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Isoform cell-type specificity in the mouse 
primary motor cortex

A. Sina Booeshaghi1, Zizhen Yao2, Cindy van Velthoven2, Kimberly Smith2, Bosiljka Tasic2, 
Hongkui Zeng2 & Lior Pachter3,4 ✉

Full-length SMART-seq1 single-cell RNA sequencing can be used to measure gene 
expression at isoform resolution, making possible the identification of specific 
isoform markers for different cell types. Used in conjunction with spatial RNA capture 
and gene-tagging methods, this enables the inference of spatially resolved isoform 
expression for different cell types. Here, in a comprehensive analysis of 6,160 mouse 
primary motor cortex cells assayed with SMART-seq, 280,327 cells assayed with 
MERFISH2 and 94,162 cells assayed with 10x Genomics sequencing3, we find examples 
of isoform specificity in cell types—including isoform shifts between cell types that 
are masked in gene-level analysis—as well as examples of transcriptional regulation. 
Additionally, we show that isoform specificity helps to refine cell types, and that a 
multi-platform analysis of single-cell transcriptomic data leveraging multiple 
measurements provides a comprehensive atlas of transcription in the mouse primary 
motor cortex that improves on the possibilities offered by any single technology.

Transcriptional and post-transcriptional control of individual iso-
forms of genes is crucial for neuronal differentiation4–8, and isoforms 
of genes have been shown to be specific to cell types in mouse and 
human brains9–14. It is therefore not surprising that dysregulation of 
splicing has been shown to be associated with several neurodevel-
opmental and neuropsychiatric diseases6,15,16. Thus, it is of interest to 
study gene expression in the brain at single-cell and isoform resolution.

Nevertheless, current single-cell studies aiming to characterize 
cell types in the brain using single-cell RNA sequencing (scRNA-seq) 
have relied mostly on gene-level analysis. This is, in part, owing to the 
nature of the data produced by the highest-throughput single-cell 
methods. Popular high-throughput assays such as Drop-seq17, 10x 
Genomics Chromium3 and inDrops18 produce 3′-end reads that are, 
in initial pre-processing, collated by gene to produce per-cell gene 
counts. SMART-seq19 is an scRNA-seq method that produces full-length 
reads, enabling the quantification of individual isoforms of genes with 
the expectation-maximization algorithm20. However, such increased 
resolution comes at the cost of throughput. SMART-seq requires cells 
to be deposited in wells, thus limiting the throughput of the assay. In 
addition, SMART-seq requires more sequencing per cell21.

The trade-offs are evident in analysis of scRNA-seq data from the pri-
mary motor cortex (MOp) produced by the BRAIN Initiative Cell Census 
Network (BICCN)22. We examined 6,160 (filtered) SMART-seq v4 cells 
and 94,162 (filtered) 10x Genomics Chromium (10xv3) cells (Extended 
Data Fig. 1, Fig. 2a, b) and found that while 10xv3 and SMART-seq are 
equivalent in defining broad classes of cell types, 3′-end technol-
ogy that can assay more cells can identify some rare cell types that 
are missed at lower cell coverage (Extended Data Fig. 2a). Overall, 56 
clusters with gene markers could be identified in the 10xv3 data but 
not in the SMART-seq data, whereas only 39 clusters with gene markers 

could be identified in the SMART-seq data and not the 10xv3 data—this 
differential is consistent with previously reported comparisons of 
10x Genomics Chromium and SMART-seq clusters21,23. However, while 
SMART-seq has lower throughput than some other technologies, it has 
a notable advantage: because it probes transcripts across their entire 
length, SMART-seq makes possible isoform quantification and the 
detection of isoform markers for cell types that cannot be detected 
with 3′-end technologies (Extended Data Figs. 2b, c). Moreover, the 
uniformity of read coverage of SMART-seq data1 and its quantifica-
tion with state-of-the-art tools24 yields higher sensitivity than other 
methods, which can make possible refined cell-type classification.

To take advantage of the complementary strengths of these differ-
ent platforms, we introduce an approach to scRNA-seq that links the 
SMART-seq resolved isoforms to the 10x Chromium defined cell types, 
and merges this information with spatial transcriptomic measurements 
obtained by MERFISH25 (Fig. 1). In addition to revealing extensive iso-
form diversity and cell-type specificity in the MOp, we find evidence 
for previously missed transcriptionally distinct cell subtypes in the 
MOp. Our results extend the notion of a single-cell database beyond a 
list of gene markers, and we produce a gene-isoform-space single-cell 
atlas of the MOp using the combined 10xv3, SMART-seq and MERFISH 
data. Our methods are open source, reproducible, easy to use and con-
stitute an effective workflow for leveraging full-length scRNA-seq data 
in combination with data from other technologies.

Isoform markers for cell types
To identify isoform markers of cell types, we first sought to visualize  
our SMART-seq data using gene-derived cluster labels from the BICCN 
analysis (Methods). Rather than layering cluster labels on cells mapped 
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to 2D with an unsupervised dimensionality-reduction technique such 
as t-distributed stochastic neighbour embedding26 (t-SNE) or uniform 
manifold approximation and projection27 (UMAP), we used a super-
vised learning approach to project cells so that they are best separated 
according to BICCN consortium22 annotations using neighbourhood 
component analysis (NCA). This method produces meaningful rep-
resentation of the global structure of the data (Fig. 2b), without over-
fitting (Supplementary Fig. 1a). Analysis of the projections revealed 
a batch effect in the 10xv3 data—which we addressed by restricting 
analysis to a single batch—and minimal evidence of a batch effect in 
the MERFISH data (Methods, Supplementary Fig. 2a, b).

Next, motivated by the discovery of genes exhibiting differential 
exon usage between glutamatergic and GABAergic (γ-aminobutyric 
acid-producing) neurons in the primary visual cortex14, we performed a 
differential analysis between these two classes of neurons. We searched 
for significant shifts in isoform abundances in genes whose expression 
was stable across cell types (Methods). We discovered 398 such isoform 
markers belonging to 310 genes (Supplementary Table 1). Figure 2c 
shows an example of such an isoform from the oxidative resistance 1 
(Oxr1) gene, which is known to be essential for protection against oxi-
dative stress-induced neurodegeneration28,29. While we see no change 
in gene expression of Oxr1 between these two neuron types, we find 
that among the 16 isoforms of the gene, one of them, Oxr1-204, is more 
highly expressed in glutamatergic neurons. The Oxr1 gene undergoes 
an isoform shift in GABAergic neurons, where the expression of the 
Oxr1-204 isoform is significantly lower, suggesting distinct subcellular 
isoform localization in the two neuron types30. A gene-level analysis is 
blind to this isoform shift (Fig. 2c, top right).

