to formulate the two-stage SVI into a two-

stage SP with recourse. Chen et al. [28] provided a discrete scheme of two-stage stochastic linear complementarity problem, 

a special case of two-stage SVI, where the underlying random data are continuously distributed. Chen et al. [29] investigated

the sample average approximation of two-stage stochastic generalized equation, which includes two-stage SVI as a special 

case. Rockafellar and Wets [30] developed the PHM for solving multi-stage convex SP for the first time in 1991. In 2019,

Rockafellar and Sun [14] proposed the PHM for solving monotone multi-stage SVIs with a finite collection of scenarios for 

the random vector and showed the convergence of the PHM. In 2020, Rockefallar and Sun [31] considered the multistage

Lagrangian SVI problem. In 2020, Li and Zhang [32] considered a two-stage SVI arising from a general convex two-stage

SP, where the random variables have continuous distributions. We outline below some references that relate to the two- 

stage SVIs arising from non-cooperative multi-agent games. In 2017, Pang et al. [33] formally introduced and studied a 

non-cooperative multi-agent game under uncertainty and focused mainly on a two-stage setting of the game where each 

agent is risk-averse. Jiang et al. [34] in 2019 developed a two-stage SVI model for a production and supply competition of

a homogenous product under uncertainty in an oligopolistic market. Zhang et al. [35] in 2019 studied a model of two-stage

N-player non-cooperative game under uncertainty and showed that it is equivalent to a SVI model. The PHM is employed to

solve the monotone SVI, as well as the nonmonotone case where an elicitability condition holds with convergence guarantee. 

We refer to the excellent survey paper by Sun and Chen [36] in 2021 for more literature of the theory, algorithms and

applications for two-stage SVIs. 

3. A new two-stage stochastic equilibrium model 

We first propose a new two-stage stochastic equilibrium model for the storage and dynamic distribution of medical 

supplies in an epidemic within a period of time. In the first stage, the government needs to decide the amounts of storage

of the different types of medical supplies in the hospitals before an epidemic occurs. The manager tries to minimize the total

cost of hospitals, including the sum of the storage costs, and the costs of all hospitals in the second stage for the dynamic
37 
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distribution during the period of time, subject to several constraints such as the budget limits for epidemic prevention, and 

the capacities of storage of the hospitals, etc. Storing a large amount of medical supplies ahead is beneficial for timely and

effective aid to a sudden epidemic. However, this strategy may become a burden of social economy. It is challenging to find

a good trade-off between maximizing the demand coverage and minimizing the total cost in the first stage. 

The demands of a hospital for all kinds of medical supplies on one day are considered as stochastic variables, which

are not known before this day. The decisions of the first stage have to be made without grasping the realizations of the

stochastic variables. However, it is reasonable to assume that the nominal values of the stochastic variables during the 

period of time we considered are known with the aid of historical experience. 

In the second stage, the realizations of the stochastic demand vector are grasped. The government has to decide further 

the distribution of medical supplies for each hospital according to the storage capacities, the actual demands, as well as the

other hospitals’ decisions. The medical supplies are classified into two categories – government distribution and social non- 

targeted donation. The social non-targeted donation refers to the medical supplies donated from organizations, companies 

and individuals for the epidemic, without specifying the medical supplies to which hospitals. The hospitals only need to 

pay the transportation costs for these medical supplies. The goal of the second stage of a hospital is to minimize the total

cost of its own. The total cost of a hospital include the transportation costs, the purchase costs, and the penalty costs for

unmet demands. The overall effects of the second-stage decisions under all possible scenarios are enrolled in the costs of 

all hospitals in the first-stage objective function. 

To build the two-stage stochastic equilibrium model for the storage and dynamic distribution of medical supplies in this 

section and also transform the model in the next section, we introduce some notations as follows. 

Sets: 

I = { 1 , . . . , m } : set of hospitals; 

J = { 1 , . . . , n } : set of medical supply types; 

T = { 1 , . . . , l} : set of time horizons. 

Random Variables and Random Vectors: 

ξit : number of infected people in hospital i on day t; 

ξ = (ξit , ∀ i, t) T = (ξ11 , . . . , ξ1 l , . . . , ξm 1 , . . . , ξml ) 
T : a random vector ξ : � → � ⊂ R ml defined in the probability space

(�, F , P) with a support set �. 

Parameters and Related Vectors: 

d i jt (ξit ) : demand of hospital i for medical supply j on day t; 

a i j : unit reserve price of hospital i for medical supply j; 

a = (a i j , ∀ i, j) T : vector of unit reserve prices; 

b i jt : unit transport price of hospital i for medical supply j on day t; 

b = (b i jt , ∀ i, j, t) T : vector of unit transport prices; 

c i j : penalty coefficient (penalty cost per unit) of hospital i for medical supply j each day; 

p jt (ξ ) : unit price of medical supply j on day t; 

p i (ξ ) = (p jt (ξ ) , ∀ j, t) T : vector of unit prices of medical supplies for hospital i ; 

x i j max : storage capacity of hospital i for medical supply j; 

x 
hosp 
max = (x i j max , ∀ i, j) T : upper bound vector for storage capacities; 

x j max : maximal available amount of medical supply j; 

x 
budg 
max = (x 1 max , . . . , x n max ) T : upper bound vector for budgets; 

y jt max : upper bound of medical supply j by government distribution on day t; 

y dist 
max = (y jt max , ∀ j, t) T : upper bound vector from government distribution; 

z jt max : upper bound of medical supply j by social non-targeted donation on day t; 

z soci 
max = (z jt max , ∀ j, t) T : upper bound vector from social non-targeted donation. 

Decision Variables: 

x i j : amount of medical supply j stored to hospital i ; 

y i jt (ξ ) : amount of medical supply j distributed to hospital i by government on day t under scenario ξ ; 

z i jt (ξ ) : amount of medical supply j distributed to hospital i by social non- targeted donation on day t under scenario ξ ;

s i jt (ξ ) : amount of medical supply j used by hospital i from the storage on day t under scenario ξ . 

Note: Here x i j max , y jt max , z jt max > 0 for all i ∈ I , j ∈ J , t ∈ T . There may exist x j max = 0 for some j, since some medical

supply is only available after the epidemic occurs, e.g., the inspection and testing articles for the COVID-19 pandemic. 

Let us also define the decision vectors for the two stages as follows. 

x i = (x i 1 , x i 2 , . . . , x in ) 
T , x = (x i j , ∀ i, j) T , 

y i (ξ ) = (y i jt (ξ ) , ∀ j, t) T , y (ξ ) = (y i jt (ξ ) , ∀ i, j, t) T , ∀ ξ ∈ �, 

z i (ξ ) = (z i jt (ξ ) , ∀ j, t) T , z(ξ ) = (z i jt (ξ ) , ∀ i, j, t) T , ∀ ξ ∈ �, 

s i (ξ ) = (s i jt (ξ ) , ∀ j, t) T , s (ξ ) = (s i jt (ξ ) , ∀ i, j, t) T , ∀ ξ ∈ �. 
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Because the decision vector of hospital i is closely related to the decision vectors of the other hospitals, for i = 1 , 2 , . . . , m ,

we define the vectors 

x −i = ( x 1 
T 
, . . . , x i −1 T , x i +1 T , . . . , x m 

T 
) T , 

y −i (ξ ) = ( y 1 (ξ ) 
T 
, . . . , y i −1 (ξ ) 

T 
, y i +1 (ξ ) 

T 
, . . . , y m (ξ ) 

T 
) T , ∀ ξ ∈ �, 

z −i (ξ ) = ( z 1 (ξ ) 
T 
, . . . , z i −1 (ξ ) 

T 
, z i +1 (ξ ) 

T 
, . . . , z m (ξ ) 

T 
) T , ∀ ξ ∈ �, 

s −i (ξ ) = ( s 1 (ξ ) 
T 
, . . . , s i −1 (ξ ) 

T 
, s i +1 (ξ ) 

T 
, . . . , s m (ξ ) 

T 
) T , ∀ ξ ∈ �, 

and we add superscript ∗ to the above vectors for the decision vectors of the other hospitals in an optimal solution. For

instance, 

x −i ∗ = ( x 1 
∗T 

, . . . , x i −1 ∗T 
, x i +1 ∗T 

, . . . , x m 

∗T 
) T 

is the decision vector for hospitals except hospital i in an optimal solution. The optimal solution of our two-stage stochastic

equilibrium problem will be given in detail below. 

From the above discussion, we can formulate a two-stage stochastic equilibrium problem as follows. The total cost in- 

cludes the acquisition and holding costs, as well as the transportation costs, the government purchasing costs and the 

penalty costs for unmet demands. These costs reside in two phases: the storage phase and the distribution phase. In the

storage phase, we denote by 
∑ m 

i =1 

∑ n 
j=1 a i j x i j the acquisition and holding costs, and denote by 

∑ m 

i =1 E[ ϑ i (x i , x −i ∗ , ξ )] the sum

of the costs of all hospitals from the second stage. Let 
∑ n 

j=1 

∑ l 
t=1 b i jt 

(
y i jt (ξ ) + z i jt (ξ ) 

)
be the cost s of transporting all the

medical supplies from government distribution and social non-targeted donation for hospital i over all time horizons, and ∑ n 
j=1 

∑ l 
t=1 p jt (ξ ) y i jt (ξ ) be the government purchasing costs of all the medical supplies for hospital i over all time horizons

in the distribution phase. Noting that medical supplies are classified into non-reusable and reusable medical supplies, we 

use M i jt (ξ ) to represent the amount of unmet demands of hospital i for medical supply j on day t , which is defined as 

M i jt (ξ ) = 

{ 

d i jt (ξit ) − y i jt (ξ ) − z i jt (ξ ) − s i jt (ξ ) , if medical supply j is non-reusable , 

d i jt (ξit ) −
t ∑ 

o=1 

[
y i jo (ξ ) + z i jo (ξ ) + s i jo (ξ ) 

]
, if medical supply j is reusable . 

(1) 

Here, we assume that reusable medical supplies do not expire within the time horizons considered. A penalty is added 

into the model to reduce a huge loss of life and wealth after an epidemic. The term of penalty costs is defined as∑ n 
j=1 

∑ l 
t=1 c i j 

(
M i jt (ξ ) 

)
+ for hospital i , where the notation (ρ) + := max (ρ, 0) for any ρ ∈ R . 

Based on the above description, we obtain the following objective function for the first stage 

m ∑ 

i =1 

n ∑ 

j=1 

a i j x i j + 

m ∑ 

i =1 

E 
[
ϑ i 

(
x i , x −i ∗, ξ

)]
, (2) 

where for each i ∈ I , ϑ i (x i , x −i ∗, ξ ) is the optimal value of the second-stage equilibrium problem. The objective function of

the second-stage equilibrium problem is given in (3) and the constraints are described in (6) - (8) and (10) below. 

F i (y i (ξ ) , z i (ξ ) , s i (ξ )) := (3) 

n ∑ 

j=1 

l ∑ 

t=1 

b i jt (y i jt (ξ ) + z i jt (ξ )) + 

n ∑ 

j=1 

l ∑ 

t=1 

p jt (ξ ) y i jt (ξ ) + 

n ∑ 

j=1 

l ∑ 

t=1 

c i j 

(
M i jt (ξ ) 

)
+ . 

The objective function (2) of the first stage includes the acquisition and holding costs, as well as the expected sum of

optimal values of the second stage. The objective function (3) of the second-stage problem (for every hospital i ) includes the

transportation costs, the government purchasing costs and the penalty costs for unmet demands. The government purchasing 

cost p jt (ξ ) per unit for medical supply j on day t changes as the demands change. The higher the demands, the higher the

price. 

