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Amammalian brainis composed of numerous cell types organized in anintricate
manner to form functional neural circuits. Single-cell RNA sequencing allows
systematic identification of cell types based on their gene expression profiles and has
revealed many distinct cell populations in the brain*2 Single-cell epigenomic

profiling** further provides information on gene-regulatory signatures of different
celltypes. Understanding how different cell types contribute to brain function,
however, requires knowledge of their spatial organization and connectivity, which s
not preserved in sequencing-based methods thatinvolve cell dissociation. Here we
used asingle-cell transcriptome-imaging method, multiplexed error-robust
fluorescence in situ hybridization (MERFISH)®, to generate a molecularly defined and
spatially resolved cell atlas of the mouse primary motor cortex. We profiled
approximately 300,000 cells in the mouse primary motor cortex and its adjacent
areas, identified 95 neuronal and non-neuronal cell clusters, and revealed a complex
spatial map in which not only excitatory but also most inhibitory neuronal clusters
adopted laminar organizations. Intratelencephalic neurons formed a largely
continuous gradient along the cortical depth axis, in which the gene expression of
individual cells correlated with their cortical depths. Furthermore, we integrated
MERFISH with retrograde labelling to probe projection targets of neurons of the
mouse primary motor cortex and found that their cortical projections formed a
complex network in which individual neuronal clusters project to multiple target
regions and individual target regions receive inputs from multiple neuronal clusters.

The mammalian cerebral cortex is a highly organized structure that sup-
portssensory, motor and cognitive functions. Classification of neuronal
celltypesis central to deciphering cortical circuits®®. The glutamatergic
neuronsinthe cortex are classified by their projection propertiesinto,
for example, intratelencephalic (IT) neurons, subcerebral projection
neurons (or pyramidal tract neurons) and corticothalamic (CT) projec-
tion neurons’. The GABAergic neurons can be classified based on their
developmental origininto neurons derived from the medial ganglionic
eminence and the caudal ganglionic eminence, which can be further
classified by marker genes such as parvalbumin (Pvalb), somatostatin
(Sst), vasoactive intestinal polypeptide (Vip) and LampS (ref.®). Recent
single-cell transcriptomics studies have revealed a high diversity of
cellsinthebrain’"and reported dozens to about ahundred cell types
within individual cortical regions>**. However, a high-resolution map
of the spatial organization and connectivity of different cell types in
the cortex s still lacking.

Recently, several spatially resolved transcriptomics methods have
been developed, including both imaging-based transcriptomics
methods with single-cell resolution'® and methods based on spa-
tially resolved RNA capture followed by sequencing?”. Among these,

MERFISH is a single-cell genome-scale imaging method, which mas-
sively multiplexes single-molecule fluorescence in situ hybridization
(FISH)'#* using error-robust barcoding, combinatorial labelling and
sequential imaging and allows simultaneous imaging of more than
10,000 genes in individual cells**°. MERFISH allows in situ identifica-
tion and spatial mapping of cell types in complex tissues, including
the brain?. Here we used MERFISH to identify distinct cell populations
and map their spatial organization in the mouse primary motor cortex
(MOp). By integrating MERFISH with retrograde labelling, we further
revealed the complexity of projection patterns of these molecularly
defined cell types.

MERFISH imaging and cell classification

We selected a panel of 258 genes for MERFISH imaging, including
canonical marker genes for major neuronal and non-neuronal cell
typesinthe cortex selected based on previous knowledge>*?, as well
as marker genes selected based on differential gene expression and
mutual information®* analyses of neuronal clustersidentified by acom-
panionsingle-cell and single-nucleus RNA sequencing (scRNA-seq and
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snRNA-seq, respectively) study* (Methods). We performed MERFISH
measurements on a series of coronal slices at approximately 100-pm
intervals along the anterior-posterior axis encompassing the MOp
(Bregma +2.5to —0.8). Individual RNA molecules were identified and
assigned to individual cells (Extended Data Fig. 1a, b). Four of the 258
genes showed poor staining and were notincluded in subsequent analy-
ses. The mean copy number per cell forindividual genes obtained from
MERFISH was reproducible between replicate mice and exhibited high
correlation with the gene expression level measured by bulk RNA-seq
(Extended DataFig.1c, d).

In total, we imaged and segmented approximately 300,000 indi-
vidual cells in the MOp and its adjacent areas from two adult mice.
Unsupervised clustering analysis?** of the MERFISH-derived single-cell
expression profiles identified 39 excitatory neuronal clusters, 42 inhibi-
tory neuronal clusters and 14 non-neuronal clusters (Extended Data
Fig.2a),as well as 4 clusters exclusively outside the MOp (in the striatum
or lateral ventricle), which were not included in subsequent analyses.

The MOp cell taxonomy showed a hierarchical organization
(Extended Data Fig. 2a), with the first level separating glutamatergic,
GABAergic and non-neuronal cell classes. The GABAergic class con-
sisted of the neurons derived from the medial ganglionic eminence
and the caudal ganglionic eminence, which were further divided into
five subclasses based on their marker genes: Pvalb, Sst, Vip, Sncg and
LampS5. The glutamatergic neurons were classified into the following
subclasses with distinct projection properties (identified on the basis
ofknown marker genes®): layer 5 extratelencephalic projecting (LSET;
also known as L5 pyramidal tract) neurons, layer 5/6 near-projecting
(L5/6 NP) neurons, layer 6 CT (L6 CT) neurons, layer 6b (L6b) neurons
and IT neurons. IT neurons were further classified into several sub-
classes (L2/31T,L4/5IT,L5ITand L6 IT, plus a distinct L6 IT Car3type)
primarily based on layer-specific marker genes, additionally using the
correspondence between MERFISH clusters and clustersidentified by
scRNA-seq and snRNA-seq for L4/5and LS IT classification (Methods).
We also identified major non-neuronal cell subclasses, including oli-
godendrocytes, oligodendrocyte precursor cells, astrocytes, vascular
leptomeningeal cells, microglia, perivascular macrophages, endothelial
cells, smooth muscle cells and pericytes, based on marker genes. The
subclasses determined by MERFISH (Extended Data Fig. 2b) showed
excellent correspondence to those determined using scRNA-seq and
snRNA-seq in the companion paper? (Extended Data Fig. 2c).

The 23 subclasses of cells contained a total of 95 clusters, for which
we used nomenclature style of adding a numerical index following
the subclass name (Extended Data Fig. 2a). The clusters identified by
MERFISH also showed good correspondence to the clusters identified
by scRNA-seq and snRNA-seq® (Extended Data Fig. 2d).

We imaged the MOp and its adjacent parts of the secondary motor
(MOs) and primary somatosensory (SSp) areas, as well as other neigh-
bouring regions. We registered the MERFISH images to the Allen mouse
brain Common Coordinate Framework version 3 (CCF v3)* using the
DAPI stains in our images and the Nissl stain in the Allen Reference
Atlas? (Extended Data Fig. 2e and Methods), which allowed us to quan-
titatively determine the composition of cells both in the entire image
region and in the MOp (Extended Data Fig. 2f).

Spatial organization of cell types

MERFISH images provided a direct measurement of the spatial organi-
zation of transcriptomically distinct cell populationsinthe MOp and its
adjacentareas (Fig.1a). The layered organization of the glutamatergic
subclasses, especially the IT subclasses, led to alaminar appearance for
the overall cellular organization (Fig. 1a-c). Unlike the IT cells, which
spanned across nearly all cortical layers, the ET, NP, CT and L6b cells
populated only deeper layers (Fig. 1b, ¢). Individual glutamatergic
clustersadopted spatially distinct, partially overlapping distributions
along the direction of the cortical depth, and many of these clusters
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assumed narrow distributions with widths smaller than the thicknesses
ofindividual cortical layers.

The GABAergic neurons also showed a high level of spatial diversity.
The LampS5, Sncgand Vip subclasses were more populatedinthe upper
layers, whereas the Sst and Pvalb subclasses were more abundant in
deeplayers (Fig.1b, d), consistent with previous findings?®%. Notably,
attheclusterlevel, most GABAergic clusters showed laminar distribu-
tions and preferentially reside within one or two cortical layers (Fig. 1d).

We also observed similar cortical depth distributions of neuronal
clusterswhenwe limited the analysis to the MOp region (Extended Data
Fig.3a) oranapproximate upper limb region of the MOp®**! (Extended
DataFig.3b). The distributions along the cortical depth exhibited small
shifts between medial and lateral segments of the MOp or the upper
limb region of the MOp for most neuronal clusters, with a few excep-
tions (suchasL4/51TSSp1and2,L6IT Car3,L5ET 4 and L6 CT 8) that
showed brain region-dependent presence (Extended DataFig. 3c). For
example, L4/51T SSp1and 2 were primarily present onthe lateral side of
the MOp, extending from the SSp region, and L6 CT 8 was only present
on the medial side of the MOp. Along the anterior-posterior direc-
tion, many neuronal clusters adopted broad distributions, whereas
some were restricted to a relatively narrow anterior-posterior range
(Extended DataFig. 4).

We also mapped the spatial organizations of the non-neuronal cells
(Fig.1b, e). Among the three astrocyte clusters, astrocyte 1 exhibited a
dispersed distributionacrossall layers, astrocyte 2 showed enrichment
inL1and the white matter, and astrocyte 3 was found almost exclusively
inthe white matter. The oligodendrocyte lineage was divided into oligo-
dendrocyte precursor cellsand three mature oligodendrocyte clusters,
with the mature oligodendrocytes enriched in the white matter and
the oligodendrocyte precursor cells distributed evenly across all lay-
ers. The vascular leptomeningeal cells formed the outermost layer of
cells of the cortex. The other non-neuronal cell types exhibited more
dispersed distributions across the cortical layers and white matter.

We noticed substantial spatial intermixing of different cell popu-
lations. To quantify the complexity of the cell composition in the
neighbourhood of each cell, we determined the number of distinct
cell clusters that were present in the neighbourhood of each cell
and observed a high level of local cellular heterogeneity (Extended
Data Fig. 5). The composition complexity of the cell neighbourhood
increased towards deeper layers (Fig. If).

L5SET,L5/6 NP,L6 CT and L6b neurons

Transcriptomically, the LS ET, L5/6 NP, L6 CT and L6b subclasses of
neurons appeared as discrete cell populations, and each subclass was
subdivided into finer clusters with more continuously varying gene
expression profiles (Fig. 2a, Extended Data Fig. 6a, b).