We hypothesized that there are genes exhibiting cell-type isoform 
specificity at all levels of the MOp cell ontology. However, detection of 
such genes and their associated isoforms requires meaningful cell-type 
assignments and accurate isoform quantifications. To assess the reli-
ability of the SMART-seq clusters produced by the BICCN31, we exam-
ined the correlation in gene expression by cluster with an orthogonal 
scRNA-seq technology, the 10xv3 3′-end assay. We clustered 94,162 

10xv3 cells, also derived from the MOp, using the same method as the 
SMART-seq cells (Methods). The clustering method generates three 
hierarchies of cells: classes, subclasses and clusters. The SMART-seq 
data have 2 major classes (glutamatergic and GABAergic), 18 subclasses 
that subdivide the classes, and 62 clusters that subdivide the subclasses. 
The 10x data similarly contain three hierarchies of cells: two major 
classes (glutamatergic and GABAergic), 21 subclasses and 85 clusters. 
We found high correlation of gene expression between the two assays 
at the subclass and cluster levels (Extended Data Fig. 3).

Next, we assessed the accuracy of the SMART-seq isoform quantifica-
tion and its concordance with 10xv3 quantifications of isoforms. Since 
not all isoforms can be quantified from 10xv3 3′-end data, we examined 
only isoforms containing some unique 3′ UTR sequence. This enabled 
us to validate the isoform quantifications using a different method 
(Methods). To extract isoform quantifications from 10xv3 data in cases 
where there was a unique 3′ sequence, we relied on transcript compat-
ibility counts32 produced by pseudoalignment with kallisto24. We were 
able to validate the SMART-seq isoform shift predictions at both the 
subclass and cluster levels (Extended Data Fig. 4). The isoform abun-
dance correlations are slightly lower than those for gene abundance 
estimates (Extended Data Fig. 3), but sufficiently accurate to identify 
significant isoform shifts, consistent with benchmarks showing that 
isoforms can be quantified accurately from full-length bulk RNA-seq33.

Having validated the cluster assignments and isoform abundance 
estimates, we tested for isoform switches for 16 cell subclasses exclud-
ing low quality cells (example in Fig. 2d), and then for 48 distinct clusters 
for subclasses that have more than one cluster (example in Fig. 2e) and 
more than 5 cells per cluster (Methods). At the higher level of 16 cell 
subclasses, we found a total of 654 isoforms from 550 genes within 
the glutamatergic class and 381 isoforms from 332 genes within the 
GABAergic class exhibiting isoform shifts among the 16 cell subclasses 
despite constant gene abundance (Supplementary Table 2a, b). There 
are several notable examples of isoform shifts at this level. For exam-
ple, we find a shift in the Snap25-202 isoform, whose expression has 
been specifically shown to be correlated with age and to differentially 
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Fig. 1 | Measuring RNA with multiple platforms. RNA is measured using 
gene-tagging techniques such as the 10x Chromium scRNA-seq protocol, 
isoform sequencing techniques such as SMART-seq, and spatial RNA-capture 
techniques such as MERFISH. High-cell-throughput gene tagging enables 
cell-type identification with marker genes and deep full-length isoform 

sequencing enables cell-type marker refinement at the isoform level. Spatial 
RNA capture coupled with gene tagging and isoform sequencing enables 
spatial resolution of cell-type-specific isoform markers. The multi-method 
procedure for sampling RNA enables inference of spatially resolved cell-type- 
specific isoforms that no single technique could achieve independently51.
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regulate synaptic transmission and synaptic plasticity at central syn-
apses34,35. This isoform marks the L6b subclass (Fig. 2d). At the cluster 
level, we found 923 isoforms from 823 genes exhibiting isoform shifts 
among the 48 clusters passing filter despite constant gene abundance 
(Supplementary Table 3). Another isoform of note that marks the L6b 
Ror1_ 1 cluster, a subset of cells in the L6b subclass, is the Stxbp2-207 
isoform whose gene Stxbp2 has previously been detected in the sub-
thalamic nucleus and the posterior hypothalamus36.

Assaying both male and female mice enabled us to examine 
sex-specific effects in all subclasses except for the L5 IT, which was 
excluded owing to batch effect (Supplementary Fig. 4). In total, these 
subclasses exhibited 418 sex-specific isoforms, averaging 40 iso-
forms per subclass (Supplementary Table 7). Unlike a recent study 
that reported a sex-specific cell type in the ventromedial nucleus of 
the hypothalamus37, we do not find any sex-specific subclasses. How-
ever, we observed several autosomal isoforms that were differentially 
expressed between male and female mice. Among these, the Shank1-203 
isoform is differential in Vip neurons, a finding that refines previous 
data showing that Shank1, which has been shown to localize in Purkinje 
cells in the cortex38, is a sex-specific gene whose expression is regulated 
by sex hormones39.

We also investigated instances where clusters could be refined 
according to isoform expression. After reclustering each 10xv3-derived 
cluster using SMART-seq isoform quantifications (see Methods), we 
found that 12 clusters can be split by isoforms. Examining the L6 CT 
Grp_1 cluster, we find that the average effect size for differential iso-
forms that split the cluster into two sub-clusters is higher than that for 
genes (Extended Data Fig. 5). One isoform in particular, which splits 
the L6 CT Grp_1 cluster, is a protein-coding isoform of the amyloid 
precursor protein gene (App). Dysregulation of splicing for isoforms 
of App have been associated with disease pathogenesis in Alzheimer 
disease models40. Our findings show that isoform-level expression can 
help refine cell types in the mouse MOp beyond what is possible using 
gene-level expression estimates.