The storage amount of each medical supply should not exceed the budget of the government. Also, the storage amount 

of each medical supply of each hospital should not exceed its capacity. The medical supplies distributed by government 

and obtained from social non-targeted donation should not exceed the upper limits. Constraint (4) ensures that the stored 

medical supplies are limited by budgets. Constraint (5) ensures that the stored medical supply j in hospital i is limited by

its warehouse capacity. 

m ∑ 

i =1 

x i j ≤ x j max , ∀ j ∈ J , (4) 

x i j ≤ x i j max , ∀ i ∈ I, j ∈ J . (5) 

Constraints (6) and (7) limit the amounts of medical supplies distributed by government and obtained from social non- 

targeted donation for almost every (a.e.) realization of ξ ∈ �, respectively. That is, for a.e. ξ ∈ �, 

y i jt (ξ ) + 

m ∑ 

γ � = i 
y ∗γ jt (ξ ) ≤ y jt max , ∀ j ∈ J , t ∈ T , (6) 
39 
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z i jt (ξ ) + 

m ∑ 

γ � = i 
z ∗γ jt (ξ ) ≤ z jt max , ∀ j ∈ J , t ∈ T . (7) 

Constraint (8) ensures that the amount of medical supply j from storage used by hospital i over all time horizons does not

exceed the total amount of storage. That is, for any i ∈ I , and for a.e. ξ ∈ �, 

l ∑ 

t=1 

s i jt (ξ ) ≤ x i j , ∀ j ∈ J . (8) 

Constraints (9) and (10) are nonnegativity conditions, since the amount of storage and the amount of distribution cannot be 

negative. That is, 

x i j ≥ 0 , ∀ i ∈ I, j ∈ J , (9) 

and for any i ∈ I, and for a.e. ξ ∈ �, 

y i jt (ξ ) , z i jt (ξ ) , s i jt (ξ ) ≥ 0 , ∀ j ∈ J , t ∈ T . (10)

We construct the two-stage stochastic equilibrium model in the following form 

min x 

m ∑ 

i =1 

n ∑ 

j=1 

a i j x i j + 

m ∑ 

i =1 

E 
[
ϑ i 

(
x i , x −i ∗, ξ

)]
, 

s . t . (4) , (5) , (9) , 

(11) 

where ϑ i 

(
x i , x −i ∗, ξ

)
is the optimal value of the second-stage equilibrium problem. That is, for every hospital i ∈ I , 

min 

y i (ξ ) ,z i (ξ ) ,s i (ξ ) 
F i (y i (ξ ) , z i (ξ ) , s i (ξ )) 

s . t . (6) , (7) , (8) , (10) . 
(12) 

Here the objective function F i (y i (ξ ) , z i (ξ ) , s i (ξ )) is defined in (3) . 

The model (11) - (12) is a two-stage stochastic equilibrium model, where the second-stage problem is nonsmooth since 

the penalty in the objective function involves the max operator. The methods for solving the two-stage SP are not applicable

for the two-stage stochastic equilibrium model. Hence it is computationally intractable. In the next section, we will replace 

the nonsmooth penalty by its smooth counterpart and transform the smooth approximation of the two-stage stochastic 

equilibrium problem to a monotone two-stage SVI problem that is computationally tractable. 

4. Smooth approximation and transforming to monotone two-stage SVI 

For simplicity, we always assume the support set � being a finite set of “scenarios” ξ k , k = 1 , 2 , . . . , K, each having

a nonzero probability τk such that
∑ K 

k =1 τk = 1 at follows. In fact, if ξ ∈ � is continuously distributed, we can adopt the 

sample average approximation to obtain a discrete distribution that approximates the continuous distribution as in [28,29] . 

In order to construct the smooth approximation of F i (y i (ξ ) , z i (ξ ) , s i (ξ )) for any ξ ∈ �, we need the following definition

for smoothing function. 

Definition 1. [37] Let g : R n → R be a locally Lipschitz continuous function. We call ˜ g : R n × R ++ → R a smoothing function

of g if ˜ g is continuously differentiable on R n for any μ ∈ R ++ and for any x ∈ R n , 

lim 

z→ x, μ↓ 0 
˜ g (z, μ) = g(x ) . (13) 

We use the smoothing function ˜ q : R × R ++ → R as in [38,39] 

˜ q (ρ, μ) = μ ln 

(
e ρ/μ + 1 

)
, (14) 

to approximate the nonsmooth function ρ+ for ρ ∈ R . It is easy to check that for any ρ ∈ R , 

lim 

ζ→ ρ, μ↓ 0 
˜ q (ζ , μ) = ρ+ , 

and for each fixed smoothing parameter μ > 0 , the first-order derivative and the second-order derivative of ˜ q with respect

to ρ are 

˜ q ′ (ρ, μ) = 

e ρ/μ

e ρ/μ + 1 

, ˜ q ′′ (ρ, μ) = 

e ρ/μ

μ(e ρ/μ + 1) 2 
. (15) 

Thus given a fixed smoothing parameter μ > 0 , we obtain the smooth approximation 

˜ F i (y i (ξ ) , z i (ξ ) , s i (ξ ) , μ) for the objec-

tive function F i (y i (ξ ) , z i (ξ ) , s i (ξ )) in the second stage of the two-stage stochastic equilibrium model for any hospital i ∈ I
as 

˜ F i (y i (ξ ) , z i (ξ ) , s i (ξ ) , μ) := (16) 
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n ∑ 

j=1 

l ∑ 

t=1 

b i jt (y i jt (ξ ) + z i jt (ξ )) + 

n ∑ 

j=1 

l ∑ 

t=1 

p jt (ξ ) y i jt (ξ ) + 

n ∑ 

j=1 

l ∑ 

t=1 

c i j ̃  q 
(
M i jt (ξ ) , μ

)
. 

For each fixed μ > 0 , since the second-order derivative of ˜ q (·, μ) in (15) is greater than zero, it follows that ˜ q (·, μ) is

a convex function. Moreover, for each ξ ∈ �, we know that M i jt (ξ ) defined in (1) is an affine function with respect to

(y i (ξ ) T , z i (ξ ) T , s i (ξ ) T ) T . According to Theorem 3.1.6 of [40] , the composition of a convex function and an affine function

is again a convex function. Thus ˜ q 
(
M i jt (ξ ) , μ

)
is a convex function with respect to (y i (ξ ) T , z i (ξ ) T , s i (ξ ) T ) T . This, together

with the fact that the first two terms in 

˜ F i (y i (ξ ) , z i (ξ ) , s i (ξ ) , μ) are linear functions, and c i j > 0 for all i, j, yields that

˜ F i (y i (ξ ) , z i (ξ ) , s i (ξ ) , μ) is a convex function with respect to (y i (ξ ) T , z i (ξ ) T , s i (ξ ) T ) T . 

The smooth approximation of the two-stage stochastic equilibrium model (11) - (12) is 

min x 

m ∑ 

i =1 

n ∑ 

j=1 

a i j x i j + 

m ∑ 

i =1 

K ∑ 

k =1 

τk 

[
˜ ϑ i 

(
x i , x −i ∗, ξ k , μ

)]
, 

s . t . (4) , (5) , (9) , 

(17) 

where ˜ ϑ i 

(
x i , x −i ∗, ξ k , μ

)
is the optimal value of the smooth approximation of the second-stage equilibrium problem. That is, 

for every hospital i ∈ I , it solves the following smooth minimization problem 

min y i (ξ k ) ,z i (ξ k ) ,s i (ξ k ) 
˜ F i (y i (ξ k ) , z i (ξ k ) , s i (ξ k ) , μ) 

s . t . (6) , (7) , (8) , (10) . 
(18) 

The second-stage problem (18) for hospital i involves other hospitals’ optimal strategies, and hence it is not solvable 

itself. We thus consider the following model defined in (19) . More details on the equivalency of (17) - (18) and (19) have

been provided in Subsection 4.1 . 

min x,y (ξ k ) ,z(ξ k ) ,s (ξ k ) , 
k =1 , ... ,K 

m ∑ 

i =1 

n ∑ 

j=1 

a i j x i j + 

m ∑ 

i =1 

K ∑ 

k =1 

τk ̃
 F i (y i (ξ k ) , z i (ξ k ) , s i (ξ k ) , μ) 

s . t . (4) , (5) , (9) , 
m ∑ 

i =1 

y i jt (ξ
k ) ≤ y jt max , ∀ j ∈ J , t ∈ T , k = 1 , . . . , K, 

m ∑ 

i =1 

z i jt (ξ
k ) ≤ z jt max , ∀ j ∈ J , t ∈ T , k = 1 , . . . , K, 

(8) , (10) for ξ = ξ k , k = 1 , . . . , K. 

(19) 

We have already shown before that ˜ F i (y i (ξ k ) , z i (ξ k ) , s i (ξ k ) , μ) is a convex function. The above model is a convex model

with linear constraints. Moreover, the feasible region defined by the linear constraints is compact. Since a continuous func- 

tion is sure to obtain its minimum in a nonempty and compact set, the existence of solutions of the convex model (19) is

guaranteed. The linear constraints also guarantee that any solution of the convex model (19) is a KKT point. 

In order to express the formulas of the KKT systems involving in (17) - (18) as well as (19) in a concise way, we use the

vectors and matrices for the objective functions and the constraints, as well as the corresponding Lagrange multipliers for 

the constraints. 

For given positive integers α and β , we denote by I α the α × α identity matrix, by I 
(β) 
α the α × αβ matrix constituted 

by β blocks of I α , i.e., I 
(β) 
α = (I α, . . . , I α) , by diag ( ̂ v ) the diagonal matrix with its (i, i ) entry to be the i th component of the

vector ˆ v , by Diag (D, ς ) the block diagonal matrix with ς blocks D , by e (β) the β-dimensional column vector with all entries

one, by 0 α×β the α × β matrix with all entries zero. Denote 

˜ F (y (ξ k ) , z(ξ k ) , s (ξ k ) , μ) = ( ̃  F i (y i (ξ k ) , z i (ξ k ) , s i (ξ k ) , μ) , ∀ i ) T , 

h = 

(
x budg 

max 

T 
, x hosp 

max 

T 
)T 

, A = 

(
I (m ) 
n 

T 
, I mn 

)T 

, p(ξ k ) = I (m ) 
nl 

T 
p i (ξ k ) , 

B = Diag ( e (l) T , n ) , ˆ B = Diag (B, m ) . 

Now assume that the first n 1 medical supply types are non-reusable and the remaining n 2 medical supply types are reusable,

i.e., n 1 + n 2 = n . Let H 1 ∈ R l×l be an upper triangular matrix whose upper diagonal entries are all 1, H 2 = Diag (H 1 , n 2 ) ,

M 

ξ k μ
i jt 

= 

1 

e 
M i jt (ξ

k ) /μ+1 

− 1 , H = 

(
I n 1 l 0 n 1 l×n 2 l 

0 n 2 l×n 1 l 
H 2 

)
, ˆ H = Diag (H, m ) , and 

Q 

ξ k μ
yzs = 

ˆ H 

(
c i j M 

ξ k μ
i jt 

, ∀ i, j, t 

)T 

. (20) 
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The convex model (19) can be rewritten in the form 

min x,y (ξ k ) ,z(ξ k ) ,s (ξ k ) , 
k =1 , ... ,K 

a T x + 

K ∑ 

k =1 

τk e 
(m ) T ˜ F (y (ξ k ) , z(ξ k ) , s (ξ k ) , μ) 

s . t . Ax ≤ h, 

I (m ) 
nl 

y (ξ k ) ≤ y dist 
max , k = 1 , . . . , K, 

I (m ) 
nl 

z(ξ k ) ≤ z soci 
max , k = 1 , . . . , K, 

ˆ B s (ξ k ) − x ≤ 0 , k = 1 , . . . , K, 

x, y (ξ k ) , z(ξ k ) , s (ξ k ) ≥ 0 , k = 1 , . . . , K. 

(21) 

We denote by λ ∈ R mn + n 
+ , πy (ξ k ) ∈ R nl + , πz (ξ k ) ∈ R nl + , and πs (ξ k ) ∈ R mn + the vectors of Lagrange multipliers of the first four

groups of functional constraints in (21) , respectively. Using the above notations, the KKT system of (21) can be written as

the following two-stage SVI model 

0 ≤ a + A 

T λ −
K ∑ 

k =1 

τk πs (ξ k ) ⊥ x ≥ 0 , 

0 ≤ h − Ax ⊥ λ ≥ 0 , 

0 ≤ b + p(ξ k ) + I (m ) 
nl 

T 
πy (ξ k ) + Q 

ξ k μ
yzs ⊥ y (ξ k ) ≥ 0 , k = 1 , . . . , K, 

0 ≤ b + I (m ) 
nl 

T 
πz (ξ ) + Q 

ξ k μ
yzs ⊥ z(ξ k ) ≥ 0 , k = 1 , . . . , K, 

0 ≤ ˆ B 

T πs (ξ k ) + Q 

ξ k μ
yzs ⊥ s (ξ k ) ≥ 0 , k = 1 , . . . , K, 

0 ≤ y dist 
max − I (m ) 

nl 
y (ξ k ) ⊥ πy (ξ k ) ≥ 0 , k = 1 , . . . , K, 

0 ≤ z soci 
max − I (m ) 

nl 
z(ξ k ) ⊥ πz (ξ k ) ≥ 0 , k = 1 , . . . , K, 

0 ≤ x − ˆ B s (ξ k ) ⊥ πs (ξ k ) ≥ 0 , k = 1 , . . . , K. 

