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Spatially resolved cell atlas of the mouse 
primary motor cortex by MERFISH

Meng Zhang1,2,3, Stephen W. Eichhorn1,2,3, Brian Zingg4,6, Zizhen Yao5, Kaelan Cotter4,6, 
Hongkui Zeng5, Hongwei Dong4,6 & Xiaowei Zhuang1,2,3 ✉

A mammalian brain is composed of numerous cell types organized in an intricate 
manner to form functional neural circuits. Single-cell RNA sequencing allows 
systematic identification of cell types based on their gene expression profiles and has 
revealed many distinct cell populations in the brain1,2. Single-cell epigenomic 
profiling3,4 further provides information on gene-regulatory signatures of different 
cell types. Understanding how different cell types contribute to brain function, 
however, requires knowledge of their spatial organization and connectivity, which is 
not preserved in sequencing-based methods that involve cell dissociation. Here we 
used a single-cell transcriptome-imaging method, multiplexed error-robust 
fluorescence in situ hybridization (MERFISH)5, to generate a molecularly defined and 
spatially resolved cell atlas of the mouse primary motor cortex. We profiled 
approximately 300,000 cells in the mouse primary motor cortex and its adjacent 
areas, identified 95 neuronal and non-neuronal cell clusters, and revealed a complex 
spatial map in which not only excitatory but also most inhibitory neuronal clusters 
adopted laminar organizations. Intratelencephalic neurons formed a largely 
continuous gradient along the cortical depth axis, in which the gene expression of 
individual cells correlated with their cortical depths. Furthermore, we integrated 
MERFISH with retrograde labelling to probe projection targets of neurons of the 
mouse primary motor cortex and found that their cortical projections formed a 
complex network in which individual neuronal clusters project to multiple target 
regions and individual target regions receive inputs from multiple neuronal clusters.

The mammalian cerebral cortex is a highly organized structure that sup-
ports sensory, motor and cognitive functions. Classification of neuronal 
cell types is central to deciphering cortical circuits2,6. The glutamatergic 
neurons in the cortex are classified by their projection properties into, 
for example, intratelencephalic (IT) neurons, subcerebral projection 
neurons (or pyramidal tract neurons) and corticothalamic (CT) projec-
tion neurons7. The GABAergic neurons can be classified based on their 
developmental origin into neurons derived from the medial ganglionic 
eminence and the caudal ganglionic eminence, which can be further 
classified by marker genes such as parvalbumin (Pvalb), somatostatin 
(Sst), vasoactive intestinal polypeptide (Vip) and Lamp5 (ref. 8). Recent 
single-cell transcriptomics studies have revealed a high diversity of 
cells in the brain9–11 and reported dozens to about a hundred cell types 
within individual cortical regions12–14. However, a high-resolution map 
of the spatial organization and connectivity of different cell types in 
the cortex is still lacking.

Recently, several spatially resolved transcriptomics methods have 
been developed, including both imaging-based transcriptomics 
methods with single-cell resolution15,16 and methods based on spa-
tially resolved RNA capture followed by sequencing17. Among these, 

MERFISH is a single-cell genome-scale imaging method, which mas-
sively multiplexes single-molecule fluorescence in situ hybridization 
(FISH)18,19 using error-robust barcoding, combinatorial labelling and 
sequential imaging and allows simultaneous imaging of more than 
10,000 genes in individual cells5,20. MERFISH allows in situ identifica-
tion and spatial mapping of cell types in complex tissues, including 
the brain21. Here we used MERFISH to identify distinct cell populations 
and map their spatial organization in the mouse primary motor cortex 
(MOp). By integrating MERFISH with retrograde labelling, we further 
revealed the complexity of projection patterns of these molecularly 
defined cell types.

MERFISH imaging and cell classification
We selected a panel of 258 genes for MERFISH imaging, including 
canonical marker genes for major neuronal and non-neuronal cell 
types in the cortex selected based on previous knowledge12,13,21, as well 
as marker genes selected based on differential gene expression and 
mutual information22 analyses of neuronal clusters identified by a com-
panion single-cell and single-nucleus RNA sequencing (scRNA-seq and 
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snRNA-seq, respectively) study23 (Methods). We performed MERFISH 
measurements on a series of coronal slices at approximately 100-μm 
intervals along the anterior–posterior axis encompassing the MOp 
(Bregma +2.5 to −0.8). Individual RNA molecules were identified and 
assigned to individual cells (Extended Data Fig. 1a, b). Four of the 258 
genes showed poor staining and were not included in subsequent analy-
ses. The mean copy number per cell for individual genes obtained from 
MERFISH was reproducible between replicate mice and exhibited high 
correlation with the gene expression level measured by bulk RNA-seq 
(Extended Data Fig. 1c, d).

In total, we imaged and segmented approximately 300,000 indi-
vidual cells in the MOp and its adjacent areas from two adult mice. 
Unsupervised clustering analysis24,25 of the MERFISH-derived single-cell 
expression profiles identified 39 excitatory neuronal clusters, 42 inhibi-
tory neuronal clusters and 14 non-neuronal clusters (Extended Data 
Fig. 2a), as well as 4 clusters exclusively outside the MOp (in the striatum 
or lateral ventricle), which were not included in subsequent analyses.

The MOp cell taxonomy showed a hierarchical organization 
(Extended Data Fig. 2a), with the first level separating glutamatergic, 
GABAergic and non-neuronal cell classes. The GABAergic class con-
sisted of the neurons derived from the medial ganglionic eminence 
and the caudal ganglionic eminence, which were further divided into 
five subclasses based on their marker genes: Pvalb, Sst, Vip, Sncg and 
Lamp5. The glutamatergic neurons were classified into the following 
subclasses with distinct projection properties (identified on the basis 
of known marker genes13): layer 5 extratelencephalic projecting (L5 ET; 
also known as L5 pyramidal tract) neurons, layer 5/6 near-projecting 
(L5/6 NP) neurons, layer 6 CT (L6 CT) neurons, layer 6b (L6b) neurons 
and IT neurons. IT neurons were further classified into several sub-
classes (L2/3 IT, L4/5 IT, L5 IT and L6 IT, plus a distinct L6 IT Car3 type) 
primarily based on layer-specific marker genes, additionally using the 
correspondence between MERFISH clusters and clusters identified by 
scRNA-seq and snRNA-seq for L4/5 and L5 IT classification (Methods). 
We also identified major non-neuronal cell subclasses, including oli-
godendrocytes, oligodendrocyte precursor cells, astrocytes, vascular 
leptomeningeal cells, microglia, perivascular macrophages, endothelial 
cells, smooth muscle cells and pericytes, based on marker genes. The 
subclasses determined by MERFISH (Extended Data Fig. 2b) showed 
excellent correspondence to those determined using scRNA-seq and 
snRNA-seq in the companion paper23 (Extended Data Fig. 2c).

The 23 subclasses of cells contained a total of 95 clusters, for which 
we used nomenclature style of adding a numerical index following 
the subclass name (Extended Data Fig. 2a). The clusters identified by 
MERFISH also showed good correspondence to the clusters identified 
by scRNA-seq and snRNA-seq23 (Extended Data Fig. 2d).

We imaged the MOp and its adjacent parts of the secondary motor 
(MOs) and primary somatosensory (SSp) areas, as well as other neigh-
bouring regions. We registered the MERFISH images to the Allen mouse 
brain Common Coordinate Framework version 3 (CCF v3)26 using the 
DAPI stains in our images and the Nissl stain in the Allen Reference 
Atlas27 (Extended Data Fig. 2e and Methods), which allowed us to quan-
titatively determine the composition of cells both in the entire image 
region and in the MOp (Extended Data Fig. 2f).

Spatial organization of cell types
MERFISH images provided a direct measurement of the spatial organi-
zation of transcriptomically distinct cell populations in the MOp and its 
adjacent areas (Fig. 1a). The layered organization of the glutamatergic 
subclasses, especially the IT subclasses, led to a laminar appearance for 
the overall cellular organization (Fig. 1a–c). Unlike the IT cells, which 
spanned across nearly all cortical layers, the ET, NP, CT and L6b cells 
populated only deeper layers (Fig. 1b, c). Individual glutamatergic 
clusters adopted spatially distinct, partially overlapping distributions 
along the direction of the cortical depth, and many of these clusters 

assumed narrow distributions with widths smaller than the thicknesses 
of individual cortical layers.

The GABAergic neurons also showed a high level of spatial diversity. 
The Lamp5, Sncg and Vip subclasses were more populated in the upper 
layers, whereas the Sst and Pvalb subclasses were more abundant in 
deep layers (Fig. 1b, d), consistent with previous findings28,29. Notably, 
at the cluster level, most GABAergic clusters showed laminar distribu-
tions and preferentially reside within one or two cortical layers (Fig. 1d).

We also observed similar cortical depth distributions of neuronal 
clusters when we limited the analysis to the MOp region (Extended Data 
Fig. 3a) or an approximate upper limb region of the MOp30,31 (Extended 
Data Fig. 3b). The distributions along the cortical depth exhibited small 
shifts between medial and lateral segments of the MOp or the upper 
limb region of the MOp for most neuronal clusters, with a few excep-
tions (such as L4/5 IT SSp 1 and 2, L6 IT Car3, L5 ET 4 and L6 CT 8) that 
showed brain region-dependent presence (Extended Data Fig. 3c). For 
example, L4/5 IT SSp 1 and 2 were primarily present on the lateral side of 
the MOp, extending from the SSp region, and L6 CT 8 was only present 
on the medial side of the MOp. Along the anterior–posterior direc-
tion, many neuronal clusters adopted broad distributions, whereas 
some were restricted to a relatively narrow anterior–posterior range 
(Extended Data Fig. 4).

We also mapped the spatial organizations of the non-neuronal cells 
(Fig. 1b, e). Among the three astrocyte clusters, astrocyte 1 exhibited a 
dispersed distribution across all layers, astrocyte 2 showed enrichment 
in L1 and the white matter, and astrocyte 3 was found almost exclusively 
in the white matter. The oligodendrocyte lineage was divided into oligo-
dendrocyte precursor cells and three mature oligodendrocyte clusters, 
with the mature oligodendrocytes enriched in the white matter and 
the oligodendrocyte precursor cells distributed evenly across all lay-
ers. The vascular leptomeningeal cells formed the outermost layer of 
cells of the cortex. The other non-neuronal cell types exhibited more 
dispersed distributions across the cortical layers and white matter.

We noticed substantial spatial intermixing of different cell popu-
lations. To quantify the complexity of the cell composition in the 
neighbourhood of each cell, we determined the number of distinct 
cell clusters that were present in the neighbourhood of each cell 
and observed a high level of local cellular heterogeneity (Extended 
Data Fig. 5). The composition complexity of the cell neighbourhood 
increased towards deeper layers (Fig. 1f).