Along with isoforms detectable as differential between cell types 
without change in gene abundance, we identified isoform markers 
for the classes, subclasses, and clusters in the MOp ontology that are 
differential regardless of gene expression. We found 5,658 isoforms 
belonging to 3,132 genes that are specific to the glutamatergic and 
GABAergic classes (Fig. 3, Supplementary Table 4), 7,588 isoforms 
belonging to 4,171 genes within the glutamatergic class and 4,359 iso-
forms belonging to 2,614 genes within the GABAergic class exhibiting 
isoform shifts specific to subclasses (Supplementary Table 5a, b), and 
for the 48 clusters passing filter, 3,171 isoforms belonging to 2,461 genes 
exhibiting isoform shifts in clusters (Supplementary Table 6). Together, 
these form an isoform catalogue of the MOp (Supplementary Fig. 5a, b).

Spatial isoform specificity
Spatial scRNA-seq methods are not currently well suited to directly 
probing isoforms of genes owing to the number and lengths of probes 
required—however, spatial analysis at the gene level can be refined 
to yield isoform-level results by extrapolating SMART-seq isoform 
quantifications (Fig. 3, Supplementary Fig. 5c).

Figure  4a, b shows an example of a gene, Pvalb, for which the 
SMART-seq quantification reveals that of the two isoforms of the gene, 
only one, Pvalb-201, is expressed. Moreover, this effect is specific to 
the Pvalb cell subclass (Fig. 3). In an examination of MERFISH spa-
tial single-cell RNA-seq derived from 64 slices from the MOp region 
(Extended Data Fig. 6a), the Pvalb subclass, for which Pvalb is a marker, 
can be seen to be dispersed throughout the motor cortex spanning all 
layers (Extended Data Fig. 6b). While MERFISH probes only measure 
abundance of Pvalb at the gene level (Fig. 4c), extrapolation from the 
SMART-seq quantifications can be used to refine the MERFISH result to 
reveal the spatial expression pattern of the Pvalb-201 isoform.

This extrapolation can be done systematically. To build a spatial 
isoform atlas of the MOp, we identified differentially expressed genes 
from the MERFISH data (Supplementary Table 8a, b) and for each of 
them checked whether there were SMART-seq isoform markers (from 
Supplementary Table 5a, b). An example of the result is shown in Fig. 3, 
which displays one gene for each cluster, together with the isoform 
label specific to that cluster and the spatial location of the specific 
cluster within a slice of the mouse MOp.
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Fig. 2 | Isoform specificity in the absence of gene specificity. a, Overview of 
the data analysed. The clustering method used by the BICCN consortium 
generates three hierarchies of cells: classes, subclasses and clusters. NA, not 
applicable. b, A t-SNE of 10 neighbourhood components of 6,160 SMART-seq 
cells coloured according to subclass. Astro, astrocytes; CT, corticothalamic; 
endo, endothelial; IT, intratelencephalic; NN, non-neuronal; NP, 
near-projecting; PT, pyramidal tract; SMC, smooth muscle cells; VLMC, vascular 
lepotomeningeal cells. c, Example of a gene with an isoform specific to the 
glutamatergic class. The Oxr1-204 isoform distribution in log1p(transcripts per 
million (TPM)) across cells (left) superimposed on the t-SNE of the cells. The 
cells belonging to the glutamatergic class are circled. The violin plots of  
the gene and isoform distributions show that the gene is not differentially 
expressed but the isoform is (right). d, Example of a gene with an isoform 
specific to the L6b subclass. The Snap25-202 isoform distribution across cells 
(left) superimposed on the t-SNE of the cells. The cells belonging to the L6b 
subclass are circled. The violin plots of the gene and isoform distributions show 
that the gene is not differentially expressed but the isoform is (right).  
e, Example of a gene with an isoform specific to the L6b Ror1_1 cluster. The 
Stxbp2-207 isoform distribution in log1p(TPM) across cells (left) superimposed 
on the t-SNE of the cells. The cells belonging to the L6b Ror1_1 cluster are 
circled. The violin plots of the gene and isoform distributions show that the 
gene is not differentially expressed but the isoform is (right). *P < 0.01 between 
the group and its complement. In violin plots, white circles represent the mean 
and white bars represent the s.d.
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We hypothesized that the mouse MOp exhibits changes in isoform 
expression associated with the physical location of cells41,42. To deter-
mine whether there are isoforms that increase or decrease in expression 
along the depth of the motor cortex, we first estimated the position 
of the various layers in the glutamatergic subclasses (Extended Data 
Fig. 7a, Methods), performed weighted least-squares regression on 
the centroids of the subclasses and inferred isoform expression from 
the SMART-seq data. While we find many isoforms that exhibit a sig-
nificant change in expression across the depth (Extended Data Fig. 7b, 
c, Supplementary Table 8c), none of the isoforms that pass our filter 
exhibit a monotonic change with respect to the mean. This suggests 
that non-linear models may be better suited to study isoform variability 
across the depth of the mouse MOp.

While direct measurement of isoform abundance may be possible 
with spatial RNA-seq technologies such as SEQFISH37 or MERFISH2, 
such resolution would require dozens of probes to be assayed per 
gene (Supplementary Fig. 6), each of which is typically tens of base 
pairs in length. Thus, while isoforms can theoretically be detected 
in cases where they contain large stretches of unique sequence, the 
technology is currently prohibitive for assaying most isoforms, mak-
ing the extrapolation procedure described here of practical relevance  
(Supplementary Table 9).

Splicing markers
Isoform quantification of RNA-seq can be used to distinguish shifts in 
expression between transcripts that share transcriptional start sites 
and shifts due to the use of distinct transcription start sites (TSSs). 
Investigating such differences can, in principle, shed light on tran-
scriptional versus post-transcriptional regulation of detected isoform 
shifts43,44. For example, in the glutamatergic class, Ptk2b (Extended 

Data Fig. 8a) exhibits differential expression of transcripts between 
start sites (Extended Data Fig. 8b). This gene is known to be associ-
ated with Alzheimer’s disease and its transcript usage is mediated 
by genetic variation45. We find that isoforms sharing the preferential 
start site exhibit no discernible difference in expression (Extended 
Data Fig. 8c), suggesting that the observed differences result from 
cell-type-specific transcriptional, rather than post-transcriptional 
regulation. We identified 1,971 isoforms from 128 groups of TSSs where 
the TSSs are preferentially expressed in either GABAergic, glutamater-
gic or non-neuronal classes, even when the expression of isoforms 
contained within the TSS is constant (Supplementary Table 10a, c, d). 
Such cases are likely to be instances where the TSS shifts between cell 
types are a result of differential promoter usage—that is, the result of 
a transcriptional program.