(22) 

Here 0 ≤ u ⊥ v ≥ 0 means that u ≥ 0 , v ≥ 0 , and u T v = 0 , for two vectors u and v of the same dimension. The vectors x and

λ are the first-stage decision vectors of the above two-stage SVI model, which should be given before the scenario ξ k really 

happens. That is, x and λ satisfy the “nonanticipativity” property as mentioned in [13] . The vectors y (ξ k ) , z(ξ k ) , s (ξ k ) ,

πy (ξ k ) , πz (ξ k ) , πs (ξ k ) are the second-stage decision vectors which should be given after we know the realization of ξ k . It

is worth mentioning that (22) is a two-stage stochastic nonlinear complementarity problem (NCP), which is a special type 

of two-stage SVIs. The nonlinearity comes from M 

ξ k μ
i jt 

in defining Q 

ξ k μ
yzs . 

Proposition 1. The two-stage SVI (22) is of maximal monotone type. 

Proof. See A.1 for the proof. �

4.1. Relation of two models 

In this subsection, we discuss the relation of the two-stage stochastic equilibrium model (17) - (18) and the two-stage SP

model (19) . 

The two-stage stochastic equilibrium model (17) - (18) can be written as 

min x a T x + 

m ∑ 

i =1 

K ∑ 

k =1 

τk 
˜ ϑ i 

(
x i , x −i ∗, ξ k , μ

)
s . t . Ax ≤ h, 

x ≥ 0 , 

(23) 

where ˜ ϑ i 

(
x i , x −i ∗, ξ k , μ

)
is the optimal value of the second-stage equilibrium problem. That is, for every hospital i ∈ I , it 

solves the following smooth minimization problem 

min y i (ξ k ) ,z i (ξ k ) ,s i (ξ k ) 
˜ F i (y i (ξ k ) , z i (ξ k ) , s i (ξ k ) , μ) 

s . t . y i (ξ k ) + 

m ∑ 

γ � = i 
y γ ∗(ξ k ) ≤ y dist 

max , 

z i (ξ k ) + 

m ∑ 

γ � = i 
z γ ∗(ξ k ) ≤ z soci 

max , 

Bs i (ξ k ) − x i ≤ 0 , 

y i (ξ k ) , z i (ξ k ) , s i (ξ k ) ≥ 0 . 

(24) 

Note that constraint (8) in the second stage of the two-stage stochastic equilibrium model involves the decision vector x 

of the first stage. Let us denote by S 2 (x ) the solution set of the second-stage equilibrium problem (18) for a given decision

vector x of the first stage. For each fixed x , a vector (
y (ξ k ) T , z(ξ k ) T , s (ξ k ) T , k = 1 , . . . , K 

)T ∈ S 2 (x ) , 
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if there exist vectors 

ˆ πy (ξ
k ) ∈ R 

mnl 
+ , ˆ πz (ξ

k ) ∈ R 

mnl 
+ , ˆ πs (ξ

k ) ∈ R 

mn 
+ , k = 1 , . . . , K, (25) 

together with the vector 
(
y (ξ k ) T , z(ξ k ) T , s (ξ k ) T , k = 1 , . . . , K 

)T 
, satisfy the following NCP. 

0 ≤ b + p(ξ k ) + Q 

ξ k μ
yzs + ˆ πy (ξ k ) ⊥ y (ξ k ) ≥ 0 , k = 1 , . . . , K, 

0 ≤ b + Q 

ξ k μ
yzs + ˆ πz (ξ k ) ⊥ z(ξ k ) ≥ 0 , k = 1 , . . . , K, 

0 ≤ Q 

ξ k μ
yzs + 

ˆ B 

T ˆ πs (ξ k ) ⊥ s (ξ k ) ≥ 0 , k = 1 , . . . , K, 

0 ≤ I (m ) 
nl 

T 
y dist 

max − I (m ) 
nl 

T 
I (m ) 
nl 

y (ξ k ) ⊥ ˆ πy (ξ k ) ≥ 0 , k = 1 , . . . , K, 

0 ≤ I (m ) 
nl 

T 
z soci 

max − I (m ) 
nl 

T 
I (m ) 
nl 

z(ξ k ) ⊥ ˆ πz (ξ k ) ≥ 0 , k = 1 , . . . , K, 

0 ≤ x − ˆ B s (ξ k ) ⊥ ˆ πs (ξ k ) ≥ 0 , k = 1 , . . . , K. 

(26) 

Proposition 2. For any feasible solution x ∈ R mn of (17) , the solution set S 2 (x ) of the second-stage equilibrium problem (18) is

nonempty, convex, and compact. 

Proof. See A.2 for the proof. �

There may exist many choices of decisions in S 2 (x ) for a given x ∈ R mn . It is reasonable to assume that the government

as the leader for the two-stage equilibrium model is allowed to select the decision vector (
ˆ y (ξ k ) T , ̂  z (ξ k ) T , ̂  s (ξ k ) T , k = 1 , . . . , K 

)T ∈ S 2 (x ) 

such that the total cost involved in the second stage is minimized. That is, 

m ∑ 

i =1 

K ∑ 

k =1 

τk 
˜ ϑ i 

(
x i , x −i ∗, ξ k , μ

)
= 

K ∑ 

k =1 

τk e 
(m ) T ˜ F ( ̂  y (ξ k ) , ̂  z (ξ k ) , ̂  s (ξ k ) , μ) 

≤
K ∑ 

k =1 

τk e 
(m ) T ˜ F (y (ξ k ) , z(ξ k ) , s (ξ k ) , μ) , (27) 

for all 
(
y (ξ k ) T , z(ξ k ) T , s (ξ k ) T , k = 1 , . . . , K 

)T ∈ S 2 (x ) . By Proposition 2 , such vector 
(

ˆ y (ξ k ) T , ̂  z (ξ k ) T , ̂  s (ξ k ) T , k = 1 , . . . , K 

)T ∈ 

S 2 (x ) exists. 

Similar as bilevel programming [41] , by assuming (27) , we indeed consider the optimistic version of the two-stage stochas-

tic equilibrium model (17) - (18) 

min x,y (ξ k ) ,z(ξ k ) ,s (ξ k ) , 
k =1 , ... ,K 

a T x + 

∑ K 
k =1 τk e 

(m ) T ˜ F (y (ξ k ) , z(ξ k ) , s (ξ k ) , μ) 

s . t . Ax ≤ h, 

x ≥ 0 , (
y (ξ k ) T , z(ξ k ) T , s (ξ k ) T , k = 1 , . . . , K 

)T ∈ S 2 (x ) . 

(28) 

The solution set of (28) is nonempty, since the feasible set of (28) is nonempty, convex, and compact, and the objective

function is continuous. 

Proposition 3. The two-stage SP model (19) and the optimistic version (28) of the two-stage equilibrium model (17) - (18) are

equivalent in the sense that they have the same solution set. 

Proof. See A.3 for the proof. �

The result of this proposition is very interesting and justifies the two-stage SP model (19) , although the government

becomes the only decision maker to medical supplies for an epidemic. The two-stage SP model (19) can be built directly

from the view of optimality for the society and the government is the only decision maker. While the optimistic version

(28) of the two-stage stochastic equilibrium model (17) - (18) is built by considering the competitions in the second stage for

the dynamic distribution, and assume that the government is able to select an optimal decision for the whole society from

the possible choices competed by the hospitals. The two models indeed provide the same solution sets. Thus we conclude 

that in medical supplies for an epidemic, a powerful and smart government can make decisions from the view of social

optimality that are also acceptable for all hospitals in the sense that no hospital can decrease its own costs by unilaterally

changing its strategy. 
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4.2. Further extensions of the model 

First of all, the nonsmooth term (M i jt (ξ )) + in the penalty term of (3) can be replaced by a more general nonsmooth 

function R ((M i jt (ξ )) + ) . For instance, the out-layer function R (ϕ) can be quadratic, or cubic, or piecewise linear as 

R (ϕ) = 

⎧ ⎨ 

⎩ 

δ1 ϕ, if ϕ 
d i jt (ξit ) 

∈ [0 , σ1 ] , 

δ2 ϕ − (δ2 − δ1 ) σ1 d i jt (ξit ) , if ϕ 
d i jt (ξit ) 

∈ [ σ1 , σ2 ] , 

δ3 ϕ − [(δ3 − δ2 ) σ2 + (δ2 − δ1 ) σ1 ] d i jt (ξit ) , if ϕ 
d i jt (ξit ) 

∈ [ σ2 , 1] , 

(29) 

where 0 < σ1 < σ2 < 1 and 0 < δ1 < δ2 < δ3 are given parameters. 

One can substitute (M i jt (ξ )) + by a new nonnegative variable θi jt (ξ ) in the penalty term of (3) , and add the following

constraints to the two-stage stochastic equilibrium model: for any i ∈ I , j ∈ J , and for a.e. ξ ∈ �, 

θi jt (ξ ) ≥ M i jt (ξ ) , 
θi jt (ξ ) ≥ 0 . 

(30) 

The two-stage stochastic equilibrium model can be transformed to the smooth two-stage SP model. In case � = 

{ ξ 1 , . . . , ξK } , this strategy will increase mnlK functional constraints and mnlK nonnegativity constraints to the original model. 

The strategy of this type is beneficial for mnlK of moderate size, but may increase computational cost dramatically when 

mnlK is huge, or facing more complex nonsmooth penalty functions such as the piecewise function R ((M i jt (ξ )) + ) in (29) .

The smoothing strategy we use in this paper can be easily extended to more complex nonsmooth penalty functions such as

(29) , and only enrolls a smoothing parameter μ ∈ R instead. 

Secondly, it is very interesting to consider the case when the quantity of a type of non-reusable medical supply such as

drugs delivered to hospital i on day t can be greater than the demands. Motivated by [2] , for such non-reusable medical

supply j, we can modify the amount of unmet demands of hospital i for medical supply j on day t as 

M i jt (ξ ) = 

t ∑ 

o=1 

[ d i jo (ξio ) − y i jo (ξ ) − z i jo (ξ ) − s i jo (ξ )] . (31) 

Note that if M i jt (ξ ) is defined in this way, in case that M i jt (ξ ) < 0 , i.e., the quantity of medical supply j that can be used

on day t is more than the demands of hospital i , then the excess quantity will be delivered to the next day as part of the

quantity that can be used. In case that M i jt (ξ ) > 0 , i.e., there exist unmet demands on day t , the unmet demands will be

penalized each day if they are still not be covered in the following days. It is more reasonable to assign a time-variant

penalty coefficient that increases with the delay time, e.g., 

c i j Q ( 
t 

l 
) , (32) 

where c i j is the unit penalty coefficient, t represents the day t , and l is the total number of days we consider. Here Q 

(
t 
l 

)
monotonically increases with 

t 
l 
. In [2] , Q ( t 

l 
) = ( t 

l 
) 3 is employed. 

For the extensions mentioned above, the analysis also holds for the nonsmooth two-stage stochastic equilibrium model, 

its smooth approximation, as well as the corresponding two-stage SP and the two-stage SVI model. The PHM outlined in the

next section is also applicable to solve the two-stage SVI models for extensions, with a slight modification of the function

value and the Jacobian matrix of the function involved in the NCP. 