L5 ET, L5/6 NP, L6 CT and L6b neurons
Transcriptomically, the L5 ET, L5/6 NP, L6 CT and L6b subclasses of 
neurons appeared as discrete cell populations, and each subclass was 
subdivided into finer clusters with more continuously varying gene 
expression profiles (Fig. 2a, Extended Data Fig. 6a, b).

Spatially, the L5 ET clusters were segregated into two sublayers 
with the L5 ET 1–3 clusters intermixed and distributed above L5 ET 5 
(Fig. 2b). L5 ET 4 was largely absent from the MOp and only began to 
extend into the MOp on the ventral–lateral side in the anterior slices. 
It has been reported that two distinct L5 ET populations in upper and 
lower L5 of the anterior lateral motor cortex project to the thalamus 
and the medulla, respectively, and have specialized roles in motor 
control32. The L5 ET 5 cluster identified here by MERFISH corresponded 
to the L5 ET_1 cluster identified by single-cell transcriptomic and epi-
genomic data23 (Extended Data Fig. 6b), which in turn corresponded 
to the medulla-projecting ET cluster identified by epi-retro-seq in a 
companion paper33. These results thus suggest that L5 ET 5 is a type of 
medulla-projecting neuron. MERFISH data further showed that L5 ET 
5 was more enriched, and exhibited more pronounced spatial separa-
tion from the L5 ET 1–3 clusters, in the MOp than in the SSp (Extended 
Data Fig. 6c). Consistent with our finding, medulla-projecting ET neu-
rons were also observed to be more abundant in the MOp than in the 
SSp by single-neuron reconstruction in another companion paper34.  
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The corticospinal projection neurons are also probably contained in 
the L5 ET subclass35.

The L5/6 NP neurons were divided into two clusters (Fig. 2a), with 
L5/6 NP 1 mainly in L5 and L5/6 NP 2 extending into L6 (Fig. 2c). The 
L6 CT neurons were divided into nine clusters (Fig. 2a), which exhib-
ited a complex spatial pattern with distinctions in both cortical depth 
and medial–lateral directions (Fig. 2d). L6b cells, which formed the 

innermost layer of the cortex, were subdivided into three clusters 
intermixed in space (Fig. 2a, e).

A gradient across the IT neurons
The IT neurons constitute the largest branch of neurons in the imaged 
region, which span nearly the entire cortical depth from L2/3 to L6. 
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Fig. 1 | Spatial organization of cells in the MOp and adjacent areas. a, Spatial 
map of the cell clusters in a coronal slice (Bregma approximately +0.9). Cells are 
coloured by their cluster identities. The MOp region, determined based on the 
Allen CCF v3, is shaded in grey. The inset shows the brain region annotations in 
the Allen CCF v3 (http://atlas.brain-map.org/; credit: Allen Institute). D, dorsal; 
L, lateral; M, medial; OGC, oligodendrocyte; OPC, oligodendrocyte precursor 
cell; PVM, perivascular macrophage; SMC, smooth muscle cell; V, ventral; 
VLMC, vascular leptomeningeal cell. Scale bar, 400 μm. b, Spatial map of the 
cell subclasses in glutamatergic (left), GABAergic (middle) and non-neuronal 
(right) cells in the same slice as in a. Cells are shown as circles, with indicated 
cells coloured by subclasses and others in grey. Scale bars, 400 μm. c–e, The 
cortical depth distributions of the glutamatergic (c), GABAergic (d) and 

non-neuronal (e) clusters for the entire imaged region including the MOp and 
adjacent areas shown in the violin plots. The cortical depth of a cell is 
normalized by the cortical thickness in each slice, with 0 representing the 
cortical surface and 1 representing the median depth of the L6b cells. The 
dashed lines mark the layer boundaries, and the grey area marks an uncertainty 
range for the upper boundary of L5 (Methods). In the violin plots, the centre dot 
represents the median, the thick black bar represents the interquartile range, 
and the edges define minima and maxima. f, Probability distributions of the 
neighbourhood complexity of cells in each cortical layer (top) and in different 
cell subclasses in L5 and L6 (bottom). The neighbourhood complexity of a cell 
is defined as the number of different cell clusters present within a 
neighbourhood of 100 μm in radius surrounding the given cell.

http://atlas.brain-map.org/
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Our MERFISH data classified the IT cells into 20 clusters, 19 of which 
belonged to the L2/3 IT, L4/5 IT, L5 IT and L6 IT subclasses and the 
remaining one formed a distinct cell type, L6 IT Car3 (Fig. 3a, Extended 
Data Fig. 7a–c).

The L2/3, L4/5, L5 and L6 IT subclasses showed laminar organizations 
(Fig. 3b, c). These subclasses were each subdivided into several clusters, 
further parcellating each cortical layer but without discrete boundaries 
(Fig. 3b, c). Notably, MERFISH data identified seven IT clusters residing 
between the L2/3 and L5 IT neurons (Fig. 3c), expressing the L4 maker 
genes Rspo1 and/or Rorb (Extended Data Fig. 2a) and corresponding to 
the L4/5 IT clusters identified by scRNA-seq and snRNA-seq23 (Extended 
Data Fig. 7a). Among these clusters, L4/5 IT SSp 1 and 2 were located 
primarily in the neighbouring SSp region with a relatively minor pres-
ence in the MOp (Extended Data Fig. 7d), whereas L4/5 IT 1–5 showed 
substantial presence in the MOp (Fig. 3c). The MOp has been tradi-
tionally considered lacking a distinct L4 due to the absence of clear 
cytoarchitecture features36. Our results suggest the presence of L4 
neurons in the MOp, consistent with a previous report of L4 neurons 
in the MOp based on their anatomical and connectivity properties37.

We observed a largely gradual transition of the gene expression pro-
files among the IT clusters, except for L6 IT Car3 (Fig. 3a, Extended Data 
Fig. 8a). Moreover, along the direction of the cortical depth, individual 
IT clusters partially overlapped in space with adjacent clusters, as evi-
dent from both the cell-type spatial maps of individual coronal slices 
(Fig. 3c) and the quantitative analysis of cortical depth distributions 
(Fig. 3b, Extended Data Fig. 8b–d). The lack of clear separation among 
the IT clusters led us to further evaluate whether the IT cells traverse 
a continuous spatial and molecular landscape. Quantification of the 
degree of intercluster connectivity38 showed that the IT clusters formed 
an interconnected network with clusters exhibiting the highest con-
nectivity (namely, highest similarity in gene expression) to those that 

were spatially adjacent (Fig. 3d, Extended Data Fig. 9a). Identification 
of genes whose expression changed substantially with cortical depth 
revealed a largely gradual change of gene expression profiles of cells 
along the cortical depth axis, with steeper changes at the cortical depths 
that approximately separate cell subclasses (Fig. 3e, Extended Data 
Fig. 9b). Using pseudotime analysis39 to order the IT cells on the basis 
of their expression profiles, we observed that the pseudotime of cells 
was highly correlated with their cortical depths, and individual cells 
formed a largely continuous cloud along the pseudotime and cortical 
depth axes, with a more appreciable separation in pseudotime between 
L2/3 and L4/5 IT clusters (Fig. 3f, Extended Data Fig. 9c, d). Together, 
these results suggest that the IT neurons adopt a gradient distribution 
across the cortical depth, with correlated gene expression profiles and 
cortical depths of individual cells.

Projection pattern of IT neurons
We next sought to integrate MERFISH with retrograde tracing to simul-
taneously determine the expression profiles and spatial organization 
of cell types in the MOp and their projection targets. To this end, we 
injected retrograde tracers, cholera toxin subunit b (CTb) labelled 
with spectrally distinct dyes, into three cortical regions, the ipsilateral 
MOs, the SSp and the temporal association area (TEa), all of which 
receive direct inputs from the MOp40,41. TEa injections also spread into 
its adjacent ectorhinal (ECT) and perirhinal (PERI) areas, and these areas 
are often referenced together as a complex (TEa–ECT–PERI) in retro-
grade tracing studies31,40. Next, we identified neurons in the MOp that 
projected to these target regions by CTb imaging, followed by imag-
ing the 258-gene MERFISH panel for cell-type identification (Fig. 4a).  
We performed this analysis for the approximate MOp upper limb 
domain (Bregma 0 to +1.0) and imaged coronal slices at approximately 
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Fig. 2 | Spatial organization of the L5 ET, L5/6 NP, L6 CT and L6b neurons. 
 a, Uniform manifold approximation and projection (UMAP) of the L5 ET, L5/6 
NP, L6 CT and L6b neurons coloured by the cluster identity. b, Spatial map of L5 
ET cell clusters in a coronal slice (Bregma approximately +0.8). L5 ET cells are 
coloured, and other cells in the MOp are shown in dark grey to highlight the 
MOp region, whereas other cells outside the MOp are shown in light grey. 
Normalized cortical depth distributions of the cells of each L5 ET cluster are 
shown in the right panel and presented in the form of the Kernel density of the 
distribution histograms. c, Spatial map of L5/6 NP cell clusters in a coronal slice 

(Bregma approximately +0.4) and the normalized cortical depth distributions 
of these clusters, as in b. d, Spatial map of the L6 CT cell clusters in a coronal 
slice (Bregma approximately +0.3) and the normalized cortical depth 
distributions of these clusters, as in b. The medial–lateral distribution for 
clusters 1, 5 and 8 are also shown at the bottom. The medial–lateral distribution 
is calculated in the coronal slices in which cluster 8 is present. e, Spatial map of 
the L6b clusters in a coronal slice (Bregma approximately +0.4) and the 
normalized cortical depth distributions of these clusters, as in b. Scale bars, 
200 μm (b–e).
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30-μm intervals along the anterior–posterior axis in two mice  
(approximately 190,000 cells total). We observed that approximately 
90% of MOs-projecting, SSp-projecting and TEa–ECT–PERI-projecting 
neurons were IT and L6b neurons. Spatially, the MOs-projecting  
and SSp-projecting neurons were more broadly distributed along the 
cortical depth axis, whereas the TEa–ECT–PERI-projecting neurons 
showed a distinct multi-laminar distribution (Fig. 4b), consistent with 
previous observations40.

We observed a complex projection pattern of MOp neurons. 
Neurons in the same cell clusters sent output to multiple targets 
(Fig. 4c) and, likewise, the same target region received inputs from 
multiple subclasses and clusters of MOp neurons (Fig. 4d). All three 
regions received inputs from a large number of individual clusters, 
each region from a quantitatively different composition of clusters 
(Fig. 4d, bottom panel).

Interestingly, some molecularly and spatially similar IT clus-
ters showed distinct projection patterns. For example, almost all 
CTb-positive L6 IT 3 neurons projected to TEa–ECT–PERI but not to 
the MOs and the SSp, whereas the majority of the CTb-positive L6 IT 1 
neurons projected to the MOs with very few to TEa–ECT–PERI (Fig. 4c). 

Among the three L6 IT clusters, the MOs mostly received input from 
L6 IT 1, whereas TEa–ECT–PERI mostly received input from the L6 IT 3,  
despite the similar gene expression profiles and the substantially  
overlapping spatial distributions of these L6 IT clusters (Fig. 4e).