We also examined post-transcriptional programs (Supplementary 
Table 10b), instances where the TSSs are not differential between 
classes, but where there are isoform shifts within TSSs between classes. 
We find 31 isoforms from 28 TSS groups that are differential between 
classes when the TSS group is not. One such example is expression 
of isoforms Rtn1-201 and Rtn1-203, which share the same TSS in the 
Rtn1 gene. The glutamatergic class exhibits preferential expression 
of Rtn1-201, which was previously shown to be expressed in grey mat-
ter46, whereas the GABAergic class does not (Extended Data Fig. 9). 
These cases are likely to be instances where isoform shifts between 
cell types are a result of differential splicing—that is, the result of a 
post-transcriptional program.
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Discussion
Our spatially resolved isoform atlas of the mouse MOp expands on 
previously identified gene markers, extending the catalogue to isoform 
markers for cell types characterized by the BICCN22. Our approach 
leverages distinct strengths of different technologies, using the iso-
form resolution of SMART-seq in conjunction with the complementary 
cell depth obtainable with 10x Genomics technology and the spatial 
resolution produced with MERFISH to spatially place cell-type isoform 
markers. This validated approach, in which we leverage technologies 
that are broadly consistent (Extended Data Fig. 10) yet complemen-
tary in their strengths, is important because isoform specificity could 
help in explaining the molecular basis of morphological differences. 
For example, Pvalb cells observed in hippocampal Pvalb interneu-
rons cannot be distinguished morphologically solely on the basis of 
gene-level analysis9,47,48.

Spatial isoform markers also enable more targeted assays for ‘auto-
matic expression histology’ and can facilitate investigation of the 
functional significance of cell-type isoform specificity. Recently devel-
oped experimental methods for this purpose—for example, isoform 
screens49—are a promising direction and will be key to understanding 
the significance of the vast isoform diversity in the brain50.
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Methods

All of the results and figures in the paper are reproducible starting 
with the raw reads using scripts and code downloadable from https://
github.com/pachterlab/BYVSTZP_2020. The repository makes the 
method choices completely transparent, including all parameters and 
thresholds used. All P-values were corrected using Bonferroni correc-
tion and all error bars denote ±1× s.d. from the mean.

Tissue collection and isolation of cells
Mouse breeding and husbandry. All procedures were carried out in ac-
cordance with Institutional Animal Care and Use Committee protocols 
at the Allen Institute for Brain Science. Mice were provided food and 
water ad libitum and were maintained on a regular 12-h day:night cycle 
at no more than five adult animals per cage. For this study, we enriched 
for neurons by using Snap25-IRES2-Cre mice52 (MGI:J:220523) crossed 
to Ai1453 (MGI: J:220523), which were maintained on the C57BL/6J back-
ground (RRID:IMSR_JAX:000664). Mice were euthanized at 53−59 days 
of postnatal age. Tissue was collected from both males and females for 
scRNA SMART and scRNA 10x v3 analysis.

Single-cell isolation. We isolated single cells by adapting previously 
described procedures14,31. The brain was dissected, submerged in 
artificial cerebrospinal fluid (ACSF)31, embedded in 2% agarose and 
sliced into 250-μm (SMART-seq) or 350-μm (10x Genomics) coronal 
sections on a compresstome (Precisionary Instruments). The Allen 
Mouse Brain Common Coordinate Framework version 3 (CCFv3, 
RRID:SCR_002978)54 ontology was used to define MOp for dissections.

For SMART-seq, MOp was microdissected from the slices and dis-
sociated into single cells with 1 mg ml−1 pronase (Sigma P6911-1G) and 
processed as previously described31. For 10x Genomics analysis, tissue 
pieces were digested with 30 U ml−1 papain (Worthington PAP2) in ACSF 
for 30 min at 30 °C. Enzymatic digestion was quenched by exchanging 
the papain solution three times with quenching buffer (ACSF with 1% FBS 
and 0.2% BSA). The tissue pieces in the quenching buffer were triturated 
through a fire-polished pipette with 600-µm diameter opening approxi-
mately 20 times. The solution was allowed to settle and supernatant 
containing single cells was transferred to a new tube. Fresh quenching 
buffer was added to the settled tissue pieces, and trituration and super-
natant transfer were repeated using 300-µm and 150-µm fire polished 
pipettes. The single-cell suspension was passed through a 70-µm filter 
into a 15-ml conical tube with 500 µl high-BSA buffer (ACSF with 1% FBS 
and 1% BSA) at the bottom to help cushion the cells during centrifuga-
tion at 100g in a swinging-bucket centrifuge for 10 min. The supernatant 
was discarded and the cell pellet was resuspended in quenching buffer.

All cells were collected by fluorescence-activated cell sorting (BD Aria 
II, RRID: SCR_018091) using a 130-μm nozzle. Cells were prepared for 
sorting by passing the suspension through a 70-µm filter and adding DAPI 
(to the final concentration of 2 ng ml−1). The sorting strategy was as previ-
ously described31, with most cells collected using the tdTomato-positive 
label. For SMART-seq, single cells were sorted into individual wells of 
8-well PCR strips containing lysis buffer from the SMART-seq v4 Ultra 
Low Input RNA Kit for Sequencing (Takara 634894) with RNase inhibitor 
(0.17 U μl−1), immediately frozen on dry ice, and stored at −80 °C. For 10x 
Genomics, 30,000 cells were sorted within 10 min into a tube containing 
500 µl of quenching buffer. Each aliquot of 30,000 sorted cells was gently 
layered on top of 200 µl of high-BSA buffer and immediately centrifuged 
at 230g for 10 min in a swinging-bucket centrifuge. Supernatant was 
removed and 35 µl of buffer was left behind, in which the cell pellet was 
resuspended. The cell concentration was quantified, and immediately 
loaded onto the 10x Genomics Chromium controller.