5. PHM and strategy for updating smoothing parameter 

The discretized two-stage SVI (22) is a deterministic variational inequality (VI) which may be solved by any existing 

solvers. However, when K is large, it is more efficient to solve (22) using the PHM [14] that can exploit the two-stage

structure. As shown in [14] , when (22) is of maximal monotone type, the PHM has solid convergence. The PHM has very

clear structure and is easy to code. The efficient semismooth Newton method [42,43] can be enrolled in the PHM for the

two-stage SVI, and the efficiency of the PHM has been demonstrated in [31,35] . Moreover, the PHM is attractive for dealing

with further extensions of the proposed model, because it does not require the objective function to be linear or quadratic

as some existing efficient solvers for the two-stage SP do, including the “linprog” in Matlab and the Benders decomposition 

method [44,45] . The PHM performs well when facing large number of scenarios, by using parallel computation. 

We use the notation y k = y (ξ k ) , z k = z(ξ k ) , s k = s (ξ k ) , πyk = πy (ξ k ) , πzk = πz (ξ k ) , πsk = πs (ξ k ) and p k = p(ξ k ) for sim-

plicity. 
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Algorithm 1 (PHM). 

Given initial points x 0 ∈ R mn , λ0 ∈ R mn + n ,let y 0 
k 
, z 0 

k 
, s 0 

k 
∈ R mnl , π0 

yk 
, π0 

zk 
∈ R nl , π0 

sk 
∈ R mn and u 0 

k 
∈ R mn , v 0 

k 
∈ R mn + n , for k = 

1 , . . . , K, such that 
∑ K 

k =1 τk u 
0 
k 

= 0 , 
∑ K 

k =1 τk v 0 k 
= 0 . Choose a step size r > 0 and a smoothing parameter μ > 0 . Set ν = 0 . 

Step 1. For k = 1 , 2 , . . . , K, solve the NCP ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 ≤ a + A 

T λk − πsk + r(x k − x ν ) + u 

ν
k 

⊥ x k ≥ 0 , 

0 ≤ h − Ax k + r(λk − λν ) + v ν
k 

⊥ λk ≥ 0 , 

0 ≤ b + p k + I (m ) 
nl 

T 
πyk + Q 

ξ k μ
yzs + r(y k − y ν

k 
) ⊥ y k ≥ 0 , 

0 ≤ b + I (m ) 
nl 

T 
πzk + Q 

ξ k μ
yzs + r(z k − z ν

k 
) ⊥ z k ≥ 0 , 

0 ≤ ˆ B 

T πsk + Q 

ξ k μ
yzs + r(s k − s ν

k 
) ⊥ s k ≥ 0 , 

0 ≤ y dist 
max − I (m ) 

nl 
y k + r(πyk − πν

yk 
) ⊥ πyk ≥ 0 , 

0 ≤ z soci 
max − I (m ) 

nl 
z k + r(πzk − πν

zk 
) ⊥ πzk ≥ 0 , 

0 ≤ x k − ˆ B s k + r(πsk − πν
sk 
) ⊥ πsk ≥ 0 , 

(33) 

using the semismooth Newton method and obtain a solution ( ̂  x ν
k 
, ̂  λν

k 
, ̂  y ν

k 
, ̂  z ν

k 
, ̂  s ν

k 
, ˆ πν

yk 
, ˆ πν

zk 
, ˆ πν

sk 
) , k = 1 , 2 , . . . , K. 

Step 2. For k = 1 , 2 , . . . , K, let 

x ν+1 = 

K ∑ 

k =1 

τk ̂  x ν
k 
, λν+1 = 

K ∑ 

k =1 

τk ̂
 λν
k 
, 

y ν+1 
k 

= 

ˆ y ν
k 
, z ν+1 

k 
= 

ˆ z ν
k 
, s ν+1 

k 
= 

ˆ s ν
k 
, πν+1 

yk 
= ˆ πν

yk 
, πν+1 

zk 
= ˆ πν

zk 
, πν+1 

sk 
= ˆ πν

sk 
, 

u 

ν+1 
k 

= u 

ν
k 

+ r( ̂  x ν
k 

− x ν+1 ) , v ν+1 
k 

= v ν
k 

+ r( ̂ λν
k 

− λν+1 ) . 

Set ν = ν + 1 , and go to Step 1. 

 

 

 

 

Note that the proximal term ensures the existence of a unique solution to the subproblem in (33). The elements u ν
k 

and

v ν
k 

have the role of Lagrange multipliers corresponding to the nonanticipativity constraints for the vectors x and λ. We use

the efficient semismooth Newton method [43] to solve the subproblems in (33) for k = 1 , . . . , K. 

Strategy for updating μ and stopping criteria 

Denote 

w 

(1) = 

(
x 
λ

)
, Ḡ (w 

(1) ) = 

( 

a + A 

T λ −
K ∑ 

k =1 

τk πsk 

h − Ax 

) 

. 

For any ξ k , k = 1 , . . . , K, let us denote 

w 

(2) 
k 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

y k 
z k 
s k 
πyk 

πzk 

πsk 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, ˆ G (w 

(2) 
k 

, μ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

b + p k + I (m ) 
nl 

T 
πyk + Q 

ξ k μ
yzs 

b + I (m ) 
nl 

T 
πzk + Q 

ξ k μ
yzs 

ˆ B 

T πsk + Q 

ξ k μ
yzs 

y dist 
max − I (m ) 

nl 
y k 

z soci 
max − I (m ) 

nl 
z k 

x k − ˆ B s k 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

Let 

η1 = 

∥∥∥min 

{ 
w 

(1) ν+1 
, ̄G ν+1 ( w 

(1) ν+1 
) 
} ∥∥∥

1+ 
∥∥∥w 

(1) ν+1 
∥∥∥ , 

η2 (k, μ) = 

∥∥∥min 

{ 
w 

(2) 
k 

ν+1 
, ̂ G ν+1 ( w 

(2) 
k 

ν+1 
,μ) 

} ∥∥∥
1+ 

∥∥∥w 

(2) 
k 

ν+1 
∥∥∥ , 

η(μ) = max { η1 , max { η2 (k, μ) , k = 1 , 2 , . . . , K} } . 

(34) 

We adopt a strategy for updating μ as similar to that used in the smoothing methods for solving constrained nonsmooth 

optimization [37,38,46,47] . This strategy is helpful for accelerating the computational speed compared with that using a 

fixed μ, and is promising to get an approximate solution of the original nonsmooth two-stage SP. To be specific, we do the

following procedures. 

• Choose a relatively large initial smoothing parameter μ0 from the beginning, an acceptable level of the final smoothing 

parameter 0 < l μ < μ0 , and constants γ > 0 , δμ ∈ (0 , 1) . 
• For k ≥ 0 , we use the iterates of the PHM ( Algorithm 1 ) to approximately solve the two-stage SVI with μν . If η(μν ) <

γμν and μν > l μ, that is, the two-stage SVI with μν is approximately solved but μν is not acceptable as the final 
smoothing parameter, we then set μν+1 = δμμν , otherwise, we set μν+1 = μν . 
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For k = 1 , . . . , K, define 

w k = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

x k 
λk 

y k 
z k 
s k 
πyk 

πzk 

πsk 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, G (w k ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

a + A 

T λk − πsk + r(x k − x ν ) + u 

ν
k 

h − Ax k + r(λk − λν ) + v ν
k 

b + p k + I (m ) 
nl 

T 
πyk + Q 

ξ k μ
yzs + r(y k − y ν

k 
) 

b + I (m ) 
nl 

T 
πzk + Q 

ξ k μ
yzs + r(z k − z ν

k 
) 

ˆ B 

T πsk + Q 

ξ k μ
yzs + r(s k − s ν

k 
) 

y dist 
max − I (m ) 

nl 
y k + r(πyk − πν

yk 
) 

z soci 
max − I (m ) 

nl 
z k + r(πzk − πν

zk 
) 

x k − ˆ B s k + r(πsk − πν
sk 
) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

The implementation of the semismooth Newton method requires the Jacobian matrix J k of G (w k ) . We give the form of the

Jacobian matrix J k of G (w k ) below. 

Denote 

U 

ξ k 

μ = 

(
c i j e 

M i jt (ξ
k ) /μ

μ(e M i jt (ξ k ) /μ + 1) 2 
, ∀ i, j, t 

)T 

, C 
ξ k μ
yzs = 

ˆ H diag (U 

ξ k 

μ ) ̂  H 

T . 

The Jacobian matrix of G (w k ) is 

J k = J̄ k + rI 3 mnl +2 nl +3 mn + n , (35) 

where 

J̄ k = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 A 

T 0 0 0 0 0 −I 
−A 0 0 0 0 0 0 0 

0 0 C 
ξ k μ
yzs C 

ξ k μ
yzs C 

ξ k μ
yzs I (m ) 

nl 

T 
0 0 

0 0 C 
ξ k μ
yzs C 

ξ k μ
yzs C 

ξ k μ
yzs 0 I (m ) 

nl 

T 
0 

0 0 C 
ξ k μ
yzs C 

ξ k μ
yzs C 

ξ k μ
yzs 0 0 

ˆ B 

T 

0 0 −I (m ) 
nl 

0 0 0 0 0 

0 0 0 −I (m ) 
nl 

0 0 0 0 

I 0 0 0 − ˆ B 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

The semismooth Newton method is efficient, since the Jacobian matrix J k is sparse and has special structure. 

6. Case study: COVID-19 pandemic in Wuhan 

In this section, we focus on the storage and dynamic distribution of medical supplies in the city of Wuhan in China that

suffered from COVID-19. All experiments are performed in Windows 10 on an Intel Core 10 CPU at 3.70 GHZ with 64 GB of

RAM, using MATLAB R2021a. 

6.1. Problem description 

Wuhan is located in Hubei province, China, which includes 13 districts with a population of approximately 11 million 

people and with a size of approximately 8500 square kilometers. The sudden outbreak of COVID-19 caused tension in the 

city for months. At the beginning, medical supplies were extremely in short, while the number of infected people dramati- 

cally increased. 

We consider 7 types of medical supplies in 7 hospitals over a period of 14 days. The hospitals are Jinyintan Hospital,

Tongji Medical College of Huazhong University of Science and Technology, Union Hospital Tongji Medical College Huazhong 

University of Science and Technology, Renmin Hospital of Wuhan University Hubei General Hospital, Huoshenshan Hospi- 

tal, Leishenshan Hospital, Wuhan No.1 Hospital, which are selected because they are the main hospitals for the COVID-19 

treatment. Jinyintan Hospital (H1), Huoshenshan Hospital (H5) and Leishenshan Hospital (H6) mainly treated patients with 

mild infection and the remaining four hospitals mainly treated patients with severe infection. According to the list of key 

supplies for epidemic prevention and control (medical emergency) on the official website of the Ministry of Industry and 

Information Technology, China, we consider the following seven types of medical supplies: drugs, inspection and testing ar- 

ticles, protective articles, disinfection supplies, vehicle equipments, disinfection equipments, and electronic instruments. The 

first four types of medical supplies are non-reusable, and the last three are reusable. We consider the 14 days from February

10th, 2020 to February 23rd, 2020, which was the period of the greatest scarcity of medical supplies. We assume that there

is only one warehouse from which medical supplies are transported to hospitals in the second stage. The locations of the

hospitals and the warehouse are marked on the map given in Fig. 1 . 

Based on the volume and weight, shelf life, acquisition cost, warehouse rent, holding cost of each medical supply and the

average number of years that of such epidemics occur, we estimate the unit reserve price of each medical supply for each
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Fig. 1. Wuhan Map: hospitals and the warehouse. 

Table 1 

Unit reserve prices of medical supplies in each hospital. 

MS a i j (CNY/unit) 

H1 H2 H3 H4 H5 H6 H7 

1 2600 2610 2610 2630 2610 2620 2640 

2 21 22 22 24 22 23 25 

3 220 225 225 235 225 230 240 

4 22 23 23 25 23 24 26 

5 402000 402500 402500 403500 402500 403000 404000 

6 3100 3120 3120 3160 3120 3140 3180 

7 10100 10150 10150 10250 10150 10200 10300 

MS = Medical supply, 1 = Drugs, 2 = Inspection and testing articles, 3 = Protective ar- 

ticles, 4 = Disinfection supplies, 5 = Vehicle equipments, 6 = Disinfection equipments, 

7 = Electronic instruments. 

Table 2 

Unit transport price, demand ratio, and upper limit. 