Discussion
Here we used MERFISH to generate a molecularly defined and spatially 
resolved map of cell populations for the MOp and its adjacent areas 
in the mouse brain. The cell census defined by MERFISH, including 95 
neuronal and non-neuronal populations, showed good correspondence 
to that defined by the single-cell sequencing in the companion study23 
and revealed distinct spatial distributions for most transcriptomically 
distinct cell populations. Our results showed laminar restrictions for 
different subclasses of neurons that are consistent with previous find-
ings12,13,28,29, but also revealed a previously unknown, high-resolution 
spatial map for individual neuronal clusters. We observed laminar 
organization not only for excitatory neurons but also for inhibitory neu-
rons, with many inhibitory neuronal clusters preferentially located in 
one or two cortical layers. Moreover, many excitatory neuronal clusters 
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clusters in a k-nearest neighbour graph for the IT clusters, with each cluster 

represented as a node coloured as in a, and the weighted edges between nodes 
representing their connectivity. Edges with weights below 0.1 are not shown.  
e, Normalized expression of differentially expressed genes of all IT neurons 
across cortical depth. Here, differentially expressed genes refer to genes of 
which the expression varied substantially with cortical depth (Methods). 
Individual IT neurons were sorted in the order of ascending cortical depth and 
the genes were sorted by the cortical depth at which they exhibit maximal 
expression. The coloured bar at the bottom indicates the cluster identity of the 
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adopted narrow distributions along the cortical depth direction that 
revealed finer laminar structures within individual cortical layers.

We noticed that, although neurons tended to form discrete pop-
ulations of cells with distinct expression profiles at the subclass 
level, clusters within individual subclasses often exhibited more 
gradual changes, adding evidence to the coexistence of discrete 
and continuous cell heterogeneity in the brain13,42,43. In particular, 
IT neurons, which constitute approximately 70% of all excitatory 
neurons in the MOp, formed a largely continuous gradient across the 
cortical depth. Continuous variations in gene expression have also 
been observed among IT neurons in the isocortex by a concurrent 
scRNA-seq study44. Here, with spatially resolved single-cell profiling, 
we observed correlated changes in the gene expression and cortical 
depth of IT neurons, revealing a molecular and spatial gradient of 
cells spanning nearly the entire cortical depth. It remains an open 
question whether other properties (for example, input or output 
connectivity) of the IT neurons could have more discrete layer speci-
ficity and, if so, whether these properties correlate with molecular 
signatures that are to be identified.

We further investigated how individual molecularly identified 
cell types correlate with their projection targets by integrating 
MERFISH with retrograde labelling. Our results showed that projec-
tions of MOp neurons to other cortical regions formed a complex 
multiple-to-multiple network: each cell cluster projects to multiple 
target regions (consistent with previous observations for visual cor-
tex projections45), and each target region receives inputs from many 
clusters. We also observed distinct projection properties from some 
similar neuronal clusters with gradually varying expression profiles 
and overlapping spatial distributions. How such distinct projection 
properties arise from these similar clusters, whether it is due to a 
molecular signature not captured by transcriptomic profiling or has 
arisen from a developmental origin, remains an open question. Our 
proof-of-principle measurements probed only three target regions, but 
more target regions could be measured using this approach to construct 
a more comprehensive projection map for the cell types in the MOp. 
We envision that MERFISH may also be combined with trans-synaptic 
viral tracers to generate a high-resolution cell-type-to-cell-type  
connectivity map.
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Methods

Animals
Adult C57BL/6J male mice aged 57–63 days were used in this study. Two 
mice were used for in situ cell-type identification and spatially map-
ping by MERFISH; and two animals were used for projection mapping 
by combining MERFISH with retrograde labelling. Mice were main-
tained on a 12-h light/12-h dark cycle (14:00 to 02:00 dark period), 
at a temperature of 22 ± 1 °C, a humidity of 30–70%, with ad libitum 
access to food and water. Animal care and experiments were carried 
out in accordance with NIH guidelines and were approved by the Har-
vard University Institutional Animal Care and Use Committee (IACUC)  
and the University of South California Institutional Animal Care and 
Use Committee.

Gene selection for MERFISH
To discriminate transcriptionally distinct cell populations with MER-
FISH, we designed a panel of 258 genes. Among the 258 genes, 62 were 
manually picked marker genes including established markers for inhibi-
tory and excitatory neurons, as well as different non-neuronal cell mark-
ers for oligodendrocytes, oligodendrocyte precursor cells, astrocytes, 
microglia, perivascular macrophages, endothelial cells, pericytes, 
smooth muscle cells and vascular leptomeningeal cells (VLMCs). To 
further discriminate different neuronal cell types, we combined two 
approaches to select genes based on clustering results from scRNA-seq 
and snRNA-seq data. In the first approach, we selected a panel of genes 
with the highest mutual information as previously reported22. Briefly, 
we used mutual information to determine the relative amount of 
information each gene carries in defining the clusters identified by 
scRNA-seq and snRNA-seq. We used the scRNA-seq 10x v2 A dataset 
generated by a companion study23 and determined highly variable 
genes using the Scanpy46 package. We binarized the expression profiles 
using a gene counts cut-off of zero to simplify the calculation of the 
mutual information. We selected the top 50 genes with the highest 
mutual information for excitatory and inhibitory neuronal clusters, 
respectively, and due to overlap between the two groups, this approach 
generated a total of 91 top mutual information genes. In the second 
approach, we selected a panel of 168 genes based on differentially 
expressed (DE) gene analysis using the scRNA-seq data (scRNA-seq 
10x v2 and scRNA-seq SMART data) from the companion study23. We 
first found DE genes for each neuronal cluster pair (consisting of a fore-
ground cluster and a background cluster) in both directions. The crite-
ria to define DE genes were: the genes have a twofold or more change 
in expression between the foreground and background clusters and  
P < 0.05; they are expressed in at least 40% of cells in the foreground 
cluster, with more than threefold enrichment, in terms of the frac-
tion of cells expressing the gene, relative to the background cluster.  
P values were calculated using the analysis of variance (ANOVA) test in 
limma47 on log-transformed data. The top 50 genes that passed all of 
the tests and ranked by P values in each direction for every cluster pair 
were pooled together as candidates for scoring for the final marker 
set. To determine the final marker list, which we required to include 
at least two genes in each direction for all pairs of clusters, we used a 
greedy algorithm to find the minimal number of genes that satisfied 
the requirement. Starting from a manually picked marker gene list 
as described above, the algorithm checks which pairs already have a 
sufficient number of DE genes, and works on the remaining pairs of 
clusters until each pair of clusters has at least two DE genes included 
in each direction. This approach generated a total of 168 genes.

We note that the mutual information genes tend to be genes that are 
differentially expressed between groups of cell clusters, whereas the DE 
genes are differentially expressed between individual pairs of clusters. 
These two sets have complementary power and, when combined, can 
give better cluster identification results in our experience. We thus 
combined the marker gene lists generated by these three different 

approaches, which partially overlap with each other, resulting in a 
panel of 258 genes in total. We then screened this gene list to identify 
genes that are relatively short or have relatively high expression level, 
which were potentially challenging for highly multiplexed FISH imag-
ing experiments, as previously described21. We found 16 genes that 
can accommodate fewer than 48 hybridization probes with target 
sequences that are 30-nucleotides (nt) long, or are expressed at an aver-
age of 200 or greater counts per cell in any cell cluster as determined 
from the scRNA-seq SMART data23. These 16 genes were imaged in a 
set of eight sequential, two-colour FISH imaging rounds, following the 
MERFISH run that imaged the remaining 242 genes.

Design and construction of the MERFISH encoding probes
MERFISH encoding probes for the 242 genes were designed as pre-
viously described21. We first assigned to each of the 242 genes a 
unique binary barcode drawn from a 22-bit, Hamming-Distance-4, 
Hamming-Weight-4 encoding scheme. We included 10 extra barcodes 
as ‘blank’ barcodes, which were not assigned to any genes, to provide a 
measure of the false-positive rate in MERFISH as previously described21.

We identified all possible 30-mer targeting regions within each 
desired gene transcript as previously described48. Each MERFISH encod-
ing probe contains a 30-mer targeting region that is complementary to 
the RNA of interest, as well as two 20-mer readout sequences that define 
the specific barcode assigned to each gene. From the set of all possi-
ble 30-mer targeting sequences for each gene, we selected 92 30-mer 
targeting sequences at random. For the transcripts that were not long 
enough and had fewer than 92 targeting sequences, we allowed these 
30-mers to overlap by as much as 20 nt to increase the number of pos-
sible encoding probes — because a given transcript is typically bound 
by less than one-third of the 92 encoding probes49, the encoding probes 
with overlapping targeting regions do not substantially interfere with 
each other but partially compensate for reduced binding due to local 
inaccessible regions on the target RNA or loss of probe during synthe-
sis. We then assigned two readout sequences to each of the encoding 
probes associated with each gene. For the 22-bit encoding scheme, a 
total of 22 readout sequences were used, each corresponding to 1 bit, 
and the collection of encoding probes for each gene contained 4 of the 
22 readout sequences that corresponded to the 4 bits that reads ‘1’ in 
the barcode assigned to that gene.

Encoding probes for the 16 genes imaged in sequential two-colour 
FISH rounds were produced in the same manner, except that 48 target-
ing sequences were selected, and one single unique readout sequence 
was included in each set of the 48 targeting sequences. The readout 
sequences used here were different from the 22 readout sequences 
used for the genes detected in the MERFISH run.

In addition, we concatenated to each encoding probe sequence two 
PCR primers, the first comprising the T7 promoter, and the second 
being a random 20-mer designed to have no region of homology greater 
than 15 nt with any of the encoding probe target sequences designed 
above, as we previously described48.

With the above-described template encoding probe sequences, we 
constructed the MERFISH probe set as previously described21. The tem-
plate DNA were synthesized as a complex oligo pool (Twist Biosciences). 
This pool contained both the encoding probes to the 242 genes meas-
ured in the MERFISH run and the 16 genes measured in the sequential 
two-colour FISH rounds, but different primer sequences for the two 
sets, which allowed us to amplify these two probe sets separately via 
PCR followed by the same synthesis and purification procedures. The 
two probe sets were then mixed during tissue staining.

Design and construction of MERFISH readout probes
For the 258-gene panel used in this study, 38 readout probes were 
designed, each complementary to one of the 38 readout sequences. 
Twenty-two of the 38 readout probes correspond to the 22 bits in the 
barcodes used for MERFISH imaging, and the remaining 16 readout 



probes each corresponds to one gene that was imaged in the sequential 
two-colour FISH rounds. Each readout probe was conjugated to one 
of the two dye molecules (Alexa750 or Cy5) via a disulfide linkage, as 
previously described48. These readout probes were synthesized and 
purified by Bio-Synthesis, Inc., resuspended immediately in Tris-EDTA 
(TE) buffer, pH 8 (Thermo Fisher), to a concentration of 100 μM  
and stored at −20 °C.