Spatially, the L5 ET clusters were segregated into two sublayers
with the L5 ET 1-3 clusters intermixed and distributed above LSET 5
(Fig. 2b). LS ET 4 was largely absent from the MOp and only began to
extend into the MOp on the ventral-lateral side in the anterior slices.
It has beenreported that two distinct L5 ET populations in upper and
lower L5 of the anterior lateral motor cortex project to the thalamus
and the medulla, respectively, and have specialized roles in motor
control®>. The LSET 5 cluster identified here by MERFISH corresponded
tothe LSET _1cluster identified by single-cell transcriptomic and epi-
genomic data® (Extended Data Fig. 6b), which in turn corresponded
to the medulla-projecting ET cluster identified by epi-retro-seqin a
companion paper®. These results thus suggest that LSET Sis a type of
medulla-projecting neuron. MERFISH data further showed that LSET
5was more enriched, and exhibited more pronounced spatial separa-
tion fromthe L5 ET1-3 clusters, inthe MOp thanin the SSp (Extended
DataFig. 6¢). Consistent with our finding, medulla-projecting ET neu-
rons were also observed to be more abundant in the MOp thanin the
SSp by single-neuron reconstruction in another companion paper*.
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Fig.1|Spatial organization of cellsinthe MOp and adjacent areas. a, Spatial
map ofthe cell clustersinacoronalslice (Bregma approximately +0.9). Cells are
coloured by their cluster identities. The MOp region, determined based on the
Allen CCFv3,isshadedingrey. Theinset shows the brain region annotationsin
the Allen CCF v3 (http://atlas.brain-map.org/; credit: Allen Institute). D, dorsal;
L, lateral; M, medial; OGC, oligodendrocyte; OPC, oligodendrocyte precursor
cell; PVM, perivascular macrophage; SMC, smooth muscle cell; V, ventral;
VLMC, vascular leptomeningeal cell. Scale bar, 400 pm. b, Spatial map of the
cellsubclassesinglutamatergic (left), GABAergic (middle) and non-neuronal
(right) cellsin the sameslice asina. Cellsare shown as circles, withindicated
cells coloured by subclasses and othersin grey. Scalebars, 400 um.c-e, The
cortical depth distributions of the glutamatergic (c), GABAergic (d) and

The corticospinal projection neurons are also probably contained in
the LSET subclass®.

The L5/6 NP neurons were divided into two clusters (Fig. 2a), with
L5/6 NP 1mainly in L5 and L5/6 NP 2 extending into L6 (Fig. 2c). The
L6 CT neurons were divided into nine clusters (Fig. 2a), which exhib-
ited acomplex spatial pattern with distinctionsin both cortical depth
and medial-lateral directions (Fig. 2d). L6b cells, which formed the

Neighbourhood complexity

non-neuronal (e) clusters for the entire imaged regionincluding the MOp and
adjacentareasshowninthe violin plots. The cortical depthofacellis
normalized by the cortical thicknessin eachslice, with O representing the
corticalsurface and 1representing the median depth of the L6b cells. The
dashed lines mark the layer boundaries, and the grey area marks an uncertainty
range for the upper boundary of L5 (Methods). In the violin plots, the centre dot
represents the median, the thick black bar represents the interquartile range,
and the edges define minima and maxima. f, Probability distributions of the
neighbourhood complexity of cellsin each cortical layer (top) and in different
cellsubclassesinL5and L6 (bottom). The neighbourhood complexity of a cell
isdefined asthe number of different cell clusters present withina
neighbourhood of 100 uminradius surrounding the given cell.

innermost layer of the cortex, were subdivided into three clusters
intermixed in space (Fig. 2a, e).

Agradient across the IT neurons

ThelT neurons constitute the largest branch of neurons in theimaged
region, which span nearly the entire cortical depth from L2/3 to Lé6.
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Fig.2|Spatial organization of the L5ET,L5/6 NP,L6 CT and L6b neurons.

a, Uniform manifold approximation and projection (UMAP) of the L5ET, L5/6
NP, L6 CT and L6b neurons coloured by the clusteridentity. b, Spatial map of L5
ET cellclustersinacoronalslice (Bregma approximately +0.8). LSET cells are
coloured, and other cells inthe MOp are shown in dark grey to highlight the
MOpregion, whereas other cells outside the MOp are shownin light grey.
Normalized cortical depth distributions of the cells of each LSET cluster are
shownintheright panel and presented in the form of the Kernel density of the
distribution histograms. ¢, Spatial map of L5/6 NP cell clustersina coronalslice

Our MERFISH data classified the IT cells into 20 clusters, 19 of which
belonged to the L2/3IT, L4/51T, L5 IT and L6 IT subclasses and the
remaining one formed adistinct cell type, L6 IT Car3(Fig.3a, Extended
DataFig.7a-c).

Thel2/3,L4/5,L5and L6 IT subclasses showed laminar organizations
(Fig.3b, c). These subclasses were each subdivided into several clusters,
further parcellating each cortical layer but without discrete boundaries
(Fig.3b, c). Notably, MERFISH dataidentified sevenIT clustersresiding
betweentheL2/3 and L5IT neurons (Fig. 3c), expressing the L4 maker
genes Rspol and/or Rorb (Extended Data Fig. 2a) and corresponding to
the L4/51T clustersidentified by scRNA-seqand snRNA-seq? (Extended
Data Fig. 7a). Among these clusters, L4/5 IT SSp 1and 2 were located
primarily in the neighbouring SSp region with arelatively minor pres-
enceinthe MOp (Extended Data Fig. 7d), whereas L4/51T 1-5 showed
substantial presence in the MOp (Fig. 3¢). The MOp has been tradi-
tionally considered lacking a distinct L4 due to the absence of clear
cytoarchitecture features. Our results suggest the presence of L4
neurons in the MOp, consistent with a previous report of L4 neurons
inthe MOp based on their anatomical and connectivity properties®.

We observed alargely gradual transition of the gene expression pro-
filesamongthelT clusters, except for L6 IT Car3 (Fig.3a, Extended Data
Fig.8a). Moreover, along the direction of the cortical depth, individual
IT clusters partially overlapped in space with adjacent clusters, as evi-
dent from both the cell-type spatial maps of individual coronal slices
(Fig. 3c) and the quantitative analysis of cortical depth distributions
(Fig.3b, Extended DataFig. 8b-d). The lack of clear separation among
the IT clusters led us to further evaluate whether the IT cells traverse
a continuous spatial and molecular landscape. Quantification of the
degree of intercluster connectivity*® showed that the IT clusters formed
aninterconnected network with clusters exhibiting the highest con-
nectivity (namely, highest similarity in gene expression) to those that
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(Bregma approximately +0.4) and the normalized cortical depth distributions
oftheseclusters, asinb.d, Spatialmap of the L6 CT cell clustersinacoronal
slice (Bregma approximately +0.3) and the normalized cortical depth
distributions of these clusters, asinb. The medial-lateral distribution for
clusters1,5and 8 arealso shown at the bottom. The medial-lateral distribution
iscalculatedin the coronalslicesin which cluster 8 is present. e, Spatial map of
theL6bclustersinacoronalslice (Bregmaapproximately +0.4) and the
normalized cortical depth distributions of these clusters, asinb. Scale bars,
200 um (b-e).

were spatially adjacent (Fig. 3d, Extended Data Fig. 9a). Identification
of genes whose expression changed substantially with cortical depth
revealed a largely gradual change of gene expression profiles of cells
alongthe cortical depth axis, with steeper changes at the cortical depths
that approximately separate cell subclasses (Fig. 3e, Extended Data
Fig. 9b). Using pseudotime analysis* to order the IT cells on the basis
of their expression profiles, we observed that the pseudotime of cells
was highly correlated with their cortical depths, and individual cells
formed alargely continuous cloud along the pseudotime and cortical
depthaxes, withamore appreciable separationin pseudotime between
L2/3 and L4/51IT clusters (Fig. 3f, Extended Data Fig. 9¢c, d). Together,
these results suggest that the IT neurons adopt a gradient distribution
across the cortical depth, with correlated gene expression profiles and
cortical depths of individual cells.

Projection pattern of IT neurons

We next sought tointegrate MERFISH withretrograde tracing to simul-
taneously determine the expression profiles and spatial organization
of cell types in the MOp and their projection targets. To this end, we
injected retrograde tracers, cholera toxin subunit b (CTb) labelled
with spectrally distinct dyes, into three cortical regions, the ipsilateral
MOs, the SSp and the temporal association area (TEa), all of which
receive directinputs from the MOp*®*. TEainjections also spreadinto
itsadjacentectorhinal (ECT) and perirhinal (PERI) areas, and these areas
are often referenced together as a complex (TEa-ECT-PERI) in retro-
grade tracing studies®*°. Next, we identified neurons in the MOp that
projected to these target regions by CTb imaging, followed by imag-
ing the 258-gene MERFISH panel for cell-type identification (Fig. 4a).
We performed this analysis for the approximate MOp upper limb
domain (Bregma 0 to +1.0) and imaged coronal slices at approximately
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clustersinak-nearestneighbour graph for the IT clusters, with each cluster

30-pum intervals along the anterior-posterior axis in two mice
(approximately 190,000 cells total). We observed that approximately
90% of MOs-projecting, SSp-projecting and TEa-ECT-PERI-projecting
neurons were IT and L6b neurons. Spatially, the MOs-projecting
and SSp-projecting neurons were more broadly distributed along the
cortical depth axis, whereas the TEa—-ECT-PERI-projecting neurons
showed a distinct multi-laminar distribution (Fig. 4b), consistent with
previous observations*.

We observed a complex projection pattern of MOp neurons.
Neurons in the same cell clusters sent output to multiple targets
(Fig. 4c) and, likewise, the same target region received inputs from
multiple subclasses and clusters of MOp neurons (Fig. 4d). All three
regions received inputs from alarge number of individual clusters,
eachregion from a quantitatively different composition of clusters
(Fig. 4d, bottom panel).