MS b j (CNY/unit ·km) d j (/patient ·day) x j max y j max (/day) z j max (/day) x i j max 

1 1 2 1000 10000 50 400 

2 0.2 1 0 5700 100 400 

3 0.5 6 1000 32800 1000 400 

4 0.5 1 1000 4700 100 300 

5 10 0.02 15 80 8 10 

6 1 0.05 50 180 20 20 

7 1.5 0.1 80 400 20 20 

 

 

 

 

hospital in Table 1 . More specifically, the unit reserve price a i j is a rough estimation? > of the current market price from

Baidu’s B2B platform ( https://b2b.baidu.com ) for medical supply 5 – vehicle equipments, and JD mall ( https://www.jd.com/ ) 

for the other medical supplies. Because the housing prices ( https://www.anjuke.com/fangjia/wuhan2020/ ) of different dis- 

tricts in Wuhan are different, we mainly determine the unit reserve prices according to the housing prices of the districts

where the hospitals are located in. Based on the preservation requirements and the volume sizes during the transportation, 

we give the unit transport prices for all the medical supplies, which are roughly estimated according to the transport com-

pany’s charge standard ( https://www.deppon.com/newwebsite/mail/price ). The transportation costs for distance less than 

50km will be charged as the costs of 50km. Each patient’s daily needs for each medical supply is a rough estimation. As-
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Table 3 

Number of infected people. 

Hospital ξit 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 

H1 831 807 793 822 811 822 788 688 647 592 589 592 569 552 

H2 1040 1040 1047 1048 1047 1045 1023 1022 993 1008 1013 974 946 937 

H3 787 778 791 791 778 777 770 736 749 741 745 750 729 714 

H4 800 774 794 772 774 788 785 780 760 730 732 701 691 669 

H5 1013 1000 1014 1014 1010 1007 1021 1020 1002 1005 1008 966 1008 964 

H6 123 159 483 473 567 602 746 818 980 977 962 1059 1052 1042 

H7 445 614 629 1052 1052 1082 1093 1089 1074 1056 1049 1047 1029 1020 

D1 = The first day of the time horizons, followed by the second, and so on. 

Table 4 

Unit prices of medical supplies. 

MS p jt (CNY 10 3 /unit) 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 

1 2.55 3 3.5 3.6 3.8 4.5 4.8 4.8 5 5.2 5.5 6 6 6 

2 0.02 0.025 0.029 0.03 0.03 0.032 0.035 0.035 0.035 0.04 0.045 0.05 0.05 0.05 

3 0.2 0.3 0.45 0.55 0.6 0.7 0.8 0.8 0.8 0.8 0.9 1 1 1 

4 0.02 0.03 0.04 0.05 0.06 0.08 0.09 0.11 0.15 0.18 0.2 0.26 0.26 0.26 

5 400 405 410 410 415 420 425 425 430 440 450 455 455 455 

6 3 3.5 4 4.1 4.2 4.3 4.5 4.5 4.5 4.6 4.6 4.8 4.8 4.8 

7 10 12 14 15 16 16.5 18 18 18 20 22 22 22 22 

Fig. 2. Number of infected people in each hospital. 

 

 

 

 

 

 

sume that the daily allocation upper limits of government and social non-targeted donation are the same every day. Based 

on the government budgets and the daily production capacities of medical supplies, we give the upper bound vector for bud-

gets x 
budg 
max , the upper bound vector from government distribution y dist 

max and the upper bound vector by social non-targeted

donation z soci 
max . For simplicity, we give each hospital the same storage ceiling x 

hosp 
max . Table 2 lists the specific values of the

above parameters. We make samples based on the daily hospital infection data from February 10th, 2020 to February 23rd, 

2020, published by Wuhan Municipal Health Commission, as shown in Table 3 and plotted in Fig. 2 . Wuhan suffered from

the largest number of patients and the least medical supplies in these 14 days. The vector of prices p(ξ ) of medical supplies

changes over time, and the trend has a positive relation with the total number of infected people each day, as shown in

Table 4 . In the tables, “MS” refers to medical supply. 

Unlike the other parameters that have clear rules for estimating, the penalty coefficient c i j for unmet demands may 

follow different rules guided from the government to reflect fairness. We consider three different cases for the penalty 

coefficients described below. The specific vectors of penalty coefficients are listed in Table 5 . 

- Case 1 : The vectors of penalty coefficients for the hospitals are the same. 
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Table 5 

Penalty coefficient c i j for each of the three cases (CNY 10 2 /unit). 

c i j Case Hospital MS 

1 2 3 4 5 6 7 

Case 1 H1–H7 1020 1 60 6 8000 240 1500 

Case 2 H1,H5,H6 1020 1 60 6 8000 240 1500 

H2,H3,H4,H7 1025 6 65 11 8005 245 1505 

Case 3 H1 1020 1 60 6 8000 240 1500 

H2 1026 7 66 12 8006 246 1506 

H3 1024 5 64 10 8004 244 1504 

H4 1023 4 63 9 8003 243 1503 

H5 1022 3 62 8 8002 242 1502 

H6 1021 2 61 7 8001 241 1501 

H7 1025 6 65 11 8005 245 1505 

Table 6 

Problem size. 

SP SVI 

decision variables 49 + 2058 × sn 105 + 2303 × sn 

functional constraints 56 + 245 × sn - 

nonnegativity constraints 49 + 2058 × sn - 

Table 7 

Elapsed time while sn increases. 

Time (s) 

sn 20 200 500 10 0 0 

PHM 130.5 618.2 1169.2 1997.2 

linprog 0.9 34.6 412.4 3572.7 

Benders 100.9 1268.3 3651.3 - 

Table 8 

Elapsed time. 

VI SVI 

Case Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

Time (s) 16.8 33.6 29.9 618.2 1166.4 1224.2 

 

 

 

 

 

 

 

 

 

 

- Case 2 : Two different vectors of penalty coefficients are adopted. One with lower values of components is for H1, H5

and H6 that mainly treated patients with mild infection, and the other is for the remaining four hospitals that mainly

treated patients with severe infection. 

- Case 3 : Each hospital is assigned a distinct vector of penalty coefficients. Not only the mild/severe degree of patients is

addressed, but also the numbers of patients in hospitals are taken into consideration. 

Let “sn” be the number of scenarios. We randomly take sn scenarios within a band of a 10% fluctuation of the actual number

of infected people as the possible scenarios of ξ with equal probability. We use the strategy in Section 5 for updating the

smoothing parameter, where we set μ0 = 20 , l μ = 0 . 7 , γ = 0 . 001 , and α = 0 . 5 for all the tests. The computed solutions

satisfy η(μν ) < 7 × 10 −4 and μν < l μ for all the different cases. The parameter r in the PHM in each experiment is set to

be 1. 

Table 6 shows the dimensions “ d 1 + d 2 × sn” of the two-stage SP model and the transformed two-stage SVI model, where

d 1 refers to the dimension corresponding to the first stage that does not change with sn, and d 2 refers to the dimension

corresponding to the second stage for one scenario. 

It is clear that when sn is large, the dimensions of the two-stage SP and the two-stage SVI become very large. 

6.2. Comparison with existing solvers 

In this subsection, we compare our PHM using updating rule for μ, with the Matlab code “linprog” for linear program- 

ming, and the Benders decomposition method for two-stage stochastic linear programming (the Matlab code written by 

Jeonghun Song of Seoul National University downloaded from website 1 ), with different sn ranging from 20 to 10 0 0 under
1 https://www.mathworks.com/matlabcentral/fileexchange/69060- benders- decomposition- for- stochastic- linear- programming . 
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Table 9 

Costs using different models and solutions. 

Case Cost list VI SVI SVI using solution Percentage of 

(CNY) (CNY) of VI (CNY) improvement 

Case 1 Total cost 3,643,553,093 3,671,411,266 3,855,724,611 4.78% 

Acquisition and holding cost 9,797,453 9,870,622 9,797,453 

Transportation cost 21,296,679 21,299,820 21,296,679 

Government purchasing cost 1,012,934,477 1,013,526,136 1,012,934,477 

Penalty cost 2,599,524,482 2,626,714,685 2,811,695,999 

Case 2 Total cost 3,647,823,189 3,675,413,216 3,881,660,478 5.31% 

Acquisition and holding cost 9,802,026 9,875,669 9,802,026 

Transportation cost 21,296,870 21,295,726 21,296,870 

Government purchasing cost 1,012,936,255 1,013,307,167 1,012,936,255 

Penalty cost 2,603,788,037 2,630,934,652 2,837,625,326 

Case 3 Total cost 3,651,239,735 3,678,874,951 3,886,157,568 5.33% 

Acquisition and holding cost 9,800,353 9,875,745 9,800,353 

Transportation cost 21,296,909 21,295,860 21,296,909 

Government purchasing cost 1,012,936,323 1,013,311,363 1,012,936,323 

Penalty cost 2,607,206,149 2,634,391,981 2,842,123,981 

Table 10 

Ten different storage upper limits of x j max from budgets. 

MS x j max 

u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 

1 0 1e3 1e4 1.4e4 6e4 1.4e5 3e5 6e5 1.2e6 1e9 

2 0 0 0 0 0 0 0 0 0 0 

3 0 1e3 1e4 1.4e4 6e4 4.592e5 9e5 1.8e6 3.6e6 1e9 

4 0 1e3 1e4 1.4e4 6e4 6.58e4 1.2e5 2.4e5 4.8e5 1e9 

5 0 1.5e1 1.5e3 2e3 3e3 7.5e3 1e4 2e4 4e4 1e9 

6 0 5e1 5e2 8e2 1e3 2.5e3 5e3 1e4 5e4 1e9 

7 0 8e1 8e2 9e2 1e3 4e3 8e3 1.6e4 3.2e4 1e9 

Table 11 

Optimal solution of storage by stochastic model. 

x ∗
i j 

Case Hospital MS 

1 2 3 4 5 6 7 

Case 1 H1 400 0 400 300 3 15 15 

H2 202 0 220 263 3 12 19 

H3 198 0 153 174 2 10 13 

H4 0 0 0 0 3 0 13 

H5 201 0 227 263 3 12 18 

H6 0 0 0 0 0 0 2 

H7 0 0 0 0 0 0 1 

Case 2 H1 400 0 400 300 3 15 15 

H2 343 0 347 300 3 12 19 

H3 256 0 247 289 2 10 14 

H4 0 0 0 0 3 0 12 

H5 1 0 6 111 3 12 18 

H6 0 0 0 0 0 0 1 

H7 0 0 0 0 0 0 1 

Case 3 H1 0 0 278 0 3 15 15 

H2 327 0 276 300 3 13 19 

H3 282 0 129 300 2 10 14 

H4 0 0 0 0 3 0 12 

H5 391 0 318 300 3 12 19 

H6 0 0 0 100 0 0 1 

H7 0 0 0 0 0 0 0 

x j max 1000 0 1000 1000 15 50 80 

 

 

Case 1 in Table 7 . To be specific, we use the strategy to assign an auxiliary vector θi jt (ξ ) as in (30) and transform the non-

smooth two-stage stochastic equilibrium model to a smooth two-stage SP. Then the linear programming (the Matlab code 

“linprog”) and the Benders decomposition method can be employed. 

Because the solution set of the linear programming (corresponding to the two-stage SVI model) is not a singleton, we 

find that the Matlab code “linprog” by setting options to use ‘interior-point-legacy’ algorithm performs stable and the fair- 

ness of the solution is much better than that obtained by setting options to use ‘dual-simplex’ algorithm, although they have
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Table 12 

Optimal solution of storage for the same a i j and c i j . 

x ∗
i j 

Hospital MS 

1 2 3 4 5 6 7 

H1 53 0 142 100 3 9 14 

H2 185 0 151 180 3 11 18 

H3 121 0 86 95 2 8 13 

H4 114 0 130 98 3 8 13 

H5 181 0 158 180 3 10 18 

H6 177 0 201 168 0 1 2 

H7 168 0 132 180 0 3 2 

x j max 1000 0 1000 1000 15 50 80 

Fig. 3. Objective values in the first stage from no storage to sufficient upper limits of storage. 

Fig. 4. Storage amounts of medical supplies to hospitals. 
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Fig. 5. Storage amounts of medical supplies to hospitals. 