Tissue preparation for MERFISH
Mice aged 57–63 days were euthanized with CO2; their brains were 
quickly harvested and cut into hemispheres and each hemisphere 
was frozen immediately on dry ice in optimal cutting temperature 
compound (Tissue-Tek O.C.T.; 25608-930, VWR), and stored at −80 °C 
until cutting. Frozen brain hemispheres were sectioned at −18 °C on a 
cryostat (Leica CM3050 S). Slices were removed and discarded until the 
MOp region was reached. A continuous set of 300, 10-μm-thick slices 
were cut from anterior to posterior, and approximately every tenth 
slice was placed onto coverslips for imaging. Each coverslip contained 
4–6 slices. The coverslips were prepared as previously described21,50.

Tissue slices were fixed by treating with 4% PFA in 1× PBS for 15 min 
and were washed three times with 1× PBS and stored in 70% ethanol at 
4 °C for at least 18 h to permeabilize cell membranes. The tissue slices 
from the same mouse were cut at the same time and distributed to six 
coverslips, which were store in 70% ethanol at 4 °C for no longer than  
2 weeks until all the coverslips were imaged. We observed no degrada-
tion in sample quality over this time period.

The tissue slices were stained with the MERFISH probe set as previ-
ously described21. Briefly, the samples were removed from the 70% etha-
nol and washed with 2× saline sodium citrate (SSC) three times. Then, 
we equilibrated the samples with encoding-probe wash buffer (30% 
formamide in 2× SSC) for 5 min at room temperature. The wash buffer 
was then aspirated from a coverslip, and the coverslip was inverted onto 
a 50-μl droplet of encoding-probe mixture on a parafilm-coated Petri 
dish. The encoding-probe mixture comprised approximately 1 nM of 
each encoding probe for the MERFISH run, approximately 5 nM of each 
encoding probe for the sequential two-colour FISH rounds and 1 μM of a 
polyA-anchor probe (IDT) in 2× SSC with 30% v/v formamide, 0.1% wt/v 
yeast tRNA (15401-011, Life Technologies) and 10% v/v dextran sulfate 
(D8906, Sigma,). We then incubated the sample at 37 °C for 36–48 h. The 
polyA-anchor probe containing a mixture of DNA and LNA nucleotides 
(/5Acryd/TTGAGTGGATGGAGTGTAATT+TT+TT+TT+TT+TT+TT+TT+
TT+TT+T, where T+ is locked nucleic acid, and /5Acryd/ is 5′ acrydite 
modification) hybridized to the polyA sequence on the polyadenylated 
mRNAs and allowed these RNAs to be anchored to a polyacrylamide 
gel as described below. After hybridization, the samples were washed 
in encoding-probe wash buffer for 30 min at 47 °C for a total of two 
times to remove excess encoding probes and polyA-anchor probes. 
All tissue samples were cleared to remove fluorescence background 
as we previously described21,50. Briefly, the samples were embedded 
in a thin polyacrylamide gel and were then treated with a digestion 
buffer of 2% v/v sodium dodecyl sulfate (SDS; AM9823, Thermo Fisher),  
0.5% v/v Triton X-100 (X100, Sigma) and 1% v/v proteinase K (P8107S, 
New England Biolabs) in 2× SSC for 36–48 h at 37 °C. After digestion, the 
coverslips were washed in 2× SSC for 30 min for a total of four washes 
and then stored at 4 °C in 2× SSC supplemented with 1:100 murine RNase 
inhibitor (M0314S, New England Biolabs) before imaging.

MERFISH imaging
We used a home-built imaging platform in this study as previously 
described20. To prepare the sample for imaging, we first stained it with 
a readout hybridization mixture containing the readout probes asso-
ciated with the first round of imaging in the MERFISH run, as well as a 
probe complementary to the polyA-anchor probe and conjugated via 
a disulfide bond to the dye Alexa488 at a concentration of 3 nM. The 
readout hybridization mixture comprised the readout-probe wash 

buffer comprised 2× SSC, 10% v/v ethylene carbonate (E26258, Sigma) 
and 0.1% v/v Triton X-100, supplemented with 3 nM each of the appro-
priate readout probes. The sample was incubated in this mixture for 15 
min at room temperature, and then washed in the readout-probe wash 
buffer supplemented with 1 μg/ml DAPI for 10 min to stain nuclei within 
the sample. The sample was then washed briefly in 2× SSC and imaged. 
Briefly, the sample was loaded into a commercial flow chamber (FCS2, 
Bioptechs) with a 0.75-mm-thick flow gasket (DIE# F18524; 1907-100, 
Bioptechs). Imaging buffer comprising 5 mM 3,4-dihydroxybenzoic 
acid (P5630, Sigma), 2 mM trolox (238813, Sigma), 50 μM trolox qui-
none, 1:500 recombinant protocatechuate 3,4-dioxygenase (rPCO; OYC 
Americas), 1:500 murine RNase inhibitor and 5 mM NaOH (to adjust pH 
to 7.0) in 2× SSC was introduced into the chamber and the sample was 
imaged with a low-magnification objective (CFI Plan Apo Lambda ×10, 
Nikon) with 405-nm illumination to produce a low-resolution mosaic of 
all slices in the DAPI channel. We then used this mosaic image to locate 
the MOp region in each slice and generated a grid of field-of-view (FOV) 
positions to cover the MOp region and adjacent areas to be imaged. 
We then switched to a high-magnification, high-numerical aperture 
objective (CFI Plan Apo Lambda ×60, Nikon) and imaged each of the FOV 
positions generated above. In the first round of imaging, we collected 
images in the 750-nm, 650-nm, 560-nm, 488-nm and 405-nm channels 
to image the first two readout probes (conjugated to Alexa750 and 
Cy5, respectively), the orange fiducial beads, the total polyA mRNA 
stained by the polyA-anchor probe (Alexa488) and the nucleus stained 
by DAPI (405-nm channel). The latter two channels were used for cell 
segmentation as described below. We took a single image for the fidu-
cial beads on the surface of the coverslip using the 560-nm illumination 
channel for each imaging round as a spatial reference to correct for 
slight misalignments in the stage position over the imaging rounds. To 
image the entire volume of each 10-μm-thick slice, we collected seven 
1.5-μm-thick z-stacks for the other four channels (two readout probes, 
polyA probe and DAPI) in each FOV.

After the first round of imaging, the dyes were removed by flow-
ing 2.5 ml of cleavage buffer comprising 2× SSC and 50 mM of Tris 
(2-carboxyethyl) phosphine (TCEP; 646547, Sigma) with 15-min incu-
bation in the flow chamber, to cleave the disulfide bond linking the 
dyes to the readout probes. The sample was then washed by flowing 
1.5 ml 2× SSC.

To perform subsequent rounds of imaging, we flowed 3.5 ml of the 
readout probe mixture containing the appropriate readout probes 
across the chamber and incubated the sample in this mixture for a 
total of 15 min for each round. The sample was then washed by 1.5 ml 
of readout-probe wash buffer and then 1.5 ml of imaging buffer was 
introduced into the chamber. For each round, we took images for all 
FOV locations in the 750-nm, 650-nm and 560-nm channels for the two 
readout probes and fiducial beads. Two readout probes were imaged 
in each round, one labelled with Alexa750 and the other with Cy5, and a 
readout-probe mixture containing 3 nM of appropriate readout probes 
was used for each round. We repeated the hybridization, wash, imaging 
and cleavage for all rounds to complete the 22-bit MERFISH imaging 
and the eight rounds of sequential two-colour FISH. All buffers and 
readout-probe mixtures were loaded with a home-built, automated flu-
idics system composed of three 12-port valves (EZ1213-820-4, IDEX) and 
a peristaltic pump (MP3, Gilson), configured as previously described5. 
The total MERFISH imaging time was approximately 24–36 h for each 
experiment, which contained 4–6 coronal slices.

MERFISH image analysis and cell segmentation
All MERFISH image analysis was performed using MERlin51, a 
Python-based MERFISH analysis pipeline, using algorithms similar 
to what we have previously described20,21. First, we aligned the images 
taken during each imaging round based on the fiducial bead images, 
accounting for X–Y drift in the stage position relative to the first round 
of imaging. For the MERFISH images, we then high-pass filtered the 
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image stacks for each FOV to remove background, deconvolved them 
using 20 rounds of Lucy–Richardson deconvolution to tighten RNA 
spots, and low-pass filtered them to account for small movements in 
the apparent centroid of RNAs between imaging rounds. Individual 
RNA molecules were identified by our previously published pixel-based 
decoding algorithm48. After assigning barcodes to each pixel inde-
pendently, we aggregated adjacent pixels that were assigned with the 
same barcodes into putative RNA molecules, and then filtered the list 
of putative RNA molecules to enrich for correctly identified transcripts 
as previously described20 for an overall barcode misidentification rate 
at 5%. We further removed putative RNAs that contained only a single 
pixel as they are prone to be background of spurious barcodes gener-
ated by random fluorescent fluctuations and had a substantially higher 
misidentification rate than those that contained 2 or more pixels.

We segmented cell boundaries in each FOV using a seeded water-
shed approach as previously described21. The DAPI images were used 
as seeds and the polyA signals were used to identify segmentation 
boundaries. Finally, we assigned individual RNA molecules identified 
in the MERFISH run to individual cells based on whether they fell within 
the segmented boundaries of the cells. For the sequential two-colour 
FISH rounds, we quantified the signal from these imaging rounds by 
summing the fluorescence intensity of all pixels that fell within the 
segmentation boundaries of the cells associated with the central z-plane 
and normalized the signal by the areas of the cells in this z-plane. Then, 
the normalized signals of the 16 genes from the sequential two-colour 
FISH rounds were merged with the RNA count matrix from the 242 genes 
measured in the MERFISH run and used for cell clustering analysis.