Interestingly, some molecularly and spatially similar IT clus-
ters showed distinct projection patterns. For example, almost all
CTb-positive L6 IT 3 neurons projected to TEa-ECT-PERI but not to
the MOs and the SSp, whereas the majority of the CTb-positive L6 1T 1
neurons projected to the MOs with very few to TEa-ECT-PERI (Fig. 4c).
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Among the three L6 IT clusters, the MOs mostly received input from
L61T1, whereas TEa—~ECT-PERImostly received input fromthe L61T 3,
despite the similar gene expression profiles and the substantially
overlapping spatial distributions of these L6 IT clusters (Fig. 4e).

Discussion

Here we used MERFISH to generate amolecularly defined and spatially
resolved map of cell populations for the MOp and its adjacent areas
inthe mouse brain. The cell census defined by MERFISH, including 95
neuronal and non-neuronal populations, showed good correspondence
to that defined by the single-cell sequencingin the companion study®
andrevealed distinct spatial distributions for most transcriptomically
distinct cell populations. Our results showed laminar restrictions for
different subclasses of neurons that are consistent with previous find-
ings?3%$2% but also revealed a previously unknown, high-resolution
spatial map for individual neuronal clusters. We observed laminar
organizationnotonly for excitatory neurons butalso for inhibitory neu-
rons, with many inhibitory neuronal clusters preferentially located in
oneortwo cortical layers. Moreover, many excitatory neuronal clusters
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Fig.4 |Projection patterns of IT neurons determined by integration of
MERFISH withretrograde labelling. a, Workflow integrating retrograde
labelling and MERFISH. CTb-AlexaFluor647, CTb-AlexaFluor555and
CTb-AlexaFluor488 wereinjected into the MOs, SSp and TEa-ECT-PERI
regions, respectively. The coronalsslices containing the MOp on the ipsilateral
sideof these targets were imaged for both the retrograde CTb labels and the
MERFISH gene panel. The mouse brain CCF image shown on the leftis fromthe
Allen Brain Atlas (http://atlas.brain-map.org/; credit: Allen Institute). Endo,
endothelial cell. b, Enrichment of MOs-projecting, SSp-projecting and TEa-
ECT-PERI-projecting cells at different cortical depths. Enrichmentis defined as
the fraction of relevant CTb-positive cells divided by the fraction of all IT and
Léb cellsinthe samebin. ¢, Fractions of MOs-projecting, SSP-projecting and

adopted narrow distributions along the cortical depth direction that
revealed finer laminar structures within individual cortical layers.

We noticed that, although neurons tended to form discrete pop-
ulations of cells with distinct expression profiles at the subclass
level, clusters within individual subclasses often exhibited more
gradual changes, adding evidence to the coexistence of discrete
and continuous cell heterogeneity in the brain™®*>*?, In particular,
IT neurons, which constitute approximately 70% of all excitatory
neuronsinthe MOp, formed alargely continuous gradient across the
cortical depth. Continuous variations in gene expression have also
been observed among IT neurons in the isocortex by a concurrent
scRNA-seq study**. Here, with spatially resolved single-cell profiling,
we observed correlated changes in the gene expression and cortical
depth of IT neurons, revealing a molecular and spatial gradient of
cells spanning nearly the entire cortical depth. It remains an open
question whether other properties (for example, input or output
connectivity) of the IT neurons could have more discrete layer speci-
ficity and, if so, whether these properties correlate with molecular
signatures that are to be identified.
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TEa-ECT-PERI-projecting cellsin each cell cluster among all CTb-positive,
single-projecting cellsin the cluster.d, Pie charts showing the proportions of
MOs-projecting (left), SSp-projecting (middle) and TEa-ECT-PERI-projecting
(right) cells belonging to each cell subclass (top) and cluster (bottom; only top
10 clusters shown). The mean fractions are shown and the 95% confidence
intervalsareless than 0.7%. e, Projection specificity of the molecularly and
spatially similar L6 IT clusters. The cortical depth distributions of the L6 IT1-3
clusters and the UMAP (inset) are displayed, with L6 IT1-3 neurons shownin
colours and otherIT neuronsshowningrey (left). Pie charts showing the
relative proportions of MOs-projecting and TEa-ECT-PERI-projecting L6 IT
neurons thatbelongto each of the three clusters are also displayed (right). The
mean fractions are shownand the 95% confidence intervals are less than1%.

We further investigated how individual molecularly identified
cell types correlate with their projection targets by integrating
MERFISH with retrograde labelling. Our results showed that projec-
tions of MOp neurons to other cortical regions formed a complex
multiple-to-multiple network: each cell cluster projects to multiple
target regions (consistent with previous observations for visual cor-
tex projections®), and each target region receives inputs from many
clusters. We also observed distinct projection properties from some
similar neuronal clusters with gradually varying expression profiles
and overlapping spatial distributions. How such distinct projection
properties arise from these similar clusters, whether it is due to a
molecular signature not captured by transcriptomic profiling or has
arisen from a developmental origin, remains an open question. Our
proof-of-principle measurements probed only three target regions, but
moretarget regions could be measured using thisapproachto construct
amore comprehensive projection map for the cell types in the MOp.
We envision that MERFISH may also be combined with trans-synaptic
viral tracers to generate a high-resolution cell-type-to-cell-type
connectivity map.
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Methods

Animals

Adult C57BL/6) male mice aged 57-63 days were used in this study. Two
mice were used for in situ cell-type identification and spatially map-
ping by MERFISH; and two animals were used for projection mapping
by combining MERFISH with retrograde labelling. Mice were main-
tained on a 12-h light/12-h dark cycle (14:00 to 02:00 dark period),
atatemperature of 22 +1°C, a humidity of 30-70%, with ad libitum
access to food and water. Animal care and experiments were carried
outinaccordance with NIH guidelines and were approved by the Har-
vard University Institutional Animal Care and Use Committee (IACUC)
and the University of South California Institutional Animal Care and
Use Committee.

Gene selection for MERFISH

To discriminate transcriptionally distinct cell populations with MER-
FISH, we designed a panel of 258 genes. Among the 258 genes, 62 were
manually picked marker genes including established markers for inhibi-
tory and excitatory neurons, as well as different non-neuronal cell mark-
ersforoligodendrocytes, oligodendrocyte precursor cells, astrocytes,
microglia, perivascular macrophages, endothelial cells, pericytes,
smooth muscle cells and vascular leptomeningeal cells (VLMCs). To
further discriminate different neuronal cell types, we combined two
approachestoselect genes based on clustering results from scRNA-seq
and snRNA-seqdata. Inthefirstapproach, we selected a panel of genes
with the highest mutual information as previously reported®. Briefly,
we used mutual information to determine the relative amount of
information each gene carries in defining the clusters identified by
scRNA-seq and snRNA-seq. We used the scRNA-seq 10x v2 A dataset
generated by a companion study® and determined highly variable
genes using the Scanpy*® package. We binarized the expression profiles
using a gene counts cut-off of zero to simplify the calculation of the
mutual information. We selected the top 50 genes with the highest
mutual information for excitatory and inhibitory neuronal clusters,
respectively, and due to overlap between the two groups, thisapproach
generated a total of 91 top mutual information genes. In the second
approach, we selected a panel of 168 genes based on differentially
expressed (DE) gene analysis using the scRNA-seq data (scRNA-seq
10x v2 and scRNA-seq SMART data) from the companion study?. We
firstfound DE genes for each neuronal cluster pair (consisting of afore-
ground cluster and abackground cluster) inboth directions. The crite-
ria to define DE genes were: the genes have a twofold or more change
in expression between the foreground and background clusters and
P <0.05; they are expressed in at least 40% of cells in the foreground
cluster, with more than threefold enrichment, in terms of the frac-
tion of cells expressing the gene, relative to the background cluster.
Pvalues were calculated using the analysis of variance (ANOVA) testin
limma* on log-transformed data. The top 50 genes that passed all of
thetests and ranked by Pvaluesin each direction for every cluster pair
were pooled together as candidates for scoring for the final marker
set. To determine the final marker list, which we required to include
at least two genes in each direction for all pairs of clusters, we used a
greedy algorithm to find the minimal number of genes that satisfied
the requirement. Starting from a manually picked marker gene list
as described above, the algorithm checks which pairs already have a
sufficient number of DE genes, and works on the remaining pairs of
clusters until each pair of clusters has at least two DE genes included
ineach direction. This approach generated a total of 168 genes.

We note that the mutual information genes tend tobe genes that are
differentially expressed between groups of cell clusters, whereas the DE
genesare differentially expressed between individual pairs of clusters.
These two sets have complementary power and, when combined, can
give better cluster identification results in our experience. We thus
combined the marker gene lists generated by these three different

approaches, which partially overlap with each other, resulting in a
panel of 258 genes in total. We then screened this gene list to identify
genesthatarerelatively short or haverelatively high expression level,
whichwere potentially challenging for highly multiplexed FISH imag-
ing experiments, as previously described”. We found 16 genes that
can accommodate fewer than 48 hybridization probes with target
sequences that are 30-nucleotides (nt) long, or are expressed at an aver-
age of 200 or greater counts per cell in any cell cluster as determined
from the scRNA-seq SMART data®®. These 16 genes were imaged in a
set of eight sequential, two-colour FISHimaging rounds, following the
MERFISH run thatimaged the remaining 242 genes.

Design and construction of the MERFISH encoding probes

MERFISH encoding probes for the 242 genes were designed as pre-
viously described®. We first assigned to each of the 242 genes a
unique binary barcode drawn from a 22-bit, Hamming-Distance-4,
Hamming-Weight-4 encoding scheme. We included 10 extrabarcodes
as ‘blank’barcodes, which were not assigned to any genes, to provide a
measure of the false-positive rate in MERFISH as previously described®.

We identified all possible 30-mer targeting regions within each
desired gene transcriptas previously described*®. Each MERFISH encod-
ing probe contains a30-mer targeting region that iscomplementary to
the RNA of interest, as well as two 20-mer readout sequences that define
the specific barcode assigned to each gene. From the set of all possi-
ble 30-mer targeting sequences for each gene, we selected 92 30-mer
targeting sequences at random. For the transcripts that were not long
enough and had fewer than 92 targeting sequences, we allowed these
30-merstooverlap by asmuch as 20 nttoincrease the number of pos-
sible encoding probes — because a given transcript is typically bound
by less than one-third of the 92 encoding probes*’, the encoding probes
withoverlapping targeting regions do not substantially interfere with
each other but partially compensate for reduced binding due to local
inaccessible regions onthe target RNA or loss of probe during synthe-
sis. We then assigned two readout sequences to each of the encoding
probes associated with each gene. For the 22-bit encoding scheme, a
total of 22 readout sequences were used, each corresponding to 1 bit,
andthe collection of encoding probes for each gene contained 4 of the
22 readout sequences that corresponded to the 4 bits that reads ‘1" in
the barcode assigned to that gene.