Fig. 6. Storage amounts of medical supplies to hospitals. 

 

 

 

approximately the same final objective values. Therefore, when implementing the “linprog” in Matlab and the Benders de- 

composition method that also involved the “linprog” code, we always set options to use ‘interior-point-legacy’ algorithm. The 

computed solutions obtained by using ‘interior-point-legacy’ are comparable to those using the PHM in terms of fairness. 

For each sn, we record the elapsed time in seconds. The limitation for the elapsed time is set to be 5 hours. Algorithms

have not reached the stopping criteria, or fail to find a feasible solution are considered to be failed. Note that the Benders

decomposition method has not reached the stopping criteria after running for 5 hours at sn = 10 0 0. We find that the
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Fig. 7. Number of infected people in each hospital under scenario ξ 1 . 

Fig. 8. Dynamic distributions of non-reusable medical supplies to hospitals for 14 days. 

 

objective values obtained by the three algorithms are approximately the same for successful runs, and the PHM performs 

the best when sn = 10 0 0, by using parallel computation. 

6.3. Stochastic VS. deterministic 

We compare the two-stage SVI model with the deterministic VI model for the three cases to evaluate their performances 

in addressing demand uncertainty. We use sn = 200 for the two-stage SVI model, and use the number of real infected

people for the deterministic VI model. 
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Fig. 9. Dynamic distributions of non-reusable medical supplies to hospitals for 14 days. 

Fig. 10. Dynamic distributions of non-reusable medical supplies to hospitals for 14 days. 
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Fig. 11. Dynamic distributions of reusable medical supplies to hospitals for 14 days. 

 

 

 

 

 

 

 

 

 

 

Table 8 lists the elapsed time. Table 9 lists the objective value (total cost), followed by specific costs including the acquisi-

tion and holding costs, the transportation costs, the government purchasing costs and the penalty costs, of the deterministic 

VI model and the two-stage SVI model, respectively, as well as the costs of substituting the solution of the deterministic

VI model into the two-stage SVI model. The last column of Table 9 lists the percentage of improvement in the total cost

achieved by using the two-stage SVI model instead of the deterministic VI model. The objective values of the determinis- 

tic VI model are approximately 3 . 64 × 10 9 CNY, 3 . 65 × 10 9 CNY, and 3 . 65 × 10 9 CNY for the three cases, respectively. The

objective values of the two-stage SVI model are increased to 3 . 67 × 10 9 CNY, 3 . 68 × 10 9 CNY, and 3 . 68 × 10 9 CNY for the

three cases, respectively. In reality, the demands of the deterministic VI model cannot be absolutely reliable. We will suffer 

when sticking to the nominal solution obtained by the deterministic VI model for all possible scenarios, by noting that the

objective values of the two-stage SVI models at the solution of the deterministic VI models are much higher than those of

using the optimal solutions of the two-stage SVI models for all the three cases. 

6.4. Storage in the first stage 

Below we focus on analyzing the numerical results obtained by our proposed two-stage SVI model and the PHM with 

updating strategy for μ. We take sn = 20. We compare the optimal values in the first stage from no storage to sufficient

upper limits of storage in all the three cases. The upper limit x j max increases from u 1 to u 10 as shown in Table 10 , which is

essentially determined by the budgets. 

Because inspection and testing articles cannot be stored before an epidemic, the upper limit x 2 max is always set to be 0.

We set the upper limit of storage capacity x i j max here sufficiently large. 
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Fig. 12. Average amounts of non-reusable medical supplies obtained per person. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The objective values of the first stage corresponding to u 1 , . . . , u 10 are plotted in Fig. 3 . For each case, the highest total

cost is obtained at the level of u 1 , i.e., without storage, around 3 . 76 × 10 9 CNY for all the three cases, and the global optimal

values can be reached with sufficient upper limits of storage u 7 , . . . , u 10 , approximately 5 . 92 × 10 8 CNY. Hence it is necessary

to store medical supplies in advance. When budgets are large enough, e.g. x j max is at the level of u 7 , the optimal values are

obtained. They are 591,767,466 CNY, 591,774,067 CNY and 591,774,405 CNY for the three cases, respectively. If we further 

increase the budget for storage, we will get no further improvement on saving the total cost. 

We fix x j max at the level of u 2 , and record the computed solutions in Table 11 for the storage decision in the first stage

of our proposed two-stage SVI model. We find that the sum of all the hospitals’ reserves has reached the upper limit for

each of the three cases. This indicates that if the budgets are not sufficient, storing medical supplies as much as possible

before an epidemic is a good decision to save money and to meet the medical demands later on. 

We can see from Table 11 that when the penalty coefficients are completely the same (Case 1), the model will give

reserve priorities to the hospitals with low unit reserve price such as H1; when the two different vectors of penalty coef-

ficients are adopted (Case 2), the hospitals with higher penalty coefficients and lower reserve coefficients may get reserve 

priorities. Compared with that of Case 1, the storage amounts of drugs for H2 and H3 in Case 2 increase by 141 and 58

respectively, while the storage amounts of H5 decrease by 200; when each hospital is assigned a distinct vector of penalty

coefficients (Case 3), it is obvious that the hospitals with higher penalty coefficients and lower unit reserve prices are likely

to get reserve priorities, by noting that the storage amounts of drugs for H2, H3 and H5 increase significantly in Case 3. 

We show in Figs. 4–6 the storage amounts of the hospitals with the increase of upper limit x j max for the three cases.

Subfigures (a), (b), (c) are for non-reusable medical supplies, and subfigures (d), (e), (f) are for reusable medical supplies. We

then find the storages of hospitals become stable if the budgets are sufficient, i.e., after u 3 for reusable medical supplies and

after u 7 for non-reusable medical supplies. Our proposed two-stage SVI model determines the storage amounts of medical 

supplies pre-epidemic in order to minimize the total cost under the given budgets, by considering both the unit reserve 

prices and the penalty coefficients. 

Because the housing prices of different geographical locations are different, we set the hospitals’ unit reserve prices 

different in Table 1 . In order to understand the effect of unit reserve prices on the solution, we do numerical experiments

with the same unit reserve prices and the same penalty coefficients. Table 12 lists the optimal solution of storage for this

case. By comparing with the solution of Case 1 in Table 11 , we can find that the solution in Table 12 tends to be balance

when the unit reserve prices are the same. 
56 



M. Li, C. Zhang, M. Ding et al. Applied Mathematical Modelling 102 (2022) 35–61 

Fig. 13. Average amounts of reusable medical supplies obtained per person. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.5. Dynamic distribution in the second stage 

In this subsection, we fix x j max at the level of u 2 for the two-stage SVI model, and concentrate on the dynamic distri-

bution in the second stage. The dynamic distribution is determined after the realization of scenario is grasped. Since the 

graphs under different scenarios are similar, we only present the graphs under the first scenario ξ 1 . 

Fig. 7 shows the number of infected people in each hospital over the 14 days under ξ 1 . The total amounts of dynamic

distribution are y (ξ ) + z(ξ ) + s (ξ ) in the second stage. Figs. 8–10 show the obtained amounts of non-reusable medical

supplies of the 14 days in each hospital for the three cases, respectively. As we can see by contrasting Figs. 7 and 8 , when the

penalty coefficients are the same (Case 1), the trend of non-reusable medical supplies obtained by each hospital owns very 

similar pattern to that of the number of infected people in each hospital. From Figs. 9 and 10 , when the penalty coefficients

are different (Case 2 and Case 3), the hospitals with higher penalty coefficients obtain priorities for non-reusable medical 

supplies. 

Fig. 11 shows the obtained amounts of reusable medical supplies of the 14 days in each hospital for the three cases.

Because there are almost no shortage of reusable medical supplies, the distribution curves of reusable medical supplies for 

the three cases are basically the same. That is, in optimal solutions, the reusable medical supplies are offered as early as

possible. 

For each hospital i and each medical supply j, the average amount Ave γi j (ξ ) of medical supplies obtained per person

relates closely to the fairness, which can be computed as follows. 

Ave γi j (ξ ) = 

∑ 14 
t=1 �i jt (ξ ) ∑ 14 

t=1 ξit 

, 

where 

�(ξ ) = 

ˆ H 

T (y (ξ ) + z(ξ ) + s (ξ )) , with �(ξ ) = (�i jt (ξ ) , ∀ i, j, t) T . 

We show in Fig. 12 the average amounts of non-reusable medical supplies obtained per person in each hospital for the

three cases. It can be seen that for Case 1, the average amounts of non-reusable medical supplies obtained per person in

7 hospitals are very close; for Case 2, the average amounts of non-reusable medical supplies obtained per person in H1,

H5, H6 are similar, and those in H2, H3, H4, H7 are similar, respectively; for Case 3, the average amounts of non-reusable

medical supplies obtained per person in hospitals with lower penalty coefficients are relatively small. 

The three cases actually reflect the different attitudes to fairness. In Case 1, we do not distinguish hospitals and set

the penalty coefficients all the same. The results indeed reflect the fairness in the sense of near “equitability”. That is, all

hospitals are serviced as approximately indistinguishable entities. We believe that the small differences of unit reserve prices 

among hospitals lead to the minor differences of the average amounts of medical supplies obtained. In Case 2, we divide

the hospitals into two groups that treated patients with mild and severe infection, respectively. The four hospitals that 

treated severe patients receive similar higher average amounts of medical supplies, which indicates that they get priorities 

of medical supplies. The hospitals that treated mild patients receive similar lower average amounts of medical supplies. 

This decision also reflects the fairness in the sense of “balance” that hospitals are serviced with medical supplies regarding 

their severe/mild infections of patients. In Case 3, the results show that the higher the penalty coefficients are, the more the

amounts of the medical supplies obtain. This is also the fairness in the sense of “balance” regarding not only the difference of

mild/severe infections but also the total number of infected people in the hospitals as we desire. While in contrast, reusable

medical supplies almost have no shortages. Hence they basically have met the demands of all the hospitals throughout the 

time horizons for the three cases as shown in Fig. 13 . 

We take into account all the medical supplies together and compare the average cost per patient over the 14 days of each

hospital for the three cases, as shown in Fig. 14 . For hospital i , the average cost can be computed by the formula below. 

AveCost i (ξ ) = 

F i (y i (ξ ) , z i (ξ ) , s i (ξ )) ∑ 14 ξit 

. 
t=1 
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Fig. 14. Average cost per patient of each hospital. 

Fig. 15. Dynamic distributions of drugs to hospitals for 14 days. 

Fig. 16. Average amounts of drugs obtained per person for the extension of the model. 

 

 

 

 

 

 

 

 

 

 

It can be seen that when the penalty coefficients are the same (Case 1), the average costs per patient of the 7 hospitals are

very close; when the penalty coefficients are different (Case 2 and Case 3), the average costs per patient in the hospitals

with the lower penalty coefficients are higher. This dynamic distribution decision coincides with the guidance of “fairness”

we desire. The penalty term in the second-stage objective function makes it flexible to adopt different attitudes of fairness. 

The competitions among hospitals in the second stage automatically provide decision vectors with fairness. 

Finally, we do preliminary numerical experiments for the extension of the model in Subsection 4.2 that the quantities 

of drugs delivered to hospital i on day t can be greater than the demands. We use formula (31) for the amount of unmet

demands, and assign Q ( t 
l 
) = ( t 

l 
) 3 in (32) for medical supply 1 – drugs. If we still use the original y 1 max = 10 0 0 0 in Table 2 ,

there is no quantity of drugs delivered to hospital i on day t that is greater than the demand at the computed solution for

each case. 

We then increase y 1 max = 130 0 0 . Fig. 15 shows the obtained amounts of drugs in each hospital for 14 days for the three

cases. Due to the sufficient supplies of drugs, almost all the hospitals choose to purchase the excess quantity at a low price

in advance for future use, and consequently the distribution curves of drugs for the three cases are basically the same. Fig. 16

shows the average amounts of drugs obtained per person in each hospital for the three cases, which are approximately the

same. This is reasonable since the demands of all the hospitals throughout the time horizons for the three cases have been

met. 