Cell clustering analysis of MERFISH data
With the cell-by-gene matrix obtained as described above (each row 
representing a cell and each column representing a gene, and each 
element representing the expression level a specific gene in a specific 
cell), we preprocessed the matrix by the following steps. (1) The seg-
mentation approach that we used generated a small fraction of puta-
tive ‘cells’ with very small total volumes due to spurious segmentation 
artefacts, as well as some cells that overlapped in the 3D and were not 
properly separated. We hence removed the segmented ‘cells’ that had 
a volume that was either less than 100 μm3 or larger than three times 
of the median volume of all cells. (2) A fraction of cells did not have 
the whole soma included in a 10-μm-thick tissue slice and was thus not 
imaged completely. To remove the differences in RNA counts due to the 
incompleteness of the imaged soma volume, we normalized the RNA 
counts per cell by the imaged volume of each cell. (3) We observed a 
modest batch effect between MERFISH experiments accounting for 
approximately 30% variation of the mean total number of RNAs per 
cell. We normalized the mean total RNA counts per cell to a same mean 
value (250 in this case) for each experiment to remove the influence 
of these batch effects. (4) Since the 16 genes that were imaged in the 
sequential FISH rounds contained many specific marker genes that 
should not co-express in individual cell types, and no cells should 
express a majority of these 16 genes, we considered the segmented 
‘cells’ that had a normalized fluorescence signal that was higher than 
the 90% quantile in 12 out of the total 16 sequential FISH channels as 
caused by spurious fluorescence background and removed them.  
(5) Since the fluorescence background in the 650-nm and 750-nm 
channels was different, we subtracted the background for each cell 
by taking the minimum of the signal for each cell across all sequen-
tial FISH rounds as the background, for 650-nm and 750-nm channels 
separately. (6) We removed the cells that had total RNA counts lower 
than 2% quantile or higher than 98% quantile. (7) We removed potential 
doublets using Scrublet52. Briefly, principal component analysis (PCA) 
was used to train a k-nearest neighbour (kNN) classifier to predict a 
doublet score for each cell. Since we recorded the DAPI-stained nucleus 
image of each cell, we were able to visually inspect a random subset of 
potential doublets picked by Scrublet and fine-tuned the doublet score 

threshold to remove connected cells more accurately. Finally, the cells 
with a doublet score higher than 0.18 were removed, which accounted 
for approximately 12% of the total cell number. (8) We also found that 
4 out of the 16 genes imaged in the sequential FISH rounds — Cd52, 
Rprml, Mup5 and Igfbp6 — were not stained well in all experiments and 
failed to yield high-quality signals. These four genes were removed for 
subsequent analysis.

After the above preprocessing steps, we normalized the total RNA 
counts for each cell to the median total RNA counts of all cells and 
log-transformed the cell-by-gene matrix. We then normalized their 
expression profiles by computing the z-score for each gene. We per-
formed dimensionality reduction of the matrix using PCA, and used the 
first 35 principal components. To determine the number of principal 
components to keep, we randomly shuffled the values in each column 
of the cell-by-gene matrix and calculated the eigenvalue of the first 
principal component for the randomly shuffled matrix. The random 
shuffling was repeated 20 times and the mean eigenvalue of the first 
principal component across 20 iterations was obtained, and we kept 
all of the principal components that had an eigenvalue greater than 
this mean value. We then performed graph-based Louvain community 
detection53 in the 35 principal components space using Scanpy46 for a 
range of nearest neighbourhood size k values with a bootstrap analysis 
to both identify stable clusters and select the optimal k value (k = 10) 
as previously described21. We further identified six small clusters that 
expressed mixtures of markers for multiple distinct cell classes, for 
example, Slc17a7, which marks excitatory neurons, and Sox10, which 
marks the oligodendrocytes, and that did not correspond to any of 
the major subclasses defined by the scRNA-seq and snRNA-seq data23 
(based on classifier analysis, which is described below), as potential 
doublets, which were excluded from subsequent analysis.

From the first round of clustering, we identified 16 excitatory neu-
ronal clusters, 8 inhibitory neuronal clusters and 14 other clusters. To 
further refine our detection of transcriptionally distinct populations, 
we separated all of the cells into five groups: IT-projecting neurons 
(marked by the excitatory neuronal marker Slc17a7 and the pan-IT 
marker Slc30a3), non-IT neurons (marked by the excitatory neu-
ronal marker Slc17a7 but not Slc30a3), caudal ganglionic eminence 
(CGE)-derived inhibitory neurons (marked by Gad1, Gad2 and Lamp5/
Sncg/Vip), medial ganglionic eminence (MGE)-derived inhibitory neu-
rons (marked by Gad1, Gad2 and Sst/Pvalb) and non-neuronal cells. We 
then repeated the procedure of dimensionality reduction and cluster-
ing, as described above, for these five cell groups separately. In addition, 
we sampled a range of resolution parameter r (r = 1, 2, 3), a parameter 
value defined in Scanpy46 that controls the coarseness of the cluster-
ing, to search for optimal granularity that represents the diversity of 
the transcriptomic profiles. We kept k = 40 and r = 2 for IT and non-IT 
excitatory neurons, k = 15 and r = 2 for CGE-derived and MGE-derived 
inhibitory neurons, and k = 20, r = 1 for the non-neuronal cells.

After the second round of clustering, we further removed a small 
fraction of cells as potential doublets as described above. We also found 
four unique clusters that did not correspond to any subclass in the MOp 
region defined by the scRNA-seq and snRNA-seq data23 (using the clas-
sifier approach described below). We located the cells that belonged 
to these clusters and found that two clusters were in the striatum, and 
the other two clusters were probably ependymal cells located in the 
lateral ventricle. We removed these clusters from subsequent analysis.

After the clustering was done, the cell clusters were first each 
assigned into a subclass based on their marker gene expression as 
described in the main text. The IT neurons were further divided into 
L2/3, L4/5, L5 and L6 subclasses based on the expression of layer-specific 
makers (Cux2, Otof, Rorb, Rspo1, Sulf2, Fezf2 and Osr1). Since these 
markers showed gradual changes between individual IT clusters, the 
subclass identification at the border of layers can be ambiguous, in 
which case, we identify the parent subclass for the cluster by judging 
both its marker gene expression and its strongest corresponding cluster 



in the scRNA-seq and snRNA-seq data. For example, L4/5 IT 5 expressed 
both Rorb and Fezf2, and corresponded to the L4/5 IT 2 cluster in the 
scRNA-seq and snRNA-seq data, and was thus classified as a L4/5 IT 
cluster. After the subclass identity was assigned, within each subclass, 
a numerical index was added following the subclass name to form the 
cluster name (for example, L5 IT 1, astrocyte 2, and so on).

For presentation, UMAP54 was used to embed the cells in two 
dimensions using the same principal components that were used 
for clustering.

Correspondence between clusters identified by MERFISH and 
single-cell sequencing-based measurements
Correspondence between cell clusters identified by MERFISH and by 
scRNA-seq and snRNA-seq in Extended Data Fig. 2c, d was assessed by 
running a neural-net classifier55, which was trained on the z-scored 
single-cell expression profiles measured by MERFISH. The snRNA-seq 
10x v3 B data in the companion paper23 were used for comparison 
because it is the largest dataset among the seven scRNA-seq and 
snRNA-seq datasets included in this companion study and contained 
the largest number of non-neuronal cells, while all of the other six 
datasets were collected by fluorescence-activated cell sorting (FACS) 
to enrich for neurons. The snRNA-seq 10x v3 B data were z-scored, 
and then the subset of genes measured in the MERFISH data was used 
together with the trained model to predict a MERFISH cluster label for 
each cell in the snRNA-seq dataset. From this, each snRNA-seq cell had 
both a predicted MERFISH cluster label and a cluster label determined 
from the consensus clustering results for the seven scRNA-seq and 
snRNA-seq datasets23. Cells were grouped based on their consensus 
scRNA-seq and snRNA-seq cluster identity, and then the fraction 
of cells from a given consensus scRNA-seq and snRNA-seq cluster 
that were predicted to have each MERFISH cluster label was then 
determined (Extended Data Fig. 2d). The same classifier approach 
was also used to produce Extended Data Fig. 2c, but in this case, the 
subclass labels defined by MERFISH and by the seven scRNA-seq and 
snRNA-seq datasets for each cell was used instead of cluster labels. 
Likewise, the same classifier approach was used to produce Extended 
Data Figs. 6a, b, 7a, b, but in Extended Data Figs. 6b, 7b, the cluster 
labels defined by the integrated analysis of the seven scRNA-seq and 
snRNA-seq datasets, a snATAC-seq dataset and a snmC-seq dataset 
were used instead of the cluster labels derived from the scRNA-seq 
and snRNA-seq datasets alone.

Registration to the Allen Reference Atlas and the common 
coordinate framework
For each coronal section that we performed, high-resolution MER-
FISH/DAPI/polyA imaging of the MOp and adjacent areas, we also 
performed lower-resolution DAPI imaging of the entire hemisphere. 
The low-resolution DAPI image of each hemisphere coronal section 
was manually paired with the closest matching coronal section of the 
Allen Reference Atlas (ARA)27 based on cytoarchitectural features. 
Once paired, landmark cytoarchitectural features were used to cal-
culate a deformable or affine transformation from our DAPI image to 
the Nissl template of the matching ARA coronal section. Segmented 
cell boundaries from high-resolution MERFISH imaging were then 
aligned to the corresponding low-resolution DAPI image by aligning 
the high-resolution and low-resolution DAPI images. The overall trans-
formation from both steps then allowed registration of the MERFISH 
images to the ARA. Out of the 64 coronal slices imaged, 61 slices were 
registered to the ARA, whereas the remaining three slices did not have 
a sufficient number of landmarks to be registered.

To define the boundaries of the MOp in the MERFISH images, each 
ARA template was further scaled and aligned via translation and rota-
tion to the corresponding 2D coronal image in the Allen common 
coordinate framework (CCF) v326, which in turn allowed the MERFISH 
images to be registered to the Allen CCF v3.

To estimate the errors in image registration, we determined for each 
slice the average displacement between the cells on the cortical sur-
face and the top surface of the cortex in the CCF image, as well as the 
average displacement between the L6b cells and the bottom surface 
of the cortex in the CCF image, and calculated these displacements 
as a percentage of the cortical thickness in that slice. For the 61 regis-
tered slices, the alignment error was on average 2.5% when calculated 
using the mean of the absolute values of the top and bottom surface 
displacements. To further reduce the effect of the alignment error in 
delineating cells within the MOp, we removed the slices that had an 
alignment error that was approximately 7% or greater for either the top 
or bottom surface, or approximately 5% or greater for their mean. In 
total, eight slices were removed from subsequent analyses that involved 
MOp delineation, and the remaining slices on average had an alignment 
error of 2.0% when calculated using the mean of the absolute values of 
the top and bottom surface displacements.

Registration of the MERFISH images to the Allen CCF v3 allowed us 
to place the imaged and profiled cells in the CCF, delineating cells in 
different brain regions. This version of CCF was chosen by the BICCN 
consortium for multiple modalities of measurements of the MOp to 
provide consistency among these measurements. While the brain 
areal boundaries may not be perfectly determined in the CCF v3 and 
efforts in the community will continue to improve the accuracy of 
these boundaries, the MERFISH results reported here will continue to 
serve as a resource as these areal boundaries are improved over time.

Soma depth determination
From the MERFISH images, we segmented the cells and determined 
the centroid coordinates of all the cells. For each cell, the soma depth 
was determined as the shortest distance of its centroid position to the 
cortical surface line, which is marked by the very thin layer of VLMCs. 
Hence, the soma depths of individual cells were determined along the 
direction perpendicular to the cortical surface line in each coronal 
slice. To compensate the variation in cortical thickness from slice to 
slice, we measured the cortical thickness in each coronal slice, which 
was defined as the median soma depths of the L6b cells in the slice, and 
the soma depth of each cell was normalized by the cortical thickness 
of the slice. Cortical depth distribution analyses were performed for 
the region between Bregma −0.8 and +1.7 because MERFISH images of 
slices at Bregma +1.8 or greater did not show L6b cells forming a thin 
layer, which made normalization of the soma depth by the cortical 
thickness challenging for these anterior-most slices (Bregma between 
+1.8 and +2.5).