Genomic library preparation and sequencing
For SMART-seq library preparation, we performed the procedures 
with positive and negative controls as previously described31. The 

SMART-seq v4 (SSv4) Ultra Low Input RNA Kit for Sequencing (Takara 
634894) was used to reverse transcribe poly(A) RNA and amplify 
full-length cDNA. Samples were amplified with 18 cycles in 8-well 
strips, in sets of 12–24 strips at a time. All samples proceeded through 
Nextera XT DNA Library Preparation (Illumina Cat# FC-131-1096) using 
Nextera XT Index Kit V2 (Illumina FC-131-2001) and a custom index set 
(Integrated DNA Technologies). Nextera XT DNA Library preparation 
was performed according to the manufacturer’s instructions, with a 
modification to reduce the volumes of all reagents and cDNA input to 
0.4× or 0.5× of the original protocol.

For 10x v3 library preparation, we used the Chromium Single Cell 
3′ Reagent Kit v3 (10x Genomics 1000075). We followed the manufac-
turer’s instructions for cell capture, barcoding, reverse transcription, 
cDNA amplification, and library construction. We targeted sequencing 
depth of 120,000 reads per cell.

Sequencing of SMART-seq v4 libraries was performed as described31. 
In brief, libraries were sequenced on an Illumina HiSeq2500 platform 
(paired-end with read lengths of 50 bp). The 10x v3 libraries were 
sequenced on Illumina NovaSeq 6000 (RRID:SCR_016387).

Pre-processing single-cell RNA-seq data
The 6,295 SMART-seq cells were processed using kallisto with the 
‘kallisto pseudo’ command24. The 94,162 10x Genomics v3 cells were 
pre-processed with kallisto and bustools55. Gene-count matrices were 
made by using the -genecounts flag and TCC matrices were made by 
omitting it. The mouse transcriptome reference used was GRCm38.p3 
(mm10) RefSeq annotation gff file retrieved from NCBI on 18 January 
2016 (https://www.ncbi.nlm.nih.gov/genome/annotation_euk/all/), 
for consistency with the reference used by the BICCN consortium22.

The GTF and the GRCm38 genome fasta file (https://github.com/
pachterlab/BYVSTZP_2020/releases/tag/biorxiv_v1), provided by 
the BICCN consortium, were used to create a transcriptome fasta file, 
transcripts-to-genes map, and kallisto index using kb ref -i index.idx, 
-g t2g.txt -f1 transcriptome.fa genome.fa genes.gtf. To validate the 
SMART-seq isoform quantifications, we first examined the robust-
ness of the quantifications to gene annotation, and found an average 
correlation at the isoform level of 0.965 between the BICCN-derived 
quantifications we used in our analysis22 and the mouse GENCODE 
M25-derived quantifications (Supplementary Fig. 3). The GENCODE 
M25 mouse transcriptome reference (https://github.com/pachterlab/
BYVSTZP_2020/blob/master/reference/gencode/fasta_link.txt) and 
the kallisto index were built using kallisto index -i index.idx gencode.
vM25.transcripts.fa.gz.

Isoform and gene-count matrices were generated for the Smart-seq2 
data using the kallisto pseudo command. Cluster assignments were 
associated with cells using cluster labels generated by the BICCN 
consortium22. The labels are organized in a hierarchy of three levels: 
classes, subclasses and clusters. The cluster labels for the cells can be 
downloaded from https://github.com/pachterlab/BYVSTZP_2020.

Clustering and cell type assignment
Our analyses used SMART-seq cell labels produced by the BICCN22. In 
brief, the assignment of cell types to the SMART-seq cells was based 
on an extension of the cluster merging algorithm in the scrattch.hicat 
package31. The clustering method generates three hierarchies of cells: 
classes, subsets of cells within classes called subclasses, and subsets 
of cells within subclasses called clusters.

To build a common adjacency matrix incorporating samples from 
all the datasets, first a subset of datasets (reference datasets) was 
selected. The 10x v2 single cell dataset from Allen (scRNA 10x v2 A) 
and 10x v3 single nucleus dataset from Broad (snRNA 10x v3 B) were 
used as references.

The key steps of the pipeline are as follows: (1) perform single-dataset 
clustering, (2) select anchor cells for each reference dataset, (3) 
select highly variable genes (HVG), (4) compute k-nearest neighbors,  
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(5) compute the Jaccard similarity, (6) perform Louvain clustering, 
(7) merge clusters, (8) cluster iteratively, and (9) compile and merge 
clusters. Further details are in ref. 22.

Normalization and filtering of SMART-seq data
Isoform counts were first divided by the length of transcript to obtain 
abundance estimates proportional to molecule copy numbers. Since 
reads can come from anywhere in the transcriptome, it is likely that 
longer isoforms are enriched. Therefore normalizing isoform abun-
dances by length is crucial to accurately estimating mRNA copy number. 
This has been shown in numerous studies on the accurate estimate of 
isoform abundance56,57.

After normalizing by length, we then removed isoforms that had 
fewer than one count and that were in fewer than one cell. We also 
removed genes and their corresponding isoforms that had a disper-
sion of less than 0.001.

To generate the cell-by-gene matrix we summed the isoforms that 
correspond to the same gene. Cells with fewer than 250 gene counts and 
with greater than 10% mitochondrial content were removed. Cells were 
normalized to TPM by dividing the counts in each cell by the sum of the 
counts for that cell, then multiplying by 1,000,000. The count matrices 
were then transformed with log1p and the columns were scaled to unit 
variance and zero mean. The resulting gene and isoform matrix con-
tained 6,160 cells and 19,190 genes, corresponding to 69,172 isoforms.

Highly variable isoforms and genes were identified by first computing 
the dispersion for each feature, and then binning all of the features into 
20 bins. The dispersion for each feature was normalized by subtracting 
the mean dispersion and dividing by the variance of the dispersions 
within each bin. Then the top 5,000 features were retained based on the 
normalized dispersion. This was computed58 using scanpy.pp.highly_
variable_genes with n_top_genes = 5000, flavor=seurat, and n_bins=20.

Normalization and filtering of 10xv3 data
To generate the cell-by-gene matrix we used ‘bustools count –gene-
counts’. The cell-by-isoform matrix was generated using ‘bustools 
count’ and restricting to the equivalence classes that contained only 
one isoform thus generating a cell-by-isoform matrix. Both matrices 
were loaded into python using kb python. Cells with less than 250 
gene counts and with greater than 21.5% mitochondrial content were 
removed. Cells were normalized to counts per million (CPM) by divid-
ing the counts in each cell by the sum of the counts for that cell, then 
multiplying by 1,000,000. The count matrices were then transformed 
with log1p and the columns scaled to unit variance and zero mean. 
The resulting gene matrix contained 94,162 cells and 24,575 genes. 
We removed the cells that were identified as low quality by the BICCN 
consortium. We identified batch effect among cells assayed on differ-
ent dates so we restricted our analysis to only the cells assayed on the 
same date and selected the date with the most number of cells (Sup-
plementary Fig. 2). Additionally, we performed pairwise comparison 
of gene counts for each of the 4 10xv3 batches and found the Pearson 
correlation to be very high for all pairs, with a mean of 0.9979 indicat-
ing limited batch effect between batches assayed on the same date.