Encoding probes for the 16 genes imaged in sequential two-colour
FISH rounds were produced in the same manner, except that 48 target-
ing sequences were selected, and one single unique readout sequence
was included in each set of the 48 targeting sequences. The readout
sequences used here were different from the 22 readout sequences
used for the genes detected in the MERFISH run.

Inaddition, we concatenated to each encoding probe sequence two
PCR primers, the first comprising the T7 promoter, and the second
beingarandom20-mer designed to have noregion of homology greater
than 15 nt with any of the encoding probe target sequences designed
above, as we previously described*.

With the above-described template encoding probe sequences, we
constructed the MERFISH probe set as previously described®. The tem-
plate DNA were synthesized as acomplex oligo pool (Twist Biosciences).
This pool contained both the encoding probes to the 242 genes meas-
ured in the MERFISH run and the 16 genes measured in the sequential
two-colour FISH rounds, but different primer sequences for the two
sets, which allowed us to amplify these two probe sets separately via
PCR followed by the same synthesis and purification procedures. The
two probe sets were then mixed during tissue staining.

Design and construction of MERFISH readout probes

For the 258-gene panel used in this study, 38 readout probes were
designed, each complementary to one of the 38 readout sequences.
Twenty-two of the 38 readout probes correspond to the 22 bits in the
barcodes used for MERFISH imaging, and the remaining 16 readout



probes each corresponds to one gene that wasimaged in the sequential
two-colour FISH rounds. Each readout probe was conjugated to one
of the two dye molecules (Alexa750 or Cy5) via a disulfide linkage, as
previously described*s. These readout probes were synthesized and
purified by Bio-Synthesis, Inc., resuspended immediately in Tris-EDTA
(TE) buffer, pH 8 (Thermo Fisher), to a concentration of 100 pM
and stored at 20 °C.

Tissue preparation for MERFISH

Mice aged 57-63 days were euthanized with CO,; their brains were
quickly harvested and cut into hemispheres and each hemisphere
was frozen immediately on dry ice in optimal cutting temperature
compound (Tissue-Tek O.C.T.; 25608-930, VWR), and stored at -80 °C
until cutting. Frozen brain hemispheres were sectioned at-18 °Cona
cryostat (LeicaCM3050S). Slices were removed and discarded until the
MOp region was reached. A continuous set of 300, 10-um-thick slices
were cut from anterior to posterior, and approximately every tenth
slice was placed onto coverslips forimaging. Each coverslip contained
4-6slices. The coverslips were prepared as previously described™*°.

Tissue slices were fixed by treating with 4% PFA in 1x PBS for 15 min
and were washed three times with 1x PBS and stored in 70% ethanol at
4 °Cfor atleast 18 hto permeabilize cell membranes. The tissue slices
from the same mouse were cut at the same time and distributed to six
coverslips, which were store in 70% ethanol at 4 °C for no longer than
2weeks untilallthe coverslips wereimaged. We observed no degrada-
tion in sample quality over this time period.

The tissue slices were stained with the MERFISH probe set as previ-
ously described?. Briefly, the samples were removed from the 70% etha-
nol and washed with 2x saline sodium citrate (SSC) three times. Then,
we equilibrated the samples with encoding-probe wash buffer (30%
formamide in 2x SSC) for 5 min at room temperature. The wash buffer
was then aspirated froma coverslip, and the coverslip wasinverted onto
a50-pldroplet of encoding-probe mixture on a parafilm-coated Petri
dish. The encoding-probe mixture comprised approximately 1 nM of
eachencoding probe for the MERFISH run, approximately 5nM of each
encoding probe for the sequential two-colour FISH rounds and1pMof a
polyA-anchor probe (IDT) in 2x SSC with30% v/v formamide, 0.1% wt/v
yeast tRNA (15401-011, Life Technologies) and 10% v/v dextran sulfate
(D8906, Sigma,). We thenincubated the sample at 37 °Cfor 36-48 h. The
polyA-anchor probe containing amixture of DNA and LNA nucleotides
(/5Acryd/ TTGAGTGGATGGAGTGTAATTH+TT+TT+TT+TT+TT+TT+T T+
TT+TT+T, where T+ is locked nucleic acid, and /5Acryd/ is 5" acrydite
modification) hybridized to the polyA sequence on the polyadenylated
mRNAs and allowed these RNAs to be anchored to a polyacrylamide
gelasdescribed below. After hybridization, the samples were washed
in encoding-probe wash buffer for 30 min at 47 °C for a total of two
times to remove excess encoding probes and polyA-anchor probes.
Alltissue samples were cleared to remove fluorescence background
as we previously described®*. Briefly, the samples were embedded
in a thin polyacrylamide gel and were then treated with a digestion
buffer of 2% v/v sodium dodecyl sulfate (SDS; AM9823, Thermo Fisher),
0.5% v/v Triton X-100 (X100, Sigma) and 1% v/v proteinase K (P8107S,
New England Biolabs) in 2x SSC for 36-48 hat 37 °C. After digestion, the
coverslips were washed in 2x SSC for 30 min for a total of four washes
andthenstored at4 °Cin2xSSCsupplemented with1:100 murine RNase
inhibitor (M0314S, New England Biolabs) before imaging.

MERFISH imaging

We used a home-built imaging platform in this study as previously
described®. To prepare the sample forimaging, we first stained it with
areadout hybridization mixture containing the readout probes asso-
ciated with the first round of imaging in the MERFISH run, as well as a
probe complementary to the polyA-anchor probe and conjugated via
adisulfide bond to the dye Alexa488 at a concentration of 3nM. The
readout hybridization mixture comprised the readout-probe wash

buffer comprised 2x SSC,10% v/v ethylene carbonate (E26258, Sigma)
and 0.1% v/v Triton X-100, supplemented with 3 nM each of the appro-
priate readout probes. The sample was incubated in this mixture for 15
minat roomtemperature, and then washed in the readout-probe wash
buffer supplemented with 1 pg/ml DAPIfor 10 minto stain nucleiwithin
the sample. The sample was then washed brieflyin2x SSC and imaged.
Briefly, the sample was loaded into acommercial flow chamber (FCS2,
Bioptechs) with a 0.75-mm-thick flow gasket (DIE# F18524; 1907-100,
Bioptechs). Imaging buffer comprising 5 mM 3,4-dihydroxybenzoic
acid (P5630, Sigma), 2 mM trolox (238813, Sigma), 50 puM trolox qui-
none, 1:500 recombinant protocatechuate 3,4-dioxygenase (rPCO; OYC
Americas), 1:500 murine RNase inhibitor and 5mM NaOH (to adjust pH
t07.0) in2x SSC was introduced into the chamber and the sample was
imaged with alow-magnification objective (CFIPlan Apo Lambda x10,
Nikon) with 405-nmillumination to produce alow-resolution mosaic of
allslicesinthe DAPIchannel. We then used this mosaicimage to locate
theMOpregionin eachslice and generated agrid of field-of-view (FOV)
positions to cover the MOp region and adjacent areas to be imaged.
We then switched to a high-magnification, high-numerical aperture
objective (CFIPlan Apo Lambda x60, Nikon) and imaged each of the FOV
positions generated above. In the first round of imaging, we collected
imagesinthe 750-nm, 650-nm, 560-nm, 488-nm and 405-nm channels
to image the first two readout probes (conjugated to Alexa750 and
Cy5, respectively), the orange fiducial beads, the total polyA mRNA
stained by the polyA-anchor probe (Alexa488) and the nucleus stained
by DAPI (405-nm channel). The latter two channels were used for cell
segmentationas described below. We took a single image for the fidu-
cialbeads onthesurface of the coverslip using the 560-nmillumination
channel for each imaging round as a spatial reference to correct for
slight misalignmentsin the stage position over the imaging rounds. To
image the entire volume of each 10-pm-thick slice, we collected seven
1.5-um-thick z-stacks for the other four channels (two readout probes,
polyA probe and DAPI) in each FOV.

After the first round of imaging, the dyes were removed by flow-
ing 2.5 ml of cleavage buffer comprising 2x SSC and 50 mM of Tris
(2-carboxyethyl) phosphine (TCEP; 646547, Sigma) with 15-minincu-
bation in the flow chamber, to cleave the disulfide bond linking the
dyes to the readout probes. The sample was then washed by flowing
1.5ml2xSSC.

To perform subsequent rounds of imaging, we flowed 3.5 ml of the
readout probe mixture containing the appropriate readout probes
across the chamber and incubated the sample in this mixture for a
total of 15 min for each round. The sample was then washed by 1.5 ml
of readout-probe wash buffer and then 1.5 ml of imaging buffer was
introduced into the chamber. For each round, we took images for all
FOV locationsin the 750-nm, 650-nm and 560-nm channels for the two
readout probes and fiducial beads. Two readout probes were imaged
ineachround, onelabelled with Alexa750 and the other with Cy5,and a
readout-probe mixture containing 3 nM of appropriate readout probes
was used for each round. We repeated the hybridization, wash, imaging
and cleavage for all rounds to complete the 22-bit MERFISH imaging
and the eight rounds of sequential two-colour FISH. All buffers and
readout-probe mixtures were loaded withahome-built, automated flu-
idics system composed of three 12-port valves (EZ1213-820-4, IDEX) and
aperistaltic pump (MP3, Gilson), configured as previously described®.
The total MERFISH imaging time was approximately 24-36 h for each
experiment, which contained 4-6 coronal slices.

MERFISH image analysis and cell segmentation

All MERFISH image analysis was performed using MERIin®!, a
Python-based MERFISH analysis pipeline, using algorithms similar
to what we have previously described*®*. First, we aligned the images
taken during each imaging round based on the fiducial bead images,
accounting for X-Y driftin the stage position relative to the first round
of imaging. For the MERFISH images, we then high-pass filtered the
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image stacks for each FOV to remove background, deconvolved them
using 20 rounds of Lucy-Richardson deconvolution to tighten RNA
spots, and low-pass filtered them to account for small movements in
the apparent centroid of RNAs between imaging rounds. Individual
RNA molecules were identified by our previously published pixel-based
decoding algorithm*8, After assigning barcodes to each pixel inde-
pendently, we aggregated adjacent pixels that were assigned with the
same barcodes into putative RNA molecules, and then filtered the list
of putative RNA molecules to enrichfor correctly identified transcripts
as previously described® for an overall barcode misidentification rate
at 5%. We further removed putative RNAs that contained only a single
pixel asthey are prone to be background of spurious barcodes gener-
ated by random fluorescent fluctuations and had a substantially higher
misidentification rate than those that contained 2 or more pixels.