Layer boundary assessment
The layer boundaries along the normalized cortical depth axis were 
determined as follows: (1) the cortical surface was defined by the posi-
tions of surface VLMCs; (2) we calculated the normalized median cor-
tical depth of all cell clusters and used the median depth of the most 
superficial L2/3 IT cluster, L2/3 IT 1, as the upper boundary of L2/3;  
(3) the median depth of the most superficial L4/5 IT cluster, L4/5 IT 1, 
was used as the upper boundary of L4; (4) the median depth of the most 
superficial cluster among the L6 IT and CT clusters, L6 IT 1, was used 
as the upper boundary of L6; (5) the median depth of the L6b cells was 
set to 1 (as the soma depth of all cells were normalized by the median 
soma depths of the L6b cells) and the upper and lower boundaries of 
L6b were determined by the width of the L6b cell distribution; and  
(6) we also used the median depth of the most superficial cluster among 
the clusters residing in L5 to mark the upper boundary of L5 (that is, 
the boundary between L4 and L5); however, this boundary has some 
uncertainty because some of the L4/5 IT clusters may belong to L5,  
as we discuss below.

To examine which of the L4/5 IT clusters might also belong to L5, we 
examined the spatial overlap of the IT clusters with the L4 marker gene 
Rspo1 and the L5 marker gene Fezf2. To this end, we first determined the 



Article
spatial profile of each of the two marker genes by binning all imaged 
cells into 100 equal-sized bins based on the normalized cortical depth 
and determining the mean expression level per cell for each bin. For 
each IT cluster, its spatial overlap with these marker genes was then 
determined as the fraction of the cells in the cluster that fell within 
the cortical depth range where the binned median expression of the 
marker gene was above half maximum. We observed that the spatial 
overlap with the L4 marker Rspo1 took a rather precipitous fall at the 
L4/5 IT 5 cluster, with the overlap between L4/5 IT 5 and Rspo1 being 
substantially lower than those between L4/5 IT 1–4 clusters and Rspo1. 
In addition, the spatial overlap of the L4/5 IT 5 cluster with the L5 marker 
Fezf2 was substantially higher than those of the L4/5 IT 1–4 clusters and 
comparable to those of several L5 IT clusters (Extended Data Fig. 10a, 
b). Hence, the L4/5 IT 5 cluster probably resided in (or partially resided 
in) L5, and we thus considered the region between the median corti-
cal depth of L4/5 IT 5 and the median cortical depth of L5 IT 1 as the 
uncertainty region for the upper boundary of L5 as shown by the grey 
area in Fig. 1c–e and Extended Data Fig. 3.

The L5 can be divided into a superficial L5a sublayer devoid of ET cells 
and a deeper L5b sublayer occupied by ET cells56. We also examined 
the spatial overlap between L4/5 IT and L5 IT clusters with the L5 ET 
neurons to assess which clusters may belong to L5a. The spatial overlap 
between a cell cluster and the L5 ET cells was defined as the overlapping 
area of the cell density distributions of the cell cluster and the L5 ET cell 
subclass. We observed that the L4/5 IT 5 cluster showed minimal spatial 
overlap with L5 ET (Extended Data Fig. 10c, d) and hence may reside in 
L5a. L5 IT 1 partially overlaps with L5 ET, but the spatial overlap of L5 
IT 1 with L5 ET cells was substantially lower than those of the other L5 
IT clusters (Extended Data Fig. 10c), suggesting that the L5 IT 1 cluster 
may partially reside in L5a.

Connectivity and pseudotime analyses of IT neurons
To visualize the degree of similarity (connectivity) in the gene expres-
sion profiles of the IT clusters, we employed a recently developed graph 
abstraction technique called PAGA38 to gain a quantitative understand-
ing of how extensively different IT clusters occupied overlapping gene 
expression space. To this end, we first took the 19 IT clusters in the L2/3 
IT, L4/5 IT, L5 IT and L6 IT subclasses and normalized their expression 
profiles by computing the z-score for each gene. Cells from the L6 IT 
Car3 were not included in this analysis as it formed a cluster that was 
well-separated in gene expression from the other IT cell clusters. PCA 
was used to reduce dimensionality of the normalized expression data 
to the first 19 principal components. In selecting the number of princi-
pal components to include, we performed the same random shuffling 
procedure used when setting a PC threshold for cell clustering analysis 
as described in the ‘Cell clustering analysis of MERFISH data’ section. 
We then constructed a kNN graph based on the principal components, 
identifying the 12 nearest neighbours of each cell. Using the kNN graph 
and the cluster label of each cell, we used Scanpy46 to calculate the 
frequency that edges from cells with a given cluster label were con-
nected to cells from a different cluster label and then normalized this 
frequency to that expected by chance. The resulting values represent 
the connectivity between the clusters in the kNN graph, and are visu-
alized in a graph where each cluster is a node and the edges between 
nodes indicate the connectivity between those clusters.

Next, we constructed an ordering of the IT cells based on their expres-
sion profiles, yielding a ‘pseudotime’ value for each cell. This calculation 
is most often performed to order cells within a dynamic system, in which 
case the ordering reflects the ‘time’ relative to some reference cell. Our 
pseudotime calculation performed on the IT cells is not intended to 
represent the trajectory from L2/3 to L6 as part of a dynamic process, 
but rather to obtain an expression-derived measure of where along the 
trajectory each cell falls. To calculate the pseudotime of the IT cells, we 
used Scanpy to construct a diffusion map based on the above-described 
kNN graph, assigned a neuron from the L2/3 IT 1 cluster as the root cell 

of the trajectory, and then computed the diffusion-based pseudotime57. 
The resulting value assigned to each cell reflects how far from the root 
cell its expression profile places it, and since each cell falls along a single 
trajectory with the L2/3 IT root cell at one end, this value orders the 
cells relative to one another along this path.

To identify genes that vary as a function of the cortical depths of the IT 
cells, the expression profiles of the IT cells were normalized by comput-
ing the z-score for each gene. The IT cells were split evenly into 50 bins 
based on their normalized cortical depths, and the mean normalized 
expression was calculated for each gene across all the bins. Any gene 
for which the difference in mean normalized expression between any 
two bins exceeded 0.5 was selected as a gene differentially expressed 
across cortical depth. To plot these genes in a heatmap, the genes were 
ordered according to the normalized cortical depths at which they 
exhibit their maximum expression and the cells were ordered based 
on their normalized cortical depths. To determine the cortical depth 
at which each gene exhibits its maximum expression, a rolling average 
was calculated across the 50 bins, using a window size of 10 bins, and 
the window at which the maximum expression value occurred was 
determined.

Stereotaxic injection of retrograde tracers
To retrogradely label MOs-projecting, SSp-projecting and TEa–ECT–
PERI-projecting MOp neurons, each region was injected in the same 
mouse in the right hemisphere with 100 nl of fluorescently conjugated 
CTb (CTb-AlexaFluor488, CTb-AlexaFluor555 or CTb-AlexaFluor647, 
respectively; 0.5%; C22841, C22843, and C34778, Thermo Fisher) using 
the following coordinates relative to Bregma: MOs (anterior–posterior 
(AP) +2.4 mm, medial–lateral (ML) +1.0 mm, dorsal–ventral (DV) +0.4 mm  
below the cortical surface), SSp (AP −0.5 mm, ML +2.4 mm, DV +0.5 mm 
below the cortical surface) and TEa–ECT–PERI (AP −1.7 mm, ML +4.5 mm,  
DV +2.5 mm below the cortical surface). Injection procedures were 
performed in adult male C57BL/6J mice ( Jackson Laboratories) aged 
2–4 months. Briefly, mice were anaesthetized initially in an induction 
chamber containing 5% isoflurane mixed with oxygen and then trans-
ferred to a stereotaxic frame equipped with a heating pad. Anaesthesia 
was maintained throughout the procedure using continuous delivery 
of 2% isoflurane through a nose cone at a rate of 1.5 l/min. The scalp was 
shaved, and a small incision was made along the midline to expose the 
skull. After levelling the head relative to the stereotaxic frame, the speci-
fied injection coordinates were used to mark the locations on the skull 
directly above each target area and a small hole (0.5 mm diameter) was 
drilled for each. CTb was delivered through pulled glass micropipettes 
(inner diameter of tip of approximately 20 μm) using a pressure injec-
tion via a micropump (World Precision Instruments). After completing 
the last injection, the scalp was sutured and mice were administered 
ketofen (5 mg/kg) to minimize inflammation and discomfort. Mice 
were recovered from anaesthesia on a heating pad and then returned 
to their home cage. Mice were euthanized 7 days following injection to 
allow time for tracer transport, and fresh brain tissue was immediately 
extracted, embedded in Tissue-Tek O.C.T. Compound (4583, Sakura) 
and frozen at −80 °C for later cryostat sectioning.

Images of the CTb signal in the injected regions showed that, in the 
TEa–ECT–PERI injections, the CTb signal covered all cortical layers, 
whereas in the MOs and SSp injections, the CTb signal appeared rela-
tively weak in L1 and part of L6. Hence, neurons projecting to L1 and L6 
of MOs and SSp could be under-represented. In addition, it is known that 
retrograde tracers such as dye-labelled CTb may not label all neurons 
projecting to the injected region, and this under-labelling effect could 
lead to an under-representation of projecting neurons, in particular 
the double-projecting neurons.

Depending on the location of the injection site, retrograde labelling 
of TEa–ECT–PERI-projecting neurons in the MOp may display variable 
patterns40. When injection sites are placed in the middle range of the 
TEa, retrograde labelling in the MOp exhibits a three-layer pattern 



staining upper L2/3, upper L5 and L6, whereas injections in the more 
rostral TEa area leads to less or no L6 labelling. In this work, injection 
sites were placed in the middle range of TEa that gave the three-layer 
labelling pattern in the MOp.

Imaging for CTb-injected tissue
The frozen CTb-injected mouse brain was sectioned the same as 
described in the ‘Tissue preparation for MERFISH’ section. A continuous 
set of 10-μm-thick slices in the region between Bregma approximately 0  
and approximately +1.0) was sectioned with approximately every other 
slice kept and placed onto coverslips for imaging. We used a much 
higher sampling frequency for CTb-injected samples due to a higher 
failure rate of this experiment caused by removing the coverslip from 
the flow chamber after CTb imaging. Tissue slices were immediately 
fixed by treating with 4% PFA in 1× PBS for 15 min, washed three times 
with 1× PBS, stained with DAPI and proceed for imaging. As described 
in the ‘MERFISH imaging’ section, we used the same imaging buffer, 
and the sample was first imaged with a low-magnification objective 
(CFI Plan Apo Lambda ×10, Nikon) for DAPI in a 405-nm channel to 
produce a low-resolution mosaic of all slices. Next, to align each cell 
in the tissue with the same tissue slice that would be imaged with the 
MERFISH probe set later, we picked 10 cells in each coronal slice and 
recorded the location of the right-side edge for each cell. We then used 
the mosaic image, created as described above, to locate the MOp region 
in each slice and generated a grid of FOV positions to cover the MOp 
region to be imaged. We then switched to the high-magnification 
objective (CFI Plan Apo Lambda ×60, Nikon) and collected images in 
the 650-nm channel for CTb-AlexaFluor647, the 560-nm channel for 
CTb-AlexaFluor555, the 488-nm channel for CTb-AlexaFluor488 and 
the 405-nm channel for DAPI. We took a single image for each of these 
channels at the central z-plane.