Highly variable isoforms and genes were identified by first computing 
the dispersion for each feature, and then binning all of the features into 
20 bins. The dispersion for each feature was normalized by subtracting 
the mean dispersion and dividing by the variance of the dispersions 
within each bin. Then the top 5,000 features were retained based on the 
normalized dispersion. This was computed using58 scanpy.pp.highly_
variable_genes with n_top_genes = 5000, flavor=seurat, and n_bins=20.

Dimensionality reduction and visualization
To visualize the SMART-seq data with predefined cluster labels pro-
duced via a joint analysis with many other data types we performed 
NCA59 on the full scaled log(TPM + 1) matrix using the subcluster 
labels, to ten components. t-SNE26 was then performed on the 10 NCA 

components. NCA takes as input not just a collection of cells with their 
associated abundances, but also cluster labels for those cells, and seeks 
to find a projection that minimizes leave-one-out k-nearest neighbour 
error59. Moreover, t-SNE applied to PCA (Supplementary Fig. 1b) scram-
bles the proximity of glutamatergic and GABAergic cell types, while 
t-SNE of NCA appears to respect global structure of the cells. While 
UMAP applied to PCA of the data (Supplementary Fig. 1c) appears to 
be better than t-SNE in terms of preserving global structure, it still does 
not separate out the cell types as well as NCA (Supplementary Fig. 1d). 
t-SNE was computed using sklearn.manifold. t-SNE was generated with 
default parameters and random state 42. Similarly uniform manifold 
approximation was performed on the 10 NCA components and the 50 
truncated singular value decomposition (SVD)-derived components. 
UMAP27 was computed with the umap package with default parameters.

To ensure that NCA was not overfitting cells to their corresponding 
subclasses, we randomly permuted all of the subclasses labels and reran 
the NCA-to-t-SNE dimensionality-reduction method. We observed 
uniform mixing of the permuted subclass labels, indicating that NCA 
was not overfitting the cells to their corresponding subclasses.

Sample size
No explicit calculations were performed to determine sample size. We 
analysed 6,160 mouse MOp cells assayed with SMART-seq, 280,327 cells 
assayed with MERFISH, and 94,162 cells assayed with 10x Genomics 
Chromium v3. We analysed both male and female mice to understand 
differences in gene and isoform expression. The sample size for dif-
ferential expression was set to be such that 90% of cells in a cluster 
have a non-zero expression of the tested gene. The smallest cluster 
size contained seven cells, with all cells having non-zero expression of 
the tested genes. We computed error bars for all tests to ensure that 
sample sizes were sufficient.

Batch effects
After finding a meaningful projection that appears to respect global 
structure of the cells we searched for possible sources of batch effect 
within the datasets. We found evidence of batch effect in the 10xv3 
data by assay date (Supplementary Fig. 2a). To ensure that our findings 
were not confounded by this batch effect we selected the set of cells 
from only one assay date and picked the set with the largest number of 
cells and the one with cells present in all clusters. We then looked at the 
MERFISH data and found minimal evidence of batch effect across sam-
ples based on the distribution of batch labels across clusters where the 
observed fraction of cells per batch in each cluster was almost exactly 
the expected fraction of cells per batch assuming uniform mixing (Sup-
plementary Fig. 2b).

In further examining the single 10xv3 batch we settled on, we noted 
a low correlation in one case, the L5 IT subclass. The low correlation 
was also observed in a comparison between SMART-seq and MERFISH 
gene expression data (Extended Data Fig. 10a), and 10xv3 and MERFISH 
data (Extended Data Fig. 10b). We hypothesized that this low correla-
tion stems from a subclass-specific sex effect within the L5 IT, where 
those cells differ drastically in their overall expression compared to 
other subclasses. The L5 IT subclass contains seven clusters in the 
SMART-seq data, four clusters in the 10xv3 data, and four clusters in 
the MERFISH data.

To determine the source of the low correlation within the L5 IT 
between SMART-seq, 10x and MERFISH data, we examined differential 
genes between male and female cells within each subclass. We found 
that cells within the L5 IT of the 10x and SMART-seq data exhibited 
sex-specific segregation (Supplementary Fig. 4a, b). After perform-
ing differential expression between male and female cells within all 
subclasses we found that the L5 IT had the highest amount of uniquely 
differential genes (Supplementary Fig. 4c) and that the SMART-seq 
and 10x data had 37 common genes that were differentially expressed 
(Supplementary Fig. 4d). The other subclasses, however, did not exhibit 
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sex-based segregation. Without being able to rule out that the low 
correlation for L5 IT cells across the technologies was due to confound-
ing between batch and sex in the dataset, we decided to excluded the 
subclass from our analyses.

Measuring number of isoforms per gene
We parsed the transcripts-to-genes map, grouping together transcripts 
that had the same end site that were in the same gene. We then counted 
the number of these end site sets within a gene and plotted them against 
the number of isoforms within that gene.

Cross-technology cluster correlation
The correlation between 10xv3-SMART-seq, 10xv3-MERFISH, and 
SMART-seq-MERFISH, was performed at the gene level and between 
cells grouped by subclasses for all three pairs of technologies, and at 
the isoform level and between cells grouped by cluster for only the 
10xv3 and SMART-seq. For each pair we started with two raw matri-
ces and restricted to the set of genes or isoforms common to the two. 
Then we normalized the counts for each matrix per cell to one million, 
log1p-transformed the entire matrix, and scaled the features to zero 
mean and unit variance. Within each cluster, we restricted the features 
to those present in at least 50% of the cells. We then found the mean cell 
within the respective clusters in the two matrices and computed the 
Pearson correlation between them. These methods were implemented 
for Extended Data Figs. 3, 4, 10. In terms of accuracy of different tech-
nologies, we found good agreement between quantifications from 
SMART-seq, 10xv3 and MERFISH (Extended Data Fig. 10).