We segmented cell boundaries in each FOV using a seeded water-
shed approach as previously described®. The DAPI images were used
as seeds and the polyA signals were used to identify segmentation
boundaries. Finally, we assigned individual RNA molecules identified
inthe MERFISH runtoindividual cells based on whether they fell within
the segmented boundaries of the cells. For the sequential two-colour
FISH rounds, we quantified the signal from these imaging rounds by
summing the fluorescence intensity of all pixels that fell within the
segmentation boundaries of the cells associated with the central z-plane
and normalized the signal by the areas of the cellsin this z-plane. Then,
the normalized signals of the 16 genes from the sequential two-colour
FISHrounds were merged with the RNA count matrix from the 242 genes
measured in the MERFISH run and used for cell clustering analysis.

Cell clustering analysis of MERFISH data

With the cell-by-gene matrix obtained as described above (each row
representing a cell and each column representing a gene, and each
elementrepresenting the expression level aspecific genein a specific
cell), we preprocessed the matrix by the following steps. (1) The seg-
mentation approach that we used generated a small fraction of puta-
tive ‘cells’ with very small total volumes due to spurious segmentation
artefacts, as well as some cells that overlapped in the 3D and were not
properly separated. We hence removed the segmented ‘cells’ that had
avolume that was either less than 100 pum? or larger than three times
of the median volume of all cells. (2) A fraction of cells did not have
thewholesomaincluded ina10-um-thick tissue slice and was thus not
imaged completely. To remove the differences in RNA counts dueto the
incompleteness of the imaged soma volume, we normalized the RNA
counts per cell by the imaged volume of each cell. (3) We observed a
modest batch effect between MERFISH experiments accounting for
approximately 30% variation of the mean total number of RNAs per
cell. We normalized the mean total RNA counts per cell to asame mean
value (250 in this case) for each experiment to remove the influence
of these batch effects. (4) Since the 16 genes that were imaged in the
sequential FISH rounds contained many specific marker genes that
should not co-express in individual cell types, and no cells should
express a majority of these 16 genes, we considered the segmented
‘cells’ that had a normalized fluorescence signal that was higher than
the 90% quantile in 12 out of the total 16 sequential FISH channels as
caused by spurious fluorescence background and removed them.
(5) Since the fluorescence background in the 650-nm and 750-nm
channels was different, we subtracted the background for each cell
by taking the minimum of the signal for each cell across all sequen-
tial FISH rounds as the background, for 650-nm and 750-nm channels
separately. (6) We removed the cells that had total RNA counts lower
than2% quantile or higher than 98% quantile. (7) We removed potential
doublets using Scrublet®. Briefly, principal component analysis (PCA)
was used to train a k-nearest neighbour (kNN) classifier to predict a
doubletscore for each cell. Since we recorded the DAPI-stained nucleus
image of each cell, we were able to visually inspect arandom subset of
potential doublets picked by Scrublet and fine-tuned the doublet score

threshold to remove connected cells more accurately. Finally, the cells
withadoublet score higher than 0.18 were removed, which accounted
for approximately 12% of the total cell number. (8) We also found that
4 out of the 16 genes imaged in the sequential FISH rounds — Cd52,
Rprml, Mup5 and Igfbp6 — were not stained well in all experiments and
failed toyield high-quality signals. These four genes were removed for
subsequent analysis.

After the above preprocessing steps, we normalized the total RNA
counts for each cell to the median total RNA counts of all cells and
log-transformed the cell-by-gene matrix. We then normalized their
expression profiles by computing the z-score for each gene. We per-
formed dimensionality reduction of the matrix using PCA, and used the
first 35 principal components. To determine the number of principal
componentsto keep, we randomly shuffled the valuesin each column
of the cell-by-gene matrix and calculated the eigenvalue of the first
principal component for the randomly shuffled matrix. The random
shuffling was repeated 20 times and the mean eigenvalue of the first
principal component across 20 iterations was obtained, and we kept
all of the principal components that had an eigenvalue greater than
this mean value. We then performed graph-based Louvain community
detection® in the 35 principal components space using Scanpy*fora
range of nearest neighbourhood ssize k values with abootstrap analysis
to both identify stable clusters and select the optimal k value (k=10)
as previously described?. We further identified six small clusters that
expressed mixtures of markers for multiple distinct cell classes, for
example, Slc17a7, which marks excitatory neurons, and Sox10, which
marks the oligodendrocytes, and that did not correspond to any of
the major subclasses defined by the scRNA-seq and snRNA-seq data®
(based on classifier analysis, which is described below), as potential
doublets, which were excluded from subsequent analysis.

From the first round of clustering, we identified 16 excitatory neu-
ronal clusters, 8 inhibitory neuronal clusters and 14 other clusters. To
further refine our detection of transcriptionally distinct populations,
we separated all of the cells into five groups: IT-projecting neurons
(marked by the excitatory neuronal marker SicI17a7 and the pan-IT
marker Slc30a3), non-IT neurons (marked by the excitatory neu-
ronal marker Slc17a7 but not Slc30a3), caudal ganglionic eminence
(CGE)-derivedinhibitory neurons (marked by Gadl, Gad2 and Lamp5/
Sncg/Vip), medial ganglionic eminence (MGE)-derived inhibitory neu-
rons (marked by Gadl, Gad2 and Sst/Pvalb) and non-neuronal cells. We
thenrepeated the procedure of dimensionality reduction and cluster-
ing, asdescribed above, for these five cell groups separately. In addition,
we sampled a range of resolution parameter r (r=1, 2, 3), a parameter
value defined in Scanpy* that controls the coarseness of the cluster-
ing, to search for optimal granularity that represents the diversity of
the transcriptomic profiles. We kept k=40 and r=2 for IT and non-IT
excitatory neurons, k=15 and r=2 for CGE-derived and MGE-derived
inhibitory neurons, and k=20, r=1for the non-neuronal cells.

After the second round of clustering, we further removed a small
fraction of cells as potential doublets as described above. We also found
four unique clusters that did not correspond to any subclassin the MOp
region defined by the scRNA-seq and snRNA-seq data® (using the clas-
sifier approach described below). We located the cells that belonged
tothese clusters and found that two clusters were in the striatum, and
the other two clusters were probably ependymal cells located in the
lateral ventricle. We removed these clusters from subsequent analysis.

After the clustering was done, the cell clusters were first each
assigned into a subclass based on their marker gene expression as
described in the main text. The IT neurons were further divided into
L2/3,L4/5,L5and L6 subclasses based onthe expression of layer-specific
makers (Cux2, Otof, Rorb, Rspol, Sulf2, Fezf2 and Osr1). Since these
markers showed gradual changes between individual IT clusters, the
subclass identification at the border of layers can be ambiguous, in
which case, we identify the parent subclass for the cluster by judging
bothits marker gene expressionand its strongest corresponding cluster



inthe scRNA-seqand snRNA-seq data. For example, L4/51T 5 expressed
both Rorb and Fezf2, and corresponded to the L4/5IT 2 cluster in the
scRNA-seq and snRNA-seq data, and was thus classified asaL4/51T
cluster. After the subclass identity was assigned, within each subclass,
anumericalindex was added following the subclass name to form the
cluster name (for example, L5IT 1, astrocyte 2, and so on).

For presentation, UMAP>* was used to embed the cells in two
dimensions using the same principal components that were used
for clustering.

Correspondence between clusters identified by MERFISH and
single-cell sequencing-based measurements

Correspondence between cell clusters identified by MERFISH and by
scRNA-seq and snRNA-seqin Extended DataFig. 2c, d was assessed by
running a neural-net classifier>>, which was trained on the z-scored
single-cell expression profiles measured by MERFISH. The snRNA-seq
10x v3 B data in the companion paper? were used for comparison
because it is the largest dataset among the seven scRNA-seq and
snRNA-seqdatasets included in this companion study and contained
the largest number of non-neuronal cells, while all of the other six
datasets were collected by fluorescence-activated cell sorting (FACS)
to enrich for neurons. The snRNA-seq 10x v3 B data were z-scored,
and then the subset of genes measured in the MERFISH data was used
together with the trained model to predict a MERFISH cluster label for
eachcellin the snRNA-seq dataset. From this, each snRNA-seq cell had
bothapredicted MERFISH cluster label and a cluster label determined
from the consensus clustering results for the seven scRNA-seq and
snRNA-seq datasets®. Cells were grouped based on their consensus
scRNA-seq and snRNA-seq cluster identity, and then the fraction
of cells from a given consensus scRNA-seq and snRNA-seq cluster
that were predicted to have each MERFISH cluster label was then
determined (Extended Data Fig. 2d). The same classifier approach
was also used to produce Extended Data Fig. 2c, but in this case, the
subclasslabels defined by MERFISH and by the seven scRNA-seq and
snRNA-seq datasets for each cell was used instead of cluster labels.
Likewise, the same classifier approach was used to produce Extended
DataFigs. 6a, b, 7a, b, but in Extended Data Figs. 6b, 7b, the cluster
labels defined by the integrated analysis of the seven scRNA-seqand
snRNA-seq datasets, a snATAC-seq dataset and a snmC-seq dataset
were used instead of the cluster labels derived from the scRNA-seq
and snRNA-seq datasets alone.

Registration to the Allen Reference Atlas and the common
coordinate framework

For each coronal section that we performed, high-resolution MER-
FISH/DAPI/polyA imaging of the MOp and adjacent areas, we also
performed lower-resolution DAPI imaging of the entire hemisphere.
The low-resolution DAPlimage of each hemisphere coronal section
was manually paired with the closest matching coronal section of the
Allen Reference Atlas (ARA)? based on cytoarchitectural features.
Once paired, landmark cytoarchitectural features were used to cal-
culate a deformable or affine transformation from our DAPl image to
the Nissl template of the matching ARA coronal section. Segmented
cell boundaries from high-resolution MERFISH imaging were then
aligned to the corresponding low-resolution DAPl image by aligning
the high-resolution and low-resolution DAPlimages. The overall trans-
formation from both steps then allowed registration of the MERFISH
images to the ARA. Out of the 64 coronal slices imaged, 61 slices were
registered to the ARA, whereas the remaining three slices did not have
asufficient number of landmarks to be registered.