After the CTb signals were imaged, the sample was removed from 
the imaging chamber and washed three times by 2× SSC and then 
permeabilized by 70% ethanol at 4 °C for at least 18 h. The tissue 
slices were then stained with the same MERFISH probe set, followed 
by the same MERFISH sample preparation and imaging procedures 
as described in the ‘Tissue preparation for MERFISH’ and ‘MERFISH 
imaging’ sections. During MERFISH imaging, we first imaged DAPI 
again with a low-magnification objective, and then located the same 
10 cells in each coronal slice that we selected earlier during CTb 
imaging, and recorded the new location of the right-side edge for 
each cell. Using the old and new locations of the 10 cells for each 
slice, we determined the rotation and translation to align the CTb and 
MERFISH images. Then, MERFISH imaging was performed and the 
MERFISH images were decoded and segmented as described in the 
‘MERFISH image analysis and cell segmentation’ section. We assigned 
each cell a projection identity by thresholding the normalized CTb 
dye intensity for each CTb channel and labelled each cell ‘on’ or ‘off ’ 
for each channel. The CTb labelling of the cells were mostly binary (on 
or off) but still the labelling level varied between cells, therefore the 
threshold was tuned by manually examining a random subset of the 
images and was set to a fairly stringent level such that weakly labelled 
cells were labelled ‘off ’. The cell-type identities of the CTb-injected 
samples were determined by training the MERFISH dataset with the 
MERFISH cell cluster identities without CTb injections using the clas-
sifier as described in the ‘Correspondence between clusters identi-
fied by MERFISH and single-cell sequencing-based measurements’ 
section and predicting on the CTb-injected samples. Each cell in  
the CTb-injected samples was hence assigned with both a cell-type 
identity and a projecting-target identity.

Statistics and reproducibility
Two replicate mice were imaged under each condition. From the two 
replicate mice imaged for the identification and spatial mapping of 
cell types, a total of approximately 300,000 cells were imaged, which 

generated a sufficient number of single-cell profiles and gave suffi-
cient statistics for the effect sizes of interest. From the two replicate 
mice imaged for projection target mapping, a total of approximately 
190,000 cells were imaged, which gave sufficient statistics for the 
effect sizes of interest. No statistical methods were used to predeter-
mine sample size. The mice were randomly chosen. For each mouse, 
the imaging experiments were definitive and no randomization was 
necessary for this study, hence the experiments were not randomized. 
The investigators were not blinded to allocation during experiments 
and outcome assessment because all images were taken under the same 
condition, and the results were quantitative, which did not require 
subjective judgement.

The sample sizes for the violin plots in Fig. 1c–e and Extended Data 
Fig. 3 are listed as follows: Fig. 1c: from left to right, n = 5,585, 6,624, 
7,993, 8,373, 5,686, 4,634, 5,431, 2,590, 8,083, 1,830, 2,303, 4,841, 6,570, 
1,618, 4,265, 4,267, 5,183, 2,180, 6,699, 1,510, 1,590, 852, 1,417, 538, 2,624, 
1,489, 1,810, 4,544, 4,350, 4,189, 3,654, 3,534, 2,009, 1,052, 690, 260, 
2,105, 1,244 and 87 cells. Figure 1d: from left to right, n = 504, 161, 475, 
480, 403, 259, 146, 154, 150, 124, 137, 391, 343, 241, 257, 123, 96, 222, 299, 
154, 125, 200, 379, 648, 555, 462, 338, 414, 137, 152, 1,297, 868, 967, 1,019, 
654, 346, 656, 237, 271, 158, 95 and 48 cells. Figure 1e: from left to right, 
n = 16,013, 2,993, 547, 5,160, 13,223, 5,948, 946, 17,117, 5,435, 3,524, 6,145, 
6,888, 295 and 4,339 cells. Extended Data Fig. 3a: upper panel from left 
to right, n = 2,903, 2,702, 2,873, 4,505, 1,727, 708, 193, 1,258, 3,723, 559, 
1,367, 1,648, 3,381, 716, 2,531, 1,134, 3,102, 737, 2,615, 399, 655, 450, 674, 
88, 1,233, 606, 808, 1,709, 2,523, 1,715, 1,648, 403, 1,089, 341, 16, 115, 
884, 424 and 27 cells; bottom panel from left to right, n = 228, 70, 199, 
220, 183, 113, 40, 73, 72, 65, 68, 170, 158, 85, 108, 63, 45, 100, 124, 69, 58, 
60, 150, 287, 261, 209, 137, 184, 67, 71, 550, 393, 440, 271, 256, 143, 284, 
95, 68, 51 and 47 cells. Extended Data Fig. 3b: upper panel from left to 
right, n = 405, 1,550, 1,373, 1,793, 863, 235, 135, 140, 1,872, 40, 750, 651, 
1,537, 37, 1,253, 637, 1,170, 387, 989, 245, 189, 305, 6, 538, 255, 328, 827, 
1,113, 827, 658, 260, 487, 104, 7, 55, 440, 290 and 13 cells; bottom panel 
from left to right, n = 90, 39, 87, 94, 81, 46, 20, 22, 33, 22, 32, 77, 66, 36, 
46, 25, 18, 42, 52, 30, 25, 28, 58, 99, 100, 87, 58, 71, 25, 21, 203, 166, 168, 
105, 105, 59, 112, 41, 27, 22 and 24 cells. Extended Data Fig. 3c: upper 
panel from left to right (ML position = 1/ML position = 6), n = 339/662, 
542/365, 352/531, 569/745, 244/315, 39/266, NA/112, 42/221, 537/602, 
26/112, 240/108, 161/363, 409/424, 19/123, 251/403, 62/319, 415/254, 
39/147, 232/345, NA/69, 82/100, 57/68, 54/103, NA/19, 169/133, 86/105, 
111/90, 303/128, 309/228, 173/214, 187/197, 11/193, 122/111, 35/24, 6/
NA, 16/13, 135/50 and 32/81 cells; bottom panel from left to right (ML 
position = 1/ML position = 6), n = 41/100, 314/205, 147/292, 231/339, 
107/165, 7/123, NA/88, 15/38, 243/323, 11/NA, 143/54, 43/185, 166/232, 
115/199, 37/207, 173/111, 18/90, 72/193, 39/36, 33/35, 29/62, 80/66, 41/47, 
48/40, 142/77, 141/132, 73/126, 78/100, 7/135, 47/70, 16/NA, 8/8, 67/38 
and 20/63 cells. Violin plots with cell numbers of five or fewer are not 
shown and the sample size numbers are listed as ‘NA’ in these cases.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The data that support the findings of this study are available from 
the corresponding author on reasonable request. Raw and processed 
MERFISH data can be accessed at the Brain Image Library: https://doi.
brainimagelibrary.org/ https://doi.org/10.35077/g.21.

Code availability
The code for the MERFISH image acquisition is available at https://
github.com/ZhuangLab. The code for the MERFISH image analysis is 
available at https://github.com/ZhuangLab/MERlin. 
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | RNA identification and cell segmentation of 
MERFISH images, replicate reproducibility of MERFISH data, and 
correlation between MERFISH and bulk RNA-seq results. a, Decoded 
MERFISH image of a single field-of-view, shown as a maximum intensity 
projection across all seven z-planes. In these experiments, we assigned 22-bit 
Hamming Distance 4, Hamming Weigh 4 barcodes capable of error detection 
and correction to individual RNA species, and the 22 bits were imaged in 11 
rounds of hybridization with two-colour imaging per round. The decoded 
image shows all pixels that belonged to detected correct barcodes. The pixels 
were coloured based on their assigned barcodes and the intensity of each pixel 
was scaled based on the L2-norm of its signal intensity across all bits. 
Segmented cell boundaries are shown in white. The boxed region of the image 
is shown at a greater magnification (right). Scale bars, 20 μm (left) and 5 μm 

(right). b, DAPI (left) and poly(A) RNA (right) images for the same field of view as 
in a, with the central z-plane (z = 4.5 μm) shown. These images are used to 
define the boundaries of each cell, shown in white. Scale bars, 20 μm. a and  
b are representative images of more than 5,000 fields of view from two 
replicate animals. c, Scatterplot of the average copy number per cell of 
individual genes measured by MERFISH for the two replicate animals. The blue 
solid line indicates equality. The grey dashed lines indicate the average counts 
per cell of the blank barcodes (that is, valid barcodes that were not assigned to 
any RNA), which provides an estimate of the false-positive rate. The Pearson 
correlation coefficient is r = 0.99. d, Scatterplot of the average copy number 
per cell of individual genes determined by MERFISH versus expression level 
determined by bulk RNA-seq. The dashed line is as defined in c. The Pearson 
correlation coefficient is r = 0.84.



Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Cell-type profiling by MERFISH, registration of 
MERFISH images to Common Coordinate Framework and the composition 
of cells. a, Dendrogram showing the hierarchical relationship among the 39 
glutamatergic, 42 GABAergic, and 14 non-neuronal clusters identified by 
MERFISH, constructed based on the z-scored cluster expression profiles and 
coloured by the subclass that each cluster belongs to (top). Expression of 
markers genes for the subclasses are also displayed (bottom). b, UMAP of  
cells measured by MERFISH coloured based on the subclasses of cells.  
c, Correspondence between the subclasses of cells determined by MERFISH 
and the subclasses determined by scRNA-seq and snRNA-seq datasets 
generated in a companion study23. A neural-net classifier was used to predict a 
MERFISH cluster label for each cell in the snRNA-seq 10x v3 B dataset23. The 
fraction of cells from any given subclass identified by scRNA-seq and snRNA-
seq that was predicted to have each MERFISH subclass label was plotted.  
d, Correspondence between clusters identified by MERFISH and by scRNA-seq 
and snRNA-seq. As in c, but with the fraction of cells from any given cluster 
identified by scRNA-seq and snRNA-seq that was predicted to have each 
MERFISH cluster label plotted. Each row or column corresponds to a cluster 
and the coloured bars on the left and bottom mark the subclasses. e, An 

example MERFISH-derived cell-type spatial map overlaid on the Allen CCF v3 
with cells coloured by their cluster identities as in Fig. 1a. The CCF v3 image is 
from the Allen Brain Atlas (http://atlas.brain-map.org/; credit: Allen Institute). 
The boundaries of the MOp are shown in black. We note that the MOp–MOs and 
MOp–SSp borders, as well as all other cortical area borders in the Allen CCF v3, 
are largely perpendicular to the cortical surface in the 3D space. The reason 
that they do not always appear perpendicular to the cortical surface line in the 
coronal sections, as shown here, is because the coronal sections themselves 
are not always perpendicular to the cortical surface (see more details about this 
effect at: https://community.brain-map.org/t/ccfv3-highlights-tilting-at-the-
cortex/1000; credit: Allen Institute). f, Top: fractions of cells in the entire 
imaged region that belong to each of the three major cell classes 
(glutamatergic, GABAergic and non-neuronal) (left). Fractions of GABAergic 
cells in the entire imaged region that belong to each of the GABAergic 
subclasses (middle). Fractions of glutamatergic cells in the entire imaged 
region that belong to each of the glutamatergic subclasses (right). The mean 
fractions are shown and the 95% confidence intervals are less than 0.3%. 
Bottom: same as the top panel but for cells in the MOp. The mean fractions are 
shown and the 95% confidence intervals are less than 0.4%.

http://atlas.brain-map.org/
https://community.brain-map.org/t/ccfv3-highlights-tilting-at-the-cortex/1000
https://community.brain-map.org/t/ccfv3-highlights-tilting-at-the-cortex/1000
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Extended Data Fig. 3 | Cortical depth distributions of neuronal cell clusters 
in the MOp and an approximate MOp upper limb region. a, b, As in Fig. 1c, d 
but for glutamatergic and GABAergic clusters in the MOp (a) and an 
approximate MOp upper limb (MOp-ul) region (b). We selected the region 
between Bregma 0 and +1.0 within the MOp as an approximation for the MOp-ul 
region based on previous literature30 and a companion paper31. This region is 
considered as the primary part of the MOp-ul because it contains the densest 
pyramidal neurons that directly project to the intermediate horn and ventral 
horn of the cervical spinal cord and, in the meantime, shows minimal 
projection to the lower limb31. In the violin plots, the black dot represents the 
median, the thick black bar represents the interquartile range, and the edges 
define minima and maxima. c, Effect of the layer-thickness variations along the 
medial–lateral (ML) direction on the cortical depth distributions of the 
neuronal clusters. Top: we divided the MOp into six segments along the ML 
direction, each covering a narrow ML range such that the layer-thickness 
variations within each segment are negligible. We then determined the cortical 

depth distributions of the neuronal clusters in each of the six ML segments and 
display those for the most medial (blue; ML position 1) and most lateral (orange; 
ML position 6) segments. Most of the clusters showed only a modest difference 
in their cortical depth distributions between different ML segments, with a 
small number of exceptions (such as L4/5 IT SSp 1 and 2, L5 ET 4, L6 CT 8 and L6 
IT Car 3). These exceptions showed large differences due to the region-
dependent presence of these clusters. Only the distributions of the 
glutamatergic clusters are shown here because the relatively low abundance of 
the GABAergic neurons makes the comparison of their distributions in 
different ML segments statistically less sound. Bottom: as in the top panel but 
for glutamatergic clusters in the approximate MOp-ul region as defined in  
b. In the violin plots in c, the centre dashed line represents the median, the 
other two dashed lines represent the interquartile range, and the edges define 
minima and maxima. For all violin plots in a–c, the clusters with cell numbers of 
five or fewer are not shown, and the clusters with cell numbers of ten or fewer 
(but more than five) are shown with individual data points as white dots.



Extended Data Fig. 4 | Anterior–posterior distribution of neuronal 
clusters. a, Heatmap quantifying the anterior–posterior distribution of the 
neuronal clusters in the entire imaged region including the MOp and its 
adjacent areas. Slices were arranged from anterior-most to posterior-most 

based on their Bregma coordinates (Bregma +2.5 to −0.8). For each cluster,  
the fraction of cells found in each slice was determined and normalized to  
the maximum across all slices. b, As in a but for the neurons within the MOp.
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Extended Data Fig. 5 | Neighbourhood complexity of individual cells belonging to different subclasses. The neighbourhood complexity of a cell is defined as 
in Fig. 1f. A normalized histogram of the neighbourhood complexity for all cells from a given subclass is shown for each cell subclass.



Extended Data Fig. 6 | Additional analyses of the L5 ET, L5/6 NP, L6 CT and 
L6b clusters. a, Correspondence between the L5 ET, L5/6 NP, L6 CT and L6b 
clusters determined by MERFISH and those identified by scRNA-seq and 
snRNA-seq. b, Correspondence between the L5 ET, L6 CT, L5/6 NP and L6b 
clusters determined by MERFISH and those identified by integrated analysis of 
scRNA-seq, snRNA-seq, snATAC-seq and snmC-Seq datasets using 
SingleCellFusion23. The classifier approach used in a and b to determine the 
correspondence is as described in Extended Data Fig. 2c. c, Left: a coronal slice 

(Bregma approximately +0.7) highlighting the L5 ET cells coloured by cell 
clusters in the MOp and the neighbouring SSp region. Cells other than the L5 ET 
cells are shown in dark grey in the MOp to highlight the MOp region, and cells 
other than the L5 ET cells outside the MOp are shown in light grey. Scale bars, 
200 μm. Right: comparison of the abundance of L5 ET 5 neurons in the MOp and 
SSp. The fraction of L5 ET 5 cells with respect to the total cell number detected 
in the MOp or SSp are shown. n = 2 replicate animals, with individual data points 
from each animal shown.



Article

Extended Data Fig. 7 | Correspondence between the MERFISH IT clusters 
and the IT clusters determined by scRNA-seq and snRNA-seq analysis and 
by integrated analysis, and spatial distributions of L6 IT Car3 and L4/5 IT 
SSp 1 and 2 clusters. a, Correspondence between the IT clusters identified  
by MERFISH and those identified by scRNA-seq and snRNA-seq.  
b, Correspondence between the IT clusters identified by MERFISH and those 
identified by the integrated clustering analysis of scRNA-seq, snRNA-seq, 
snATAC-seq and snmC-seq using SingleCellFusion23. The correspondence in  

a and b is determined using a classifier approach as described in Extended Data 
Fig. 2c. c, A coronal slice (Bregma approximately +1.1) highlighting the L6 IT 
Car3 cluster (green). d, A coronal slice (Bregma approximately +0.9) 
highlighting the L4/5 IT SSp 1 (green) and L4/5 IT SSp 2 (orange) clusters.  
In both c and d, all other cells within the MOp are coloured in dark grey to 
highlight the MOp region, and all other cells outside the MOp are shown in  
light grey. Scale bars, 200 μm (c, d).



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Gene expression profiles and cortical depth 
distributions of IT cell clusters in the MOp. a, UMAP of the IT clusters for cells 
in the MOp. b, Cortical depth distributions of IT clusters in the MOp region, 
with individual IT clusters coloured as in a. c, Cortical depth distributions of IT 
clusters in different medial–lateral (ML) segments of the MOp region. The IT 
clusters are coloured as in a. As the variation in layer thicknesses along the ML 
direction could broaden the cortical depth distributions of the clusters, to 
assess whether the spatial overlap between different IT clusters could be 
caused by this effect, we divided the MOp into six segments along the ML 
direction, each covering a narrow ML range such that the layer-thickness 

variations within each ML segment are negligible. We then determined the 
cortical depth distributions of the IT clusters in each of the six ML segments. 
The spatial overlap between the IT clusters was still observed in each of the six 
ML segments. d, Cortical depth distributions of IT clusters in different ML 
segments in the approximate MOp upper limb region (between Bregma 0 and 
+1.0, as defined in Extended Data Fig. 3b). The spatial overlap between the IT 
clusters was still observed in each of the six ML segments in this region. 
Clusters with a low cell number (five or fewer) found in any individual ML 
segments are not shown.



Extended Data Fig. 9 | Correlated gradients in gene expression and cortical 
depth across IT neurons in the MOp. a, Same as Fig. 3d, but for IT neurons in 
the MOp. b, Same as Fig. 3e, but for differentially expressed genes of all IT 

neurons within the MOp across cortical depth. c, d, Same as Fig. 3f,  
but for individual IT cells (c) and individual IT clusters (d) in the MOp.
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Extended Data Fig. 10 | Spatial overlap between individual IT clusters  
and the L4 marker gene Rspo1, the L5 marker gene Fezf2 and L5 ET cells. 
 a, A coronal slice (Bregma approximately +1.0) highlighting the IT cells that 
express Rspo1 (green) and Fezf2 (red). Scale bar, 200 μm. b, Spatial overlap 
between individual IT clusters and Rspo1 (top) and Fezf2 (bottom). c, Spatial 

overlap between individual IT clusters and L5 ET cells. d, The same coronal slice 
as in a, but highlighting the L4/5 IT 5 (green), L5 IT 1 (blue) and L5 ET (red) cells. 
Scale bar, 200 μm. See Methods (‘Layer boundary assessment’ section) for how 
the spatial overlap is determined.
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n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection MERFISH imaging data was collected using custom Python code to control the microscope. This code is available at https://github.com/
ZhuangLab.

Data analysis The MERFISH data was analyzed using custom Python code. This code is available at https://github.com/ZhuangLab/MERlin. 
Other packages used in data analyses include: Scanpy (version 1.4); Bioconductor limma (version 3.38); Scrublet (version 0.2).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data availability statement is included in the manuscript, which states: 
The data that support the findings of this study are available from the corresponding author upon reasonable request. Raw and processed MERFISH data can be 
accessed at the Brain Image Library : https://doi.brainimagelibrary.org/doi/10.35077/g.21.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Two replicate animals were imaged under each condition. From the two replicate animals imaged for the identification and spatial mapping of 
cell types, a total of ~300,000 cells were imaged, which generated a sufficient number of single-cell profiles and gave sufficient statistics for 
the effect sizes of interest. From the two replicate animals imaged for projection target mapping, a total of ~190,000 cells were imaged, which 
gave sufficient statistics for the effect sizes of interest.

Data exclusions We did not exclude any data from consideration. All images were included in the primary analysis.

Replication Reported results were replicated from two animals under each condition. 

Randomization Two male animals were randomly chosen for the identification and spatial mapping of cell types, and two male animals were randomly chosen 
for the projection pattern study. For each animal, the imaging experiments were definitive and no randomization was necessary for this study.

Blinding Blinding during collection was not needed because all images were taken under same condition. Blinding during analysis was not necessary 
because the results were quantitative and did not require subjective judgment. Blinding is not typically used in the field.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Adult C57BL/6J male mice aged 57-63 days were used in this study. Mice were maintained on a 12h/12h light/dark cycle, at a 
temperature of 22 ± 1 °C, a humidity of 30-70%, with ad libitum access to food and water.

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight Harvard University Institutional Animal Care and Use Committee;  
University of South California Institutional Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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