Comparisons of different scRNA-seq technologies have tended to 
focus on throughput, cost and gene-level accuracy60 in a winner-takes-all 
competition. Our results shed some light on the matter; it has been pre-
viously shown that quantification of isoform abundance is necessary 
for accurate gene-level estimates61, and we found that it matters in 
practice (Supplementary Fig. 7, Supplementary Tables 11a, b, 12a, b). 
This highlights the importance of proper isoform quantification of 
SMART-seq data, even for gene-centric analysis56,60–63, when used in 
conjunction with 10x Genomics and MERFISH data.

Isoform atlas
For each level of clustering, class, subclass and cluster, we performed a 
t-test for each gene or isoform between the cluster and its complement 
on the log1p counts. To identify isoform enrichment that is masked at 
a gene-level analysis, we looked for isoforms that were upregulated by 
checking that the gene containing that isoform was not significantly 
expressed in that cluster relative to the complement of that cluster. 
Isoforms that were expressed in less than 90% of the cells in that cluster 
were ignored. All t-tests used a significance level of 0.01 and all P-values 
were corrected for multiple testing using Bonferroni correction.

MERFISH isoform extrapolation
First, we identified the genes that mark the specific subclass within 
the MERFISH data. The Pvalb gene is a marker for the Pvalb subclass. 
Then we performed differential analysis on the SMART-seq data at 
the isoform level on the subclasses to identify the isoforms that mark 
each of the SMART-seq subclasses. Only one of the two isoforms for 
Pvalb marked the Pvalb cluster. This allowed us to extrapolate the fact 
that the specific Pvalb isoform is being detected in the MERFISH data.

Additionally, we identified all of the genes that mark the specific sub-
classes in the MERFISH data through differential analysis and checked 
if their underlying isoforms were also differentially expressed. We then 
noted which isoforms were differentially expressed for the spatial 
isoform atlas.

Weighted least-squares regression
First, we selected a representative slice of the MOp. Then we found the 
outer hull of the MOp by using scipy.spatial.ConvexHull. We selected 

the points that defined the upper boundary of the Mop, then performed 
linear regression to fit a line to those points using sklearn.linear_model.
LinearRegression(). For each subclass in the glutamatergic class of 
cells we identified the centroid of the subclass and determined the 
perpendicular distance of the centroid to the MOp boundary line. We 
normalized the set of distances by dividing by the centroid with the 
largest distance to the boundary.

We look at the isoforms for which all of the subclasses had non-zero 
expression in at least 90% of cells. For each isoform, we performed 
weighted least squares regression for all of the subclasses with the 
weights equal to the variance of isoform expression for each sub-
class. We used the statsmodel.api.sm.WLS function. All weighted 
least-squares tests used a significance level of 0.01 and all F-score 
P-values were corrected for multiple testing using Bonferroni correc-
tion. Monotonicity was checked for isoforms with an absolute value 
slope greater than 1.5.

Grouping transcripts by start site
Using the transcripts to genes map and the filtered isoform matrix, we 
grouped isoforms by their TSS into TSS classes and summed the raw 
counts for the isoforms within each TSS class to create a cell-by-TSS 
matrix. Differential analysis was then performed in exactly the same 
way as above. For each cluster and each TSS or isoform, a t-test was per-
formed between the cells in that cluster and the cells in the complement 
of that cluster. All statistical tests used a significance level of 0.01 and all 
P-values were corrected for multiple testing using Bonferroni correction.

Comparison of naive and EM quantification
Naive gene-count matrices were constructed from the SMART-seq data 
by summing the counts corresponding to a single gene. Gene-count 
matrices quantified by the expectation maximization (EM) algorithm and 
normalized appropriately were made with SMART-seq by first dividing 
isoform abundances by the length of their transcripts, and then summing 
the abundances of isoforms by gene. Differential analysis was performed 
independently on these two gene-count matrices and the resultant differ-
ential genes were compared. Differential expression was then performed 
on all of the genes for both the EM and naive gene quantifications. All 
statistical tests used a significance level of 0.01 and all P-values were 
corrected for multiple testing using Bonferroni correction.

Software versions
Software versions used were: Anndata 0.7.1, bustools 0.39.4, awk (GNU 
awk) 4.1.4, grep (GNU grep) 3.1, kallisto 0.46.1, kb_python 0.24.4, Mat-
plotlib 3.0.3, Numpy 1.18.1, Pandas 0.25.3, Scanpy 1.4.5.post3, Scipy 
1.4.1, sed (GNU sed) 4.4, sklearn 0.22.1, statsmodels 0.12.1, tar (GNU 
tar) 1.29, umap 0.3.10.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The single-cell RNA-seq data used in this study were generated as part 
of the BICCN consortium22. The 10xv3 and SMART-seq data can be 
downloaded from http://data.nemoarchive.org/biccn/lab/zeng/tran-
scriptome/scell/. The MERFISH data are available at https://caltech.
box.com/shared/static/dzqt6ryytmjbgyai356s1z0phtnsbaol.gz. All 
cell annotations and cluster labels are available at https://github.com/
pachterlab/BYVSTZP_2020/tree/master/reference.

Code availability
The software used to generate the results and figures of the paper is 
available at https://github.com/pachterlab/BYVSTZP_2020.
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Extended Data Fig. 1 | 10xv3 neighborhood component analysis. 
Neighborhood component analysis (NCA) to 10 dimensions followed by 
t-distributed stochastic neighbor embedding (t-SNE) of 26,845 10xv3 cells 

from the mouse primary motor cortex annotated with cell subclass 
assignments. The number of cells in each subclass is displayed next to the 
subclass label.