To define the boundaries of the MOp in the MERFISH images, each
ARA template was further scaled and aligned via translation and rota-
tion to the corresponding 2D coronal image in the Allen common
coordinate framework (CCF) v3%, which in turn allowed the MERFISH
images to be registered to the Allen CCF v3.

Toestimate the errorsinimage registration, we determined for each
slice the average displacement between the cells on the cortical sur-
face and the top surface of the cortex in the CCF image, as well as the
average displacement between the L6b cells and the bottom surface
of the cortex in the CCF image, and calculated these displacements
as a percentage of the cortical thickness in that slice. For the 61 regis-
tered slices, the alignment error was on average 2.5% when calculated
using the mean of the absolute values of the top and bottom surface
displacements. To further reduce the effect of the alignment error in
delineating cells within the MOp, we removed the slices that had an
alignment error that was approximately 7% or greater for either the top
or bottom surface, or approximately 5% or greater for their mean. In
total, eight slices were removed from subsequent analyses that involved
MOp delineation, and the remaining slices on average had an alignment
error of 2.0% when calculated using the mean of the absolute values of
the top and bottom surface displacements.

Registration of the MERFISH images to the Allen CCF v3 allowed us
to place the imaged and profiled cells in the CCF, delineating cells in
different brain regions. This version of CCF was chosen by the BICCN
consortium for multiple modalities of measurements of the MOp to
provide consistency among these measurements. While the brain
areal boundaries may not be perfectly determined in the CCF v3 and
efforts in the community will continue to improve the accuracy of
these boundaries, the MERFISH results reported here will continue to
serve as aresource as these areal boundaries are improved over time.

Somadepth determination

From the MERFISH images, we segmented the cells and determined
the centroid coordinates of all the cells. For each cell, the soma depth
was determined as the shortest distance of its centroid position to the
cortical surface line, which is marked by the very thin layer of VLMCs.
Hence, the somadepths of individual cells were determined along the
direction perpendicular to the cortical surface line in each coronal
slice. To compensate the variation in cortical thickness from slice to
slice, we measured the cortical thickness in each coronal slice, which
was defined as the mediansomadepths of the Lé6b cellsinthe slice, and
the soma depth of each cell was normalized by the cortical thickness
of the slice. Cortical depth distribution analyses were performed for
theregionbetween Bregma—0.8 and +1.7 because MERFISH images of
slices at Bregma +1.8 or greater did not show L6b cells forming a thin
layer, which made normalization of the soma depth by the cortical
thickness challenging for these anterior-most slices (Bregmabetween
+1.8 and +2.5).

Layer boundary assessment
The layer boundaries along the normalized cortical depth axis were
determined as follows: (1) the cortical surface was defined by the posi-
tions of surface VLMCs; (2) we calculated the normalized median cor-
tical depth of all cell clusters and used the median depth of the most
superficial L2/3IT cluster, L2/3IT 1, as the upper boundary of L2/3;
(3) the median depth of the most superficial L4/5IT cluster, L4/51T1,
was used as the upper boundary of L4; (4) the median depth of the most
superficial cluster among the L6 IT and CT clusters, L6 IT 1, was used
astheupperboundary of L6; (5) the median depth of the L6b cells was
set to1(as the soma depth of all cells were normalized by the median
soma depths of the L6b cells) and the upper and lower boundaries of
L6b were determined by the width of the Lé6b cell distribution; and
(6) we also used the median depth of the most superficial cluster among
the clusters residing in L5 to mark the upper boundary of L5 (that is,
the boundary between L4 and L5); however, this boundary has some
uncertainty because some of the L4/5IT clusters may belong to L5,
aswe discuss below.

To examine which of the L4/5IT clusters mightalso belongtoL5, we
examined the spatial overlap of the IT clusters with the L4 marker gene
RspolandtheL5 marker gene Fezf2. Tothis end, we first determined the
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spatial profile of each of the two marker genes by binning all imaged
cellsinto 100 equal-sized bins based on the normalized cortical depth
and determining the mean expression level per cell for each bin. For
each IT cluster, its spatial overlap with these marker genes was then
determined as the fraction of the cells in the cluster that fell within
the cortical depth range where the binned median expression of the
marker gene was above half maximum. We observed that the spatial
overlap with the L4 marker Rspol took a rather precipitous fall at the
L4/51T 5 cluster, with the overlap between L4/5IT 5 and Rspol being
substantially lower than those between L4/51T 1-4 clusters and Rspol.
Inaddition, the spatial overlap of the L4/51T 5 cluster with the L5 marker
Fezf2was substantially higher than those of the L4/51T1-4 clusters and
comparable to those of several LSIT clusters (Extended Data Fig.10a,
b).Hence, the L4/51T 5 cluster probably resided in (or partially resided
in) L5, and we thus considered the region between the median corti-
cal depth of L4/51T 5 and the median cortical depth of L5IT 1 as the
uncertainty region for the upper boundary of L5 as shown by the grey
areainFig.1c-eand Extended DataFig. 3.

TheL5canbedividedintoasuperficial L5asublayer devoid of ET cells
and a deeper L5b sublayer occupied by ET cells*®. We also examined
the spatial overlap between L4/51T and L5 IT clusters with the LSET
neurons to assess which clusters may belong to L5a. The spatial overlap
betweena cell cluster and the L5 ET cells was defined as the overlapping
areaofthecell density distributions of the cell cluster and the LSET cell
subclass. We observed that the L4/51T 5 cluster showed minimal spatial
overlapwith L5ET (Extended DataFig.10c, d) and hence may reside in
L5a. L5IT 1 partially overlaps with L5 ET, but the spatial overlap of L5
IT1with L5 ET cells was substantially lower than those of the other L5
IT clusters (Extended Data Fig.10c), suggesting that the L5IT 1 cluster
may partially reside in L5a.

Connectivity and pseudotime analyses of IT neurons

Tovisualize the degree of similarity (connectivity) in the gene expres-
sionprofilesof the IT clusters, we employed arecently developed graph
abstraction technique called PAGA® to gain a quantitative understand-
ing of how extensively different IT clusters occupied overlapping gene
expressionspace. Tothis end, we firsttook the 19 IT clustersinthe L2/3
IT,L4/51T,L5ITand L6 IT subclasses and normalized their expression
profiles by computing the z-score for each gene. Cells from the L6 IT
Car3 were not included in this analysis as it formed a cluster that was
well-separated in gene expression from the other IT cell clusters. PCA
was used to reduce dimensionality of the normalized expression data
tothefirst19 principal components. In selecting the number of princi-
pal componentstoinclude, we performed the same random shuffling
procedure used when setting a PC threshold for cell clustering analysis
as described in the ‘Cell clustering analysis of MERFISH data’ section.
Wethen constructed a kNN graph based on the principal components,
identifyingthe 12 nearest neighbours of each cell. Using the KNN graph
and the cluster label of each cell, we used Scanpy* to calculate the
frequency that edges from cells with a given cluster label were con-
nected to cells from a different cluster label and then normalized this
frequency to that expected by chance. Theresulting values represent
the connectivity between the clusters in the kNN graph, and are visu-
alized in a graph where each cluster is anode and the edges between
nodes indicate the connectivity between those clusters.

Next, we constructed anordering of the IT cells based on their expres-
sionprofiles, yielding a ‘pseudotime’ value for each cell. This calculation
ismost often performed to order cells withinadynamic system, inwhich
casethe orderingreflects the ‘time’ relative to some reference cell. Our
pseudotime calculation performed on the IT cells is not intended to
represent the trajectory from L2/3 to L6 as part of adynamic process,
butrather to obtain an expression-derived measure of where along the
trajectory each cell falls. To calculate the pseudotime of the IT cells, we
used Scanpy to construct a diffusion map based on the above-described
kNN graph, assigned aneuronfromthe L2/31T 1cluster astheroot cell

ofthe trajectory, and then computed the diffusion-based pseudotime®’.
Theresulting value assigned to each cell reflects how far from the root
cellitsexpression profile placesit, and since each cell fallsalong asingle
trajectory with the L2/3 IT root cell at one end, this value orders the
cells relative to one another along this path.

Toidentify genes thatvaryasafunction of the cortical depths of the IT
cells, the expression profiles of the IT cells were normalized by comput-
ingthez-scoreforeachgene. ThelT cells were split evenly into 50 bins
based on their normalized cortical depths, and the mean normalized
expression was calculated for each gene across all the bins. Any gene
for which the difference in mean normalized expression between any
two bins exceeded 0.5 was selected as a gene differentially expressed
across cortical depth. To plot these genesinaheatmap, the genes were
ordered according to the normalized cortical depths at which they
exhibit their maximum expression and the cells were ordered based
on their normalized cortical depths. To determine the cortical depth
atwhich each gene exhibits its maximum expression, arolling average
was calculated across the 50 bins, using a window size of 10 bins, and
the window at which the maximum expression value occurred was
determined.

Stereotaxicinjection of retrograde tracers

To retrogradely label MOs-projecting, SSp-projecting and TEa-ECT-
PERI-projecting MOp neurons, each region was injected in the same
mousein the right hemisphere with100 nl of fluorescently conjugated
CTb (CTb-AlexaFluor488, CTb-AlexaFluor555 or CTb-AlexaFluor647,
respectively; 0.5%; C22841,C22843,and C34778, Thermo Fisher) using
the following coordinates relative to Bregma: MOs (anterior—posterior
(AP)+2.4 mm, medial-lateral (ML) +1.0 mm, dorsal-ventral (DV) +0.4 mm
below the cortical surface), SSp (AP-0.5 mm, ML +2.4 mm, DV +0.5mm
belowthe cortical surface) and TEa-ECT-PERI(AP-1.7 mm, ML +4.5mm,
DV +2.5 mm below the cortical surface). Injection procedures were
performed in adult male C57BL/6) mice (Jackson Laboratories) aged
2-4 months. Briefly, mice were anaesthetized initially in aninduction
chamber containing 5% isoflurane mixed with oxygen and then trans-
ferred to astereotaxic frame equipped witha heating pad. Anaesthesia
was maintained throughout the procedure using continuous delivery
of 2% isoflurane through anose cone atarate of 1.51/min. The scalp was
shaved, and asmallincision was made along the midline to expose the
skull. After levelling the head relative to the stereotaxic frame, the speci-
fiedinjection coordinates were used to mark the locations on the skull
directly above eachtarget areaand asmall hole (0.5 mm diameter) was
drilled for each. CTb was delivered through pulled glass micropipettes
(inner diameter of tip of approximately 20 um) using a pressure injec-
tion viaamicropump (World Precision Instruments). After completing
the last injection, the scalp was sutured and mice were administered
ketofen (5 mg/kg) to minimize inflammation and discomfort. Mice
were recovered from anaesthesia on a heating pad and then returned
to their home cage. Mice were euthanized 7 days following injection to
allowtime for tracer transport, and fresh brain tissue wasimmediately
extracted, embedded in Tissue-Tek O.C.T. Compound (4583, Sakura)
and frozen at -80 °C for later cryostat sectioning.