7. Conclusions 

This paper proposes a monotone smooth two-stage SVI model for the storage and dynamic distribution of medical sup- 

plies in epidemic management, which originates from the nonsmooth two-stage stochastic equilibrium model. The solution 
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set of the two-stage SVI model is guaranteed to be nonempty. The government decides the storage amounts in the first

stage before an epidemic happens, and after the realization of the random vector has been known, the hospitals compete 

in the second stage to provide the possible choices of the dynamic distributions over all time horizons. The government is

assumed to select the one that is optimal in view of minimizing the total cost in the second stage of all hospitals. 

The PHM is presented to solve the monotone two-stage SVI model with solid convergence results. The updating rule for 

the smoothing parameter helps to accelerate the computational speed and is promising to provide an approximate solution 

of the original nonsmooth two-stage SP. The efficient semismooth Newton method is employed to solve the subproblems 

in the PHM. A case study in Wuhan, during the peak of the COVID-19 pandemic, uses our proposed two-stage SVI model,

and is solved by our suggested PHM together with the semismooth Newton method, and the updating rule for smoothing 

parameter. Numerical results show that our model is flexible to obtain a solution of desired “fairness”, and our solution for

the storage and dynamic distribution of medical supplies in Wuhan can clearly save money. 

In the future, we will consider more hospitals involved in the second stage. With the increasement of hospitals, the 

dimensions of decision vectors will become much higher, which may lead to computational inefficiency when using the 

semismooth Newton method in the PHM. It is worthwhile to study whether there are strategies, and/or new methods to 

solve large-scale models efficiently. In addition, we would like to add the decision variables for locations of warehouses. 

This is an important issue to be addressed in the first stage, but usually introduces integer variables in the model. The

computation would be more challenging. 
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Appendix A. Proofs 

A1. Proof of proposition 1 

Proof. According to Theorem 3.5 of [13] , the monotonicity of the SVI (22) is equivalent to the monotonicity of the VI 

0 ≤ a + A 

T λ − πs (ξ k ) ⊥ x ≥ 0 , 

0 ≤ h − Ax ⊥ λ ≥ 0 , 

0 ≤ b + p(ξ k ) + I (m ) 
nl 

T 
πy (ξ k ) + Q 

ξ k μ
yzs ⊥ y (ξ k ) ≥ 0 , 

0 ≤ b + I (m ) 
nl 

T 
πz (ξ ) + Q 

ξ k μ
yzs ⊥ z(ξ k ) ≥ 0 , (A.1) 

0 ≤ ˆ B 

T πs (ξ k ) + Q 

ξ k μ
yzs ⊥ s (ξ k ) ≥ 0 , 

0 ≤ y dist 
max − I (m ) 

nl 
y (ξ k ) ⊥ πy (ξ k ) ≥ 0 , 

0 ≤ z soci 
max − I (m ) 

nl 
z(ξ k ) ⊥ πz (ξ k ) ≥ 0 , 

0 ≤ x − ˆ B s (ξ k ) ⊥ πs (ξ k ) ≥ 0 , 

for each k = 1 , . . . , K. For each k , the above VI is monotone, since it is just the KKT system of the convex programming for

each scenario ξ k relating to (21) below 

min x,y (ξ k ) ,z(ξ k ) ,s (ξ k ) a T x + e (m ) T ˜ F (y (ξ k ) , z(ξ k ) , s (ξ k ) , μ) 
s . t . Ax ≤ h, 

I (m ) 
nl 

y (ξ k ) ≤ y dist 
max , 

I (m ) 
nl 

z(ξ k ) ≤ z soci 
max , 

ˆ B s (ξ k ) − x ≤ 0 , 

x, y (ξ k ) , z(ξ k ) , s (ξ k ) ≥ 0 . 

(A.2) 

The monotonicity of the two-stage SVI, together with the fact the involved functions defined for the two-stage SVI are 

continuous, yields that (22) is of maximal monotone type according to Example 12.48 of [48] . �

A2. Proof of proposition 2 

Proof. Note that the right-hand side vectors in (5) - (7) are positive vectors. There may exist components in the right-hand

side vectors (4) to be zero, since some medical supplies are not available before an epidemic occurs. Let J 0 = { j ∈ J :

x j max = 0 } . For any vector 

u yzs := 

(
y (ξ k ) T , z(ξ k ) T , s (ξ k ) T , k = 1 , . . . , K 

)T ∈ S 2 (x ) , 
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it is obvious from constraint (4) that 

x i j = 0 , ∀ i ∈ I, j ∈ J 0 , (A.3) 

and consequently from constraint (8) 

s i jt (ξ
k ) = 0 , ∀ t ∈ T , j ∈ J 0 , k = 1 , . . . , K. (A.4) 

Denote x̆ the subvector of x , and s̆ (ξ k ) the subvector of s (ξ k ) , and π̆ (ξ k ) the subvector of ˆ πs (ξ k ) , by deleting all components

that correspond to j ∈ J 0 . 

We obtain a reduced two-stage stochastic equilibrium problem, by deleting the components of x and s (ξ k ) in the ob-

jective functions (2) and (3) that correspond to j ∈ J 0 , the constraints in (4), (8) , and (9) , and the constraints s i jt (ξ
k ) ≥ 0

in (10) for j ∈ J 0 . Let S̆ 2 ( ̆x ) be the solution set of the reduced second-stage equilibrium problem. The reduced two-stage

equilibrium problem is equivalent to the reduced NCP by deleting the complementarity conditions in (26) that correspond 

to the variables of s (ξ k ) and ˆ πs (ξ k ) for j ∈ J 0 , the constraints in (4), (8) , and (9) , and the constraints s i jt (ξ
k ) ≥ 0 in (10) for

j ∈ J 0 . 

The vector 

(y (ξ k ) T , z(ξ k ) T , ̆s (ξ k ) T , k = 1 , . . . , K) T ∈ S̆ 2 ( ̆x ) , 

because this vector, together with the vectors ˆ πy (ξ k ) , ˆ πz (ξ k ) , and π̆s (ξ k ) , satisfies the reduced monotone NCP. It is clear

that there is a strict interior point for this reduced monotone NCP, i.e., the involved function values in the NCP at this point

are all positive. Thus according to Theorem 2.3.5 of [49] , S̆ 2 ( ̆x ) is nonempty, convex, and compact. By noting (A.3) and (A.4) ,

we immediately know that S 2 (x ) is nonempty, convex, and compact. �

A3. Proof of proposition 3 

Proof. We denote for simplicity 

u yzs := 

(
y (ξ k ) T , z(ξ k ) T , s (ξ k ) T , k = 1 , . . . , K 

)T 
. 

Let ( x ∗, u ∗yzs ) be a solution of the two-stage SP model (19) . Then there exist the vectors of Lagrange multipliers λ∗, π ∗
y (ξ

k ) ,

π ∗
z (ξ

k ) , and π ∗
s (ξ

k ) for k = 1 , . . . , K, together with x ∗ and u ∗yzs , that satisfy the KKT system (22) . Thus u ∗yzs , together with the

vectors of Lagrange multipliers 

ˆ πy (ξ
k ) = I (m ) 

nl 

T 
π ∗

y (ξ
k ) , ˆ πz (ξ

k ) = I (m ) 
nl 

T 
π ∗

z (ξ
k ) , ˆ πs (ξ

k ) = π ∗
s (ξ

k ) , 

for k = 1 , . . . , K, satisfies the system (26) with x = x ∗. Hence u ∗yzs ∈ S 2 (x ∗) , and (x ∗, u ∗yzs ) is a feasible solution of the optimistic

version (28) of the smooth two-stage equilibrium model (17) - (18) . 

Let ( ̂  x , ̂  u yzs ) be a solution of the optimistic version (28) of the two-stage equilibrium model (17) - (18) , which is clear to

be a feasible solution of the two-stage SP model (19) . 

Because the objective value at an optimal solution is no more than the objective value at any feasible solution, we get

from (28) and (19) that 

a T ˆ x + 

K ∑ 

k =1 

τk e 
(m ) T ˜ F ( ̂  y (ξ k ) , ̂  z (ξ k ) , ̂  s (ξ k ) , μ) 

≤ a T x ∗ + 

K ∑ 

k =1 

τk e 
(m ) T ˜ F ( y ∗(ξ k ) , z ∗(ξ k ) , s ∗(ξ k ) , μ) 

≤ a T ˆ x + 

K ∑ 

k =1 

τk e 
(m ) T ˜ F ( ̂  y (ξ k ) , ̂  z (ξ k ) , ̂  s (ξ k ) , μ) . 

Consequently, the solution ( x ∗, u ∗yzs ) of the two-stage SP model (19) is also a solution of the optimistic version (28) of the

two-stage stochastic equilibrium model (17) - (18) , and conversely the solution ( ̂  x , ̂  u yzs ) of the optimistic version (28) is also

a solution of the two-stage SP model (19) . �

References 

[1] C.G. Rawls, M.A. Turnquist, Pre-positioning and dynamic delivery planning for short-term response following a natural disaster, Socio-Econ Plan. Sci. 

46 (1) (2012) 46–54, doi: 10.1016/j.seps.2011.10.002 . 

[2] M. Yang, Y. Liu, G. Yang, Multi-period dynamic distributionally robust pre-positioning of emergency supplies under demand uncertainty, Appl. Math. 
Model. 89 (2021) 1433–1458, doi: 10.1016/j.apm.2020.08.035 . 

[3] Y. Zhou, J.D. Liu, Y. Zhang, X. Gan, A multi-objective evolutionary algorithm for multi-period dynamic emergency resource scheduling problems, Trans- 
port Res. E-Log 99 (2017) 77–95, doi: 10.1016/j.tre.2016.12.011 . 

[4] R.A. Garrett, T.C. Sharkey, M. Grabowski, W.A. Wallace, Dynamic resource allocation to support oil spill response planning for energy exploration in
the arctic, Eur. J. Oper. Res. 257 (1) (2017) 272–286, doi: 10.1016/j.ejor.2016.07.023 . 
60 

https://doi.org/10.1016/j.seps.2011.10.002
https://doi.org/10.1016/j.apm.2020.08.035
https://doi.org/10.1016/j.tre.2016.12.011
https://doi.org/10.1016/j.ejor.2016.07.023


M. Li, C. Zhang, M. Ding et al. Applied Mathematical Modelling 102 (2022) 35–61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[5] W. Yi, L. Özdamar, A dynamic logistics coordination model for evacuation and support in disaster response activities, Eur. J. Oper. Res. 179 (3) (2007)
1177–1193, doi: 10.1016/j.ejor.2005.03.077 . 

[6] A. Bozorgi-Amiri, M. Khorsi, A dynamic multi-objective location-routing model for relief logistic planning under uncertainty on demand, travel time, 
and cost parameters, Int. J. Adv Manuf. Technol. 85 (2016) 1633–1648, doi: 10.10 07/s0 0170-015-7923-3 . 

[7] M. Falasca, C.W. Zobel, A two-stage procurement model for humanitarian relief supply chains, J. Humanitarian Logist. Supply Chain Manag. 1 (2) (2011)
151–169, doi: 10.1108/20426741111188329 . 

[8] G. Barbaroso ̌glu, Y. Arda, A two-stage stochastic programming framework for transportation planning in disaster response, J. Oper. Res. Soc. 55 (2004)

45–53, doi: 10.1057/palgrave.jors.2601652 . 
[9] E. Grass, K. Fischer, Two-stage stochastic programming in disaster management: a literature survey, Surv. Oper. Res. Manag. Sci. 21 (2) (2016) 85–100,

doi: 10.1016/j.sorms.2016.11.002 . 
[10] N. Noyan, Risk-averse two-stage stochastic programming with an application to disaster management, Comput. Oper. Res. 39 (3) (2012) 541–559, 

doi: 10.1016/j.cor.2011.03.017 . 
[11] E. Grass , K. Fischer , Prepositioning of Relief Items under Uncertainty: A Classification of modeling and solution approaches for disaster management,

in: D. Mattfeld, T. Spengler, J. Brinkmann, M. Grunewald (Eds.), Logistics Management. Lecture notes in Logistics, Springer, Cham, 2016, pp. 189–203 . 
[12] W.J. Gutjahr, P.C. Nolz, Multicriteria optimization in humanitarian aid, Eur. J. Oper. Res. 252 (2) (2016) 351–366, doi: 10.1016/j.ejor.2015.12.035 . 