Extended Data Fig. 2 | Cell type identification and isoform summary 
statistics. a) Comparison of subclass identification for 10xv3 and SMART-seq. 
Each technology identified subclasses separately, but with the same method. 
56 clusters with gene markers were identified in the 10xv3 data but not in the 
SMART-seq data while 39 clusters with gene markers were identified in the 
SMART-seq data and not the Chromium data. b) The distribution of the number 
of isoforms per gene within each of 18 subclasses, computed from the top 998 

most highly expressed genes in the SMART-seq dataset. The number 
associated with each class indicates the fraction of genes for which there are 
more than one isoform. c) Extent of isoform diversity in groups of transcripts 
sharing a 3′ end. Each point displays the density of the number of groups 
(y-axis) containing a given number of isoforms (x-axis) for a single gene. Points 
along the line y = x correspond to genes where all transcripts contained within 
the gene have unique 3′ ends.
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Extended Data Fig. 3 | Gene level subclass validation with 10xv3 and 
SMART-seq. a) Pearson correlation by subclass of the mean gene expression in 
10xv3 and the mean gene expression in SMART-seq, against the size of the 
subclass, for genes that are expressed in at least 50% of cells in that subclass.  
b) Scatter plot by subclass of the mean gene expression in 10xv3 vs the mean 
gene expression in SMART-seq for genes that are expressed in at least 50% of 
cells in that subclass. The subclass sizes and Pearson correlation values are also 

reported. c) Pearson correlation for common clusters in the 10xv3 and 
SMART-seq datasets, computed for each cluster with respect to genes 
expressed in at least 50% of cells of the cluster. d) Scatter plot by cluster of the 
mean gene expression in 10xv3 vs the mean gene expression in SMART-seq, for 
genes that are expressed in at least 50% of cells. The cluster sizes and Pearson 
correlation values are also reported.



Extended Data Fig. 4 | Isoform level subclass validation with 10xv3 and 
SMART-seq. a) Pearson correlation by subclass of the mean isoform 
expression in 10xv3 and the mean isoform expression in SMART-seq, against 
the size of the subclass, for isoforms that are expressed in at least 50% of cells in 
that subclass. b) Scatter plot by subclass of the mean isoform expression in 
10xv3 vs the mean isoform expression in SMART-seq, for isoforms that are 
expressed in at least 50% of cells in that subclass. The subclass sizes and 
Pearson correlation values are also reported. c) Pearson correlation by cluster 

of the mean isoform expression in 10xv3 and the mean isoform expression in 
SMART-seq, against the size of the cluster, for isoforms that are expressed in at 
least 50% of cells in that cluster for clusters that are common to both the 
SMART-Seq and 10x datasets. d) Scatter plot by cluster of the mean isoform 
expression in 10xv3 vs the mean isoform expression in SMART-seq for isoforms 
that are expressed in at least 50% of cells in that cluster. The cluster sizes and 
Pearson correlation values are also reported.
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Extended Data Fig. 5 | Splitting clusters with k-means clustering on 
isoforms. a) Effect sizes for isoforms that split the L6 CT Grp_1 cluster into two 
parts is higher on average than that for genes. b) The App-205 isoform splits the 
L6 CT Grp_1 cluster into two parts where one part has a higher expression of the 
isoform whereas both halves have similar App gene expression. The white 
circles within the violin plots represent the mean and the white bars represent 

±one standard deviation. c) Each point is a cell and is painted by the log1p(TPM) 
expression of the App gene (left) and App-205 isoform (middle). K-means 
clustering splits the L6 CT Grp_1 cluster into two distinct halves marked by 
expression of App-205. The white circles within the violin plots represent the 
mean and the white bars represent ±one standard deviation.



Extended Data Fig. 6 | Spatial localization of cell types in the mouse 
primary motor cortex. a) The location of the mouse primary motor cortex, 
outlined in pink and pointed to by a black arrow. The sagittal view (left) and 

coronal view (right) are shown. Image credit: Allen Institute. b) Spatial location 
of cells in all subclasses across 64 slices from the MOp assayed with MERFISH, 
the Pvalb cells are represented by a black star.
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Extended Data Fig. 7 | Analysis of isoform expression gradients.  
a) A representative slice of the mouse primary motor cortex, as assayed by 
MERFISH, where each dot indicates the position of a cell from the 
corresponding subclass (black). The red points indicates the position of the 
centroids of those cells within the colored subclass with a line connecting the 
centroids to the boundaries of the brain slices; the distance from the centroid 
to the slice boundary is indicated by the red line. b) Volcano plot of the set of 

isoforms found to be differentially expressed across the depth of the mouse 
primary motor cortex found using weighted least squares regression. The 
isoforms with a bonferroni corrected p-value less than 0.01 and regression 
slope greater than 1.5 are colored red. c) An example of an isoform that is 
colored red in plot (b). The expression of Tubb2a-201 appears to increase 
across the depth of the motor cortex on average.



Extended Data Fig. 8 | Isoform shifts reflecting transcriptional changes. a) 
The eight isoforms of the Ptk2b gene. The 1st and 3rd isoforms from the top 
have the same transcription start site at the 5′ end of the transcript. b) 
Expression patterns of groups of transcript sharing the same transcript start 

site (TSS) from the protein tyrosine kinase 2 (Ptk2b) gene. c) Expression 
patterns of isoforms within TSS groups from the Ptk2b gene. The white circles 
within the violin plots represent the mean and the white bars represent ±one 
standard deviation.
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Extended Data Fig. 9 | Isoform shifts reflecting post-transcriptional 
changes. a) The six isoforms of the Rtn1 gene. The 3rd and 4th isoforms from 
the top have the same transcription start site at the 5′ end of the transcript.  
b) Expression patterns of groups of transcript sharing the same TSS from the 

reticulon 1 (Rtn1) gene. c) Expression patterns of isoforms within TSS groups 
from the Rtn1 gene. The white circles within the violin plots represent the mean 
and the white bars represent ±one standard deviation.



Extended Data Fig. 10 | Gene level subclass validation with SMART-seq, 
10xv3, and MERFISH. a) Pearson correlation by subclass of the mean gene 
expression in MERFISH and the mean gene expression in SMART-seq, against 
the size of the subclass, for all 254 genes in the MERFISH data. b) Pearson 
correlation by subclass of the mean gene expression in MERFISH and the mean 

gene expression in 10xv3, against the size of the subclass, for all 254 genes in 
the MERFISH data. c) Comparison of gene correlations by cell type between 
10xv3 and MERFISH, and SMART-seq and MERFISH computed using the 254 
genes assayed in the MERFISH dataset.
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J:220523), which were maintained on the C57BL/6J background (RRID:IMSR_JAX:000664). Animals were euthanized at 53−59 days of 
postnatal age. Tissue was collected from both males and females (scRNA SMART, scRNA 10x v3). (MERFISH, companion paper) Adult 
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