Images of the CTb signal in the injected regions showed that, in the
TEa-ECT-PERIinjections, the CTb signal covered all cortical layers,
whereas in the MOs and SSp injections, the CTb signal appeared rela-
tively weakinLland part of L6. Hence, neurons projectingtoLland L6
of MOs and SSp could be under-represented. Inaddition, itis known that
retrograde tracers such as dye-labelled CTb may not label all neurons
projecting totheinjected region, and this under-labelling effect could
lead to an under-representation of projecting neurons, in particular
the double-projecting neurons.

Dependingonthelocationof theinjectionsite, retrograde labelling
of TEa-ECT-PERI-projecting neurons in the MOp may display variable
patterns*°. When injection sites are placed in the middle range of the
TEa, retrograde labelling in the MOp exhibits a three-layer pattern



staining upper L2/3, upper L5 and L6, whereas injections in the more
rostral TEa area leads to less or no L6 labelling. In this work, injection
sites were placed in the middle range of TEa that gave the three-layer
labelling pattern in the MOp.

Imaging for CTb-injected tissue

The frozen CTb-injected mouse brain was sectioned the same as
describedinthe ‘Tissue preparation for MERFISH’ section. A continuous
set of 10-um-thick slicesin the region between Bregma approximately O
and approximately +1.0) was sectioned with approximately every other
slice kept and placed onto coverslips for imaging. We used a much
higher sampling frequency for CTb-injected samples due to a higher
failure rate of this experiment caused by removing the coverslip from
the flow chamber after CTb imaging. Tissue slices were immediately
fixed by treating with 4% PFA in 1x PBS for 15 min, washed three times
with 1x PBS, stained with DAPI and proceed for imaging. As described
in the ‘MERFISH imaging’ section, we used the same imaging buffer,
and the sample was first imaged with a low-magnification objective
(CFIPlan Apo Lambda x10, Nikon) for DAPI in a 405-nm channel to
produce alow-resolution mosaic of all slices. Next, to align each cell
in the tissue with the same tissue slice that would be imaged with the
MERFISH probe set later, we picked 10 cells in each coronal slice and
recorded thelocation of theright-side edge for each cell. We then used
the mosaicimage, created as described above, tolocate the MOp region
in each slice and generated a grid of FOV positions to cover the MOp
region to be imaged. We then switched to the high-magnification
objective (CFIPlan Apo Lambda x60, Nikon) and collected images in
the 650-nm channel for CTb-AlexaFluor647, the 560-nm channel for
CTb-AlexaFluor555, the 488-nm channel for CTb-AlexaFluor488 and
the 405-nm channel for DAPI. We took a single image for each of these
channels at the central z-plane.

After the CTbsignals wereimaged, the sample was removed from
the imaging chamber and washed three times by 2x SSC and then
permeabilized by 70% ethanol at 4 °C for at least 18 h. The tissue
sliceswere then stained with the same MERFISH probe set, followed
by the same MERFISH sample preparation and imaging procedures
asdescribedinthe ‘Tissue preparation for MERFISH’ and ‘MERFISH
imaging’ sections. During MERFISH imaging, we first imaged DAPI
again with alow-magnification objective, and thenlocated the same
10 cells in each coronal slice that we selected earlier during CTb
imaging, and recorded the new location of the right-side edge for
each cell. Using the old and new locations of the 10 cells for each
slice, we determined the rotation and translation to alignthe CTb and
MERFISH images. Then, MERFISH imaging was performed and the
MERFISH images were decoded and segmented as described in the
‘MERFISH image analysis and cell segmentation’ section. We assigned
each cell aprojectionidentity by thresholding the normalized CTb
dyeintensity foreach CTb channeland labelled each cell ‘on’ or ‘off”
foreachchannel. The CTblabelling of the cells were mostly binary (on
or off) but still the labelling level varied between cells, therefore the
threshold was tuned by manually examining arandom subset of the
images and was set to a fairly stringent level such that weakly labelled
cellswere labelled ‘off”. The cell-type identities of the CTb-injected
samples were determined by training the MERFISH dataset with the
MERFISH cell cluster identities without CTb injections using the clas-
sifier as described inthe ‘Correspondence between clusters identi-
fied by MERFISH and single-cell sequencing-based measurements’
section and predicting on the CTb-injected samples. Each cell in
the CTb-injected samples was hence assigned with both a cell-type
identity and a projecting-target identity.

Statistics and reproducibility

Tworeplicate mice were imaged under each condition. From the two
replicate mice imaged for the identification and spatial mapping of
celltypes, atotal of approximately 300,000 cells wereimaged, which

generated a sufficient number of single-cell profiles and gave suffi-
cient statistics for the effect sizes of interest. From the two replicate
miceimaged for projection target mapping, atotal of approximately
190,000 cells were imaged, which gave sufficient statistics for the
effect sizes of interest. No statistical methods were used to predeter-
mine sample size. The mice were randomly chosen. For each mouse,
the imaging experiments were definitive and no randomization was
necessary for this study, hence the experiments were not randomized.
Theinvestigators were not blinded to allocation during experiments
and outcome assessmentbecause allimages were taken under the same
condition, and the results were quantitative, which did not require
subjective judgement.

The sample sizes for the violin plots in Fig. 1c-e and Extended Data
Fig. 3 arelisted as follows: Fig. 1c: from left to right, n=5,585, 6,624,
7,993,8,373,5,686,4,634,5,431, 2,590, 8,083,1,830, 2,303, 4,841, 6,570,
1,618,4,265,4,267,5,183,2,180, 6,699,1,510,1,590, 852,1,417,538, 2,624,
1,489,1,810, 4,544, 4,350, 4,189, 3,654, 3,534, 2,009, 1,052, 690, 260,
2,105,1,244 and 87 cells. Figure 1d: from left to right, n = 504, 161, 475,
480,403,259,146,154,150,124,137,391, 343, 241,257,123,96,222,299,
154,125,200, 379, 648, 555,462,338, 414,137,152,1,297,868, 967,1,019,
654,346,656,237,271,158,95 and 48 cells. Figure le: from left toright,
n=16,013,2,993,547,5,160,13,223,5,948,946,17,117,5,435, 3,524, 6,145,
6,888,295 and 4,339 cells. Extended Data Fig. 3a: upper panel fromleft
toright,n=2,903,2,702,2,873,4,505,1,727,708,193,1,258, 3,723,559,
1,367,1,648,3,381,716,2,531,1,134,3,102,737,2,615,399, 655,450, 674,
88,1,233, 606, 808,1,709, 2,523,1,715,1,648, 403,1,089, 341, 16, 115,
884,424 and 27 cells; bottom panel from left to right, n =228, 70,199,
220,183,113, 40,73,72,65, 68,170,158, 85,108, 63, 45,100, 124, 69, 58,
60,150, 287,261,209,137,184, 67,71,550, 393, 440, 271,256, 143,284,
95, 68, 51 and 47 cells. Extended Data Fig. 3b: upper panel from left to
right, n=405,1,550,1,373,1,793, 863, 235,135,140, 1,872, 40, 750, 651,
1,537,37,1,253, 637,1,170, 387, 989, 245, 189, 305, 6, 538, 255, 328, 827,
1,113,827, 658,260, 487,104, 7, 55,440,290 and 13 cells; bottom panel
fromleft to right, n=90, 39, 87,94, 81, 46, 20, 22, 33,22, 32,77, 66, 36,
46,25,18,42,52,30, 25,28, 58, 99,100, 87,58, 71, 25, 21,203, 166, 168,
105,105, 59,112, 41, 27,22 and 24 cells. Extended Data Fig. 3c: upper
panel from left to right (ML position =1/ML position=6),n=339/662,
542/365,352/531,569/745,244/315, 39/266,NA/112, 42/221, 537/602,
26/112,240/108, 161/363, 409/424,19/123, 251/403, 62/319, 415/254,
39/147,232/345,NA/69, 82/100,57/68,54/103,NA/19,169/133, 86/105,
111/90, 303/128, 309/228,173/214,187/197,11/193, 122/111, 35/24, 6/
NA, 16/13,135/50 and 32/81 cells; bottom panel from left to right (ML
position =1/ML position = 6), n =41/100, 314/205, 147/292, 231/339,
107/165,7/123,NA/88,15/38, 243/323,11/NA, 143/54, 43/185,166/232,
115/199,37/207,173/111,18/90, 72/193, 39/36, 33/35,29/62,80/66, 41/47,
48/40,142/77,141/132,73/126, 78/100, 7/135, 47/70,16/NA, 8/8, 67/38
and 20/63 cells. Violin plots with cell numbers of five or fewer are not
shown and the sample size numbers are listed as ‘NA’ in these cases.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The data that support the findings of this study are available from
the corresponding author onreasonable request. Raw and processed
MERFISH data canbe accessed at the Brain Image Library: https://doi.
brainimagelibrary.org/ https://doi.org/10.35077/g.21.