[13] R.T. Rockafellar, R.J.B. Wets, Stochastic variational inequalities: single-stage to multistage, Math. Program. 165 (2017) 331–360, doi: 10.1007/ 

s10107- 016- 0995- 5 . 
[14] R.T. Rockafellar, J. Sun, Solving monotone stochastic variational inequalities and complementarity problems by progressive hedging, Math. Program. 

174 (2019) 453–471, doi: 10.1007/s10107- 018- 1251- y . 
[15] C. Liu, Y. Fan, F. Ordóñez, A two-stage stochastic programming model for transportation network protection, Comput. Oper. Res. 36 (5) (2009) 1582–

1590, doi: 10.1016/j.cor.20 08.03.0 01 . 
[16] Y. Fan, C. Liu, Solving stochastic transportation network protection problems using the progressive hedging-based method, Netw. Spat. Econ. 10 (2010) 

193–208, doi: 10.1007/s11067- 008- 9062- y . 

[17] H.O. Mete, Z.B. Zabinsky, Stochastic optimization of medical supply location and distribution in disaster management, Int. J. Prod. Econ. 126 (1) (2010)
76–84, doi: 10.1016/j.ijpe.2009.10.004 . 

[18] O. Karsu, A. Morton, Inequity averse optimization in operational research, Eur. J. Oper. Res. 245 (2) (2015) 343–359, doi: 10.1016/j.ejor.2015.02.035 . 
[19] E. Gralla, J. Goentzel, C. Fine, Assessing trade-offs among multiple objectives for humanitarian aid delivery using expert preferences, Prod. Oper. Manag.

23 (6) (2014) 978–989, doi: 10.1111/poms.12110 . 
[20] A . Nagurney , A .H. Masoumi , M. Yu , An integrated disaster relief supply chain network model with time targets and demand uncertainty, in: P. Ni-

jkamp, A. Rose, K. Kourtit (Eds.), In Regional Science Matters: Studies Dedicated to Walter Isard, Springer International Publishing, Switzerland, 2015,

pp. 287–318 . 
[21] M. Rezaei-Malek, R. Tavakkoli-Moghaddam, Robust humanitarian relief logistics network planning, Uncertain Supply Chain Manag 2 (2) (2014) 73–96, 

doi: 10.5267/j.uscm.2014.1.002 . 
[22] D. Bertsimas, V.F. Farias, N. Trichakis, The price of fairness, Oper. Res. 59 (1) (2011) 17–31, doi: 10.1287/opre.1100.0865 . 

[23] D. Bertsimas, V.F. Farias, N. Trichakis, On the efficiency-fairness trade-off, Manag. Sci. 58 (12) (2012) 2234–2250, doi: 10.2307/23359589 . 
[24] D. Bertsimas, S. Gupta, G. Lulli, Dynamic resource allocation: a flexible and tractable modeling framework, Eur. J. Oper. Res. 236 (1) (2014) 14–26,

doi: 10.1016/j.ejor.2013.10.063 . 

[25] T. Cayirli, E. Veral, Outpatient scheduling in health care: a review of literature, Prod. Oper. Manag. 12 (4) (2003) 519–549, doi: 10.1111/j.1937-5956.
20 03.tb0 0218.x . 

[26] A. Turkcan, B. Zeng, K. Muthuraman, M. Lawley, Sequential clinical scheduling with service criteria, Eur. J. Oper. Res. 214 (3) (2011) 780–795, doi: 10.
1016/j.ejor.2011.05.023 . 

[27] X. Chen, T.K. Pong, R.J.B. Wets, Two-stage stochastic variational inequalities: an ERM-solution procedure, Math. Program. 165 (2017) 71–111, doi: 10.
1007/s10107- 017- 1132- 9 . 

[28] X. Chen, H. Sun, H. Xu, Discrete approximation of two-stage stochastic and distributionally robust linear complementarity problems, Math. Program. 

177 (2019) 255–289, doi: 10.1007/s10107- 018- 1266- 4 . 
[29] X. Chen, A. Shapiro, H. Sun, Convergence analysis of sample average approximation of two-stage stochastic generalized equations, SIAM J. Optim. 29

(2019) 135–161, doi: 10.1137/17M1162822 . 
[30] R.T. Rockafellar, R.J.B. Wets, Scenarios and policy aggregation in optimization under uncertainty, Math. Oper. Res. 16 (1) (1991) 119–147, doi: 10.1287/

moor.16.1.119 . 
[31] R.T. Rockafellar, J. Sun, Solving lagrangian variational inequalities with applications to stochastic programming, Math. Program. 181 (2020) 435–451, 

doi: 10.1007/s10107- 019- 01458- 0 . 

[32] M. Li, C. Zhang, Two-stage stochastic variational inequality arising from stochastic programming, J. Optim. Theory Appl. 186 (2020) 324–343, doi: 10.
1007/s10957- 020- 01686- x . 

[33] J.-S. Pang, S. Sen, U.V. Shanbhag, Two-stage non-cooperative games with risk-averse players, Math. Program. 165 (2017) 119–147, doi: 10.1007/
s10107- 017- 1148- 1 . 

[34] J. Jiang, Y. Shi, X. Wang, X. Chen, Regularized two-stage stochastic variational inequalities for cournot-nash equilibrium under uncertainty, J. Comp.
Math. 37 (2019) 813–842, doi: 10.4208/jcm.1906- m2019- 0025 . 

[35] M. Zhang, J. Sun, H. Xu, Two-stage quadratic games under uncertainty and their solution by proressive hedging algorithms, SIAM J. Optim. 29 (2019)
1799–1818, doi: 10.1137/17M1151067 . 

[36] H. Sun, X. Chen, Two-stage stochastic variational inequalities: theory, algorithms and applications, Journal of the Operations Research Society of China

9 (2021) 1–32, doi: 10.1007/s40305- 019- 00267- 8 . 
[37] C. Zhang, X. Chen, Smoothing projected gradient method and its application to stochastic linear complementarity problems, SIAM J. Optim. 20 (2)

(2009) 627–649, doi: 10.1137/070702187 . 
[38] X. Chen, Smoothing methods for nonsmooth, nonconvex minimization, Math. Program. 134 (2012) 71–99, doi: 10.1007/s10107- 012- 0569- 0 . 

[39] Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program. 103 (2005) 127–152, doi: 10.1007/s10107- 004- 0552- 5 . 
[40] Y. Nesterov , Introductory lectures on convex optimization, A Basic Course, Kluwer Academic Publisher, 2004 . 

[41] B. Colson, P. Marcotte, G. Savard, An overview of bilevel optimization, Ann. Oper. Res. 153 (2007) 235–256, doi: 10.10 07/s10479-0 07-0176-2 . 

[42] L. Qi, J. Sun, A nonsmooth version of newton’s method, Math. Program. 58 (1993) 353–367, doi: 10.1007/BF01581275 . 
[43] T.D. Luca, F. Facchinei, C. Kanzow, A semismooth equation approach to the solution of nonlinear complementarity problems, Math. Program. 75 (1996)

407–439, doi: 10.1007/BF02592192 . 
[44] J.F. Benders, Partitioning procedures for solving mixed-variables programming problems, Numer. Math. 4 (1962) 238–252, doi: 10.1007/BF01386316 . 

[45] Z.C. Ta ̧s kin , Benders decomposition, John Wiley and Sons, Inc, 2010 . 
[46] M. Xu, J.J. Ye, L. Zhang, Smoothing SQP methods for solving degenerate nonsmooth constrained optimization problems with applications to bilevel

programs, SIAM J. Optim. 25 (2015) 1388–1410, doi: 10.1137/140971580 . 

[47] C. Zhang, X. Chen, A smoothing active set method for linearly constrained non-lipschitz nonconvex optimization, SIAM J. Optim. 30 (2020) 1–30,
doi: 10.1137/18M119611X . 

[48] R.T. Rockafellar , R.J.B. Wets , Variational Analysis, Springer, Berlin, 1998 . 
[49] F. Facchinei , J.S. Pang , Finite-dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2003 . 
61 

https://doi.org/10.1016/j.ejor.2005.03.077
https://doi.org/10.1007/s00170-015-7923-3
https://doi.org/10.1108/20426741111188329
https://doi.org/10.1057/palgrave.jors.2601652
https://doi.org/10.1016/j.sorms.2016.11.002
https://doi.org/10.1016/j.cor.2011.03.017
http://refhub.elsevier.com/S0307-904X(21)00452-2/sbref0011
http://refhub.elsevier.com/S0307-904X(21)00452-2/sbref0011
http://refhub.elsevier.com/S0307-904X(21)00452-2/sbref0011
https://doi.org/10.1016/j.ejor.2015.12.035
https://doi.org/10.1007/s10107-016-0995-5
https://doi.org/10.1007/s10107-018-1251-y
https://doi.org/10.1016/j.cor.2008.03.001
https://doi.org/10.1007/s11067-008-9062-y
https://doi.org/10.1016/j.ijpe.2009.10.004
https://doi.org/10.1016/j.ejor.2015.02.035
https://doi.org/10.1111/poms.12110
http://refhub.elsevier.com/S0307-904X(21)00452-2/sbref0020
http://refhub.elsevier.com/S0307-904X(21)00452-2/sbref0020
http://refhub.elsevier.com/S0307-904X(21)00452-2/sbref0020
http://refhub.elsevier.com/S0307-904X(21)00452-2/sbref0020
https://doi.org/10.5267/j.uscm.2014.1.002
https://doi.org/10.1287/opre.1100.0865
https://doi.org/10.2307/23359589
https://doi.org/10.1016/j.ejor.2013.10.063
https://doi.org/10.1111/j.1937-5956.2003.tb00218.x
https://doi.org/10.1016/j.ejor.2011.05.023
https://doi.org/10.1007/s10107-017-1132-9
https://doi.org/10.1007/s10107-018-1266-4
https://doi.org/10.1137/17M1162822
https://doi.org/10.1287/moor.16.1.119
https://doi.org/10.1007/s10107-019-01458-0
https://doi.org/10.1007/s10957-020-01686-x
https://doi.org/10.1007/s10107-017-1148-1
https://doi.org/10.4208/jcm.1906-m2019-0025
https://doi.org/10.1137/17M1151067
https://doi.org/10.1007/s40305-019-00267-8
https://doi.org/10.1137/070702187
https://doi.org/10.1007/s10107-012-0569-0
https://doi.org/10.1007/s10107-004-0552-5
http://refhub.elsevier.com/S0307-904X(21)00452-2/sbref0040
http://refhub.elsevier.com/S0307-904X(21)00452-2/sbref0040
https://doi.org/10.1007/s10479-007-0176-2
https://doi.org/10.1007/BF01581275
https://doi.org/10.1007/BF02592192
https://doi.org/10.1007/BF01386316
http://refhub.elsevier.com/S0307-904X(21)00452-2/sbref0045
http://refhub.elsevier.com/S0307-904X(21)00452-2/sbref0045
https://doi.org/10.1137/140971580
https://doi.org/10.1137/18M119611X
http://refhub.elsevier.com/S0307-904X(21)00452-2/sbref0048
http://refhub.elsevier.com/S0307-904X(21)00452-2/sbref0048
http://refhub.elsevier.com/S0307-904X(21)00452-2/sbref0048
http://refhub.elsevier.com/S0307-904X(21)00452-2/sbref0049
http://refhub.elsevier.com/S0307-904X(21)00452-2/sbref0049
http://refhub.elsevier.com/S0307-904X(21)00452-2/sbref0049

	A two-stage stochastic variational inequality model for storage and dynamic distribution of medical supplies in epidemic management
	1 Introduction
	2 Literature review
	3 A new two-stage stochastic equilibrium model
	4 Smooth approximation and transforming to monotone two-stage SVI
	4.1 Relation of two models
	4.2 Further extensions of the model

	5 PHM and strategy for updating smoothing parameter
	6 Case study: COVID-19 pandemic in Wuhan
	6.1 Problem description
	6.2 Comparison with existing solvers
	6.3 Stochastic VS. deterministic
	6.4 Storage in the first stage
	6.5 Dynamic distribution in the second stage

	7 Conclusions
	Acknowlgedgments
	Appendix A Proofs
	A1 Proof of proposition 1
	A2 Proof of proposition 2
	A3 Proof of proposition 3

	References