Code availability

The code for the MERFISH image acquisition is available at https://
github.com/ZhuangLab. The code for the MERFISH image analysis is
available at https://github.com/ZhuangLab/MERIin.
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Extended DataFig.1|RNAidentificationand cell segmentation of
MERFISHimages, replicate reproducibility of MERFISH data, and
correlationbetween MERFISH and bulk RNA-seq results.a, Decoded
MERFISH image of a single field-of-view, shown as amaximumintensity
projectionacrossall seven z-planes. In these experiments, we assigned 22-bit
Hamming Distance 4, Hamming Weigh 4 barcodes capable of error detection
and correction toindividual RNA species, and the 22 bits wereimaged in11
rounds of hybridization with two-colourimaging per round. The decoded
image shows all pixels that belonged to detected correct barcodes. The pixels
were coloured based on their assigned barcodes and the intensity of each pixel
wasscaled based onthe L2-norm of its signal intensity across all bits.
Segmented cellboundaries are showninwhite. Theboxed region of theimage
isshownatagreater magnification (right). Scale bars, 20 pm (left) and Spm

(right). b, DAPI (left) and poly(A) RNA (right) images for the same field of view as
ina, withthe central z-plane (z=4.5pum) shown. These images are used to
definethe boundaries of each cell, shown in white. Scale bars, 20 pm.aand
barerepresentativeimages of more than 5,000 fields of view from two
replicate animals. ¢, Scatterplot of the average copy number per cell of
individual genes measured by MERFISH for the two replicate animals. The blue
solidlineindicates equality. The grey dashed lines indicate the average counts
per cellof the blank barcodes (that s, valid barcodes that were not assigned to
any RNA), which provides an estimate of the false-positive rate. The Pearson
correlation coefficientisr=0.99.d, Scatterplot of the average copy number
per cell ofindividual genes determined by MERFISH versus expression level
determined by bulk RNA-seq. The dashed lineis as definedinc. The Pearson
correlation coefficientisr=0.84.
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Extended DataFig.2|Cell-type profilingby MERFISH, registration of
MERFISHimages to Common Coordinate Framework and the composition
of cells. a, Dendrogram showing the hierarchical relationship among the 39
glutamatergic, 42 GABAergic, and 14 non-neuronal clusters identified by
MERFISH, constructed based on the z-scored cluster expression profiles and
coloured by the subclass that each cluster belongs to (top). Expression of
markers genes for the subclasses are also displayed (bottom). b, UMAP of
cellsmeasured by MERFISH coloured based on the subclasses of cells.

¢, Correspondence between the subclasses of cells determined by MERFISH
and the subclasses determined by scRNA-seq and snRNA-seq datasets
generated inacompanion study®. A neural-net classifier was used to predict a
MERFISH cluster label for each cellin the snRNA-seq 10x v3 B dataset®. The
fraction of cells from any given subclassidentified by scRNA-seq and snRNA-
seqthatwas predicted to have each MERFISH subclass label was plotted.

d, Correspondence between clustersidentified by MERFISH and by scRNA-seq
and snRNA-seq.Asinc, but with the fraction of cells from any given cluster
identified by scRNA-seqand snRNA-seq that was predicted to have each
MERFISH cluster label plotted. Each row or column corresponds to a cluster
and the coloured bars onthe leftand bottom mark the subclasses. e, An

example MERFISH-derived cell-type spatial map overlaid on the Allen CCF v3
with cells coloured by their cluster identities asin Fig.1a. The CCF v3imageis
fromthe Allen Brain Atlas (http://atlas.brain-map.org/; credit: Allen Institute).
Theboundaries of the MOp are shown in black. We note that the MOp-MOs and
MOp-SSpborders, as well as all other cortical areabordersin the Allen CCF v3,
arelargely perpendicular to the cortical surfaceinthe 3D space. The reason
that they do not always appear perpendicular to the cortical surfacelinein the
coronal sections, as shown here, isbecause the coronal sections themselves
arenot always perpendicular to the cortical surface (see more details about this
effectat: https://community.brain-map.org/t/ccfv3-highlights-tilting-at-the-
cortex/1000; credit: Allen Institute). f, Top: fractions of cellsin the entire
imaged region that belongto each of the three major cell classes
(glutamatergic, GABAergic and non-neuronal) (left). Fractions of GABAergic
cellsintheentireimaged region thatbelong to each of the GABAergic
subclasses (middle). Fractions of glutamatergic cellsin the entire imaged
regionthatbelongto each of the glutamatergic subclasses (right). The mean
fractions are shown and the 95% confidence intervals areless than 0.3%.
Bottom:same as the top panel but for cellsinthe MOp. The mean fractions are
shownand the 95% confidenceintervals are less than 0.4%.
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Extended DataFig. 3| Cortical depth distributions of neuronal cell clusters
inthe MOp and an approximate MOp upperlimbregion.a,b,AsinFig.1c,d
but for glutamatergic and GABAergic clustersinthe MOp (a) and an
approximate MOp upper limb (MOp-ul) region (b). We selected the region
between Bregma 0 and +1.0 within the MOp as an approximation for the MOp-ul
regionbased on previous literature**and acompanion paper®. Thisregionis
considered as the primary part of the MOp-ul because it contains the densest
pyramidal neurons that directly project to the intermediate horn and ventral
hornofthecervical spinal cord and, in the meantime, shows minimal
projection to the lower limb®. In the violin plots, the black dot represents the
median, the thick black bar represents theinterquartile range, and the edges
define minima and maxima. ¢, Effect of the layer-thickness variations along the
medial-lateral (ML) direction on the cortical depth distributions of the
neuronal clusters. Top: we divided the MOp into six segments along the ML
direction, each covering anarrow ML range such that the layer-thickness
variations within each segment are negligible. We then determined the cortical

depthdistributions of the neuronal clustersin each of the six ML segments and
display those for the most medial (blue; ML position 1) and most lateral (orange;
ML position 6) segments. Most of the clusters showed only amodest difference
intheir cortical depth distributions between different ML segments, with a
small number of exceptions (suchasL4/51TSSpland2,L5ET4,L6 CT8andL6
IT Car 3). These exceptions showed large differences due to the region-
dependent presence of these clusters. Only the distributions of the
glutamatergic clusters are shown here because the relatively low abundance of
the GABAergic neurons makes the comparison of their distributions in
different ML segments statistically less sound. Bottom: asin the top panel but
for glutamatergic clustersin the approximate MOp-ul region as defined in
b.Intheviolinplotsinc, the centre dashed line represents the median, the
othertwo dashed linesrepresent the interquartile range, and the edges define
minima and maxima. For all violin plotsina-c, the clusters with cell numbers of
five or fewer are not shown, and the clusters with cellnumbers of ten or fewer
(but morethan five) are shown with individual data points as white dots.
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Car3cluster (green).d, A coronalslice (Bregma approximately +0.9)
highlighting the L4/51TSSp1(green) and L4/51T SSp 2 (orange) clusters.
Inbothcandd, all other cells within the MOp are coloured in dark grey to
highlightthe MOp region, and all other cells outside the MOp are shownin
light grey. Scalebars,200 pm (c, d).
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Extended DataFig. 8 |See next page for caption.
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Extended DataFig. 8| Gene expression profiles and cortical depth
distributions of IT cell clustersinthe MOp. a, UMAP of the IT clusters for cells
inthe MOp.b, Cortical depth distributions of IT clustersinthe MOp region,
withindividual IT clusters coloured asina. c, Cortical depth distributions of IT
clustersindifferent medial-lateral (ML) segments of the MOp region. The IT
clustersare colouredasina.Asthevariationinlayer thicknesses along the ML
direction could broaden the cortical depth distributions of the clusters, to
assess whether the spatial overlap between different IT clusters could be
caused by this effect, we divided the MOp into six segments along the ML
direction, each coveringanarrow ML range such that the layer-thickness

variations within each ML segment are negligible. We then determined the
corticaldepthdistributions of the IT clustersin each of the six ML segments.
The spatial overlap between the IT clusters was still observed in each of the six
MLsegments.d, Cortical depthdistributions of IT clusters in different ML
segmentsinthe approximate MOp upper limb region (between Bregma 0 and
+1.0, as defined in Extended Data Fig. 3b). The spatial overlap between the IT
clusterswasstillobservedin each of the six ML segmentsin thisregion.
Clusters with alow cellnumber (five or fewer) found in any individual ML
segments are not shown.
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Extended DataFig.9|Correlated gradientsingene expressionand cortical  neuronswithinthe MOp across cortical depth.c,d, Same asFig. 3f,
depthacrossITneuronsintheMOp. a, Same as Fig. 3d, but for IT neuronsin butforindividual IT cells (c) and individual IT clusters (d) in the MOp.
the MOp. b, Same as Fig. 3¢, but for differentially expressed genes of all IT
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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|:| For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
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|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection MERFISH imaging data was collected using custom Python code to control the microscope. This code is available at https://github.com/
ZhuanglLab.
Data analysis The MERFISH data was analyzed using custom Python code. This code is available at https://github.com/ZhuanglLab/MERlIin.

Other packages used in data analyses include: Scanpy (version 1.4); Bioconductor limma (version 3.38); Scrublet (version 0.2).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Data availability statement is included in the manuscript, which states:
The data that support the findings of this study are available from the corresponding author upon reasonable request. Raw and processed MERFISH data can be
accessed at the Brain Image Library : https://doi.brainimagelibrary.org/doi/10.35077/g.21.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Two replicate animals were imaged under each condition. From the two replicate animals imaged for the identification and spatial mapping of
cell types, a total of ~¥300,000 cells were imaged, which generated a sufficient number of single-cell profiles and gave sufficient statistics for
the effect sizes of interest. From the two replicate animals imaged for projection target mapping, a total of ~190,000 cells were imaged, which
gave sufficient statistics for the effect sizes of interest.
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Data exclusions  We did not exclude any data from consideration. All images were included in the primary analysis.
Replication Reported results were replicated from two animals under each condition.

Randomization  Two male animals were randomly chosen for the identification and spatial mapping of cell types, and two male animals were randomly chosen
for the projection pattern study. For each animal, the imaging experiments were definitive and no randomization was necessary for this study.

Blinding Blinding during collection was not needed because all images were taken under same condition. Blinding during analysis was not necessary
because the results were quantitative and did not require subjective judgment. Blinding is not typically used in the field.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology |Z| |:| MRI-based neuroimaging
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Human research participants
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Adult C57BL/6J male mice aged 57-63 days were used in this study. Mice were maintained on a 12h/12h light/dark cycle, at a
temperature of 22 + 1 °C, a humidity of 30-70%, with ad libitum access to food and water.

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight Harvard University Institutional Animal Care and Use Committee;

University of South California Institutional Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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