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A scalable open‑source MATLAB 
toolbox for reconstruction 
and analysis of multispectral 
optoacoustic tomography data
Devin O’Kelly1,2, James Campbell III1, Jeni L. Gerberich1, Paniz Karbasi2, Venkat Malladi3, 
Andrew Jamieson3, Liqiang Wang2 & Ralph P. Mason1*

Multispectral photoacoustic tomography enables the resolution of spectral components of a tissue 
or sample at high spatiotemporal resolution. With the availability of commercial instruments, the 
acquisition of data using this modality has become consistent and standardized. However, the 
analysis of such data is often hampered by opaque processing algorithms, which are challenging to 
verify and validate from a user perspective. Furthermore, such tools are inflexible, often locking users 
into a restricted set of processing motifs, which may not be able to accommodate the demands of 
diverse experiments. To address these needs, we have developed a Reconstruction, Analysis, and 
Filtering Toolbox to support the analysis of photoacoustic imaging data. The toolbox includes several 
algorithms to improve the overall quantification of photoacoustic imaging, including non-negative 
constraints and multispectral filters. We demonstrate various use cases, including dynamic imaging 
challenges and quantification of drug effect, and describe the ability of the toolbox to be parallelized 
on a high performance computing cluster.

Multispectral optoacoustic tomography (MSOT) is a relatively new imaging modality, which combines optical 
contrast and ultrasonic resolution in order to provide a highly parametric view of an imaged sample. Due to the 
high spatiotemporal resolution, MSOT captures vast quantities of information, creating potential challenges: 
How does one effectively and efficiently analyze such data? Moreover, how does one ensure that the analysis 
is done in a manner, which is transparent and verifiable, and thus trustworthy, while allowing the flexibility to 
adjust the manner of processing to accommodate the differential needs of a wide variety of experiments and 
data acquisition conditions?

To address these issues, we have created an MSOT Reconstruction, Analysis, and Filtering Toolbox (RAFT), 
enabling users of various technical skill levels to benefit from the rich information present in MSOT data, and to 
share and compare analyses between sites in a verifiable manner. The package is available as a MATLAB toolbox 
and a standalone command-line application, with plans to deploy to Docker containers for site- and platform-
independence, potential deployment to cloud computing resources, as well as to preserve archival code for 
execution. The toolbox provides a basis for users to add their own reconstruction and unmixing algorithms, but 
may also be run in a ‘black-box’ mode, driven only through external configuration files, thus providing greater 
repeatability. Scalability is addressed by parallelization within MATLAB, allowing computationally intensive 
reconstructions to be distributed across several computational workers. A Nextflow wrapper around the MAT-
LAB systems allows multiple pipelines to be run on a single computational cluster simultaneously.

Background
MSOT may be thought of as optically-encoded ultrasound; an object under brief, intense illumination absorbs 
some of the illuminating energy, converting some of that energy into heat1,2. This heat induces transient thermoe-
lastic expansion, creating a pressure wave, which travels outward from the point of absorption. If this absorp-
tion and thermal conversion process occurs in a short enough period of time, the pressure wave is temporally 
confined, creating a compact wavefront, which can be detected using ultrasonic transducers. The reconstruction 
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of the original pressure image then provides a measure of energy deposition by the original illumination, which 
may be related across multiple illumination wavelengths to yield an overall spectral image. Knowledge of the 
endmembers present allows the spectral image to be unmixed into its corresponding endmember images.

The promise of MSOT, given recent advancements in laser tuning controls, data acquisition bandwidth, and 
ultrasound transducer design, is that it can provide optical contrast with ultrasound resolution. Indeed, the 
modality is highly scalable across various temporal and spatial regimes: It may be used for super-resolution imag-
ing at the scale of tens of nanometers3–5, is becoming popular for preclinical and small animal investigations6–11 
and has been deployed for clinical usage on human subjects12–18. The rate of imaging is fundamentally limited by 
two parameters: The signal to noise ratio achievable by a given photoacoustic imaging technology, and the expo-
sure limits defined by guiding agencies. In practice, the field assumes a maximum energy deposition of 20 mJ/cm2 
at skin surface, and therefore many low-energy laser shots may be substituted for few high-energy laser shots19,20.

Beyond the nature of the acquisition devices themselves, there are numerous methods by which photoacoustic 
images may be reconstructed; these range from direct inversion algorithms analogous to the ‘delay-and-sum’ 
approaches of ultrasound21, to analytical inversions valid under specialized geometries22,23, to model-based 
approaches analogous to those used in CT and MRI22,24–29. Still further methods use the time-reversal sym-
metry of the governing equations and numerical simulation to determine the original photoacoustic energy 
distribution30,31. These all operate under the governing photoacoustic equations. Under pulsed laser light and 
the assumption of ideal point transducers, the photoacoustic equations can be written as an optical component 
(1) and an acoustic component (2)32:

Here, p denotes pressure values, assumed to instantaneously take on the values p0(�r) at each location �r 
throughout the imaging region at time t = 0 . H(�r) denotes the heating function, which is dependent on the 
Gruneisen parameter Ŵ describing the efficiency of conversion from light to heat at each point, the light fluence 
φ

(
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)

 defined throughout the imaging region for each illumination wavelength � , and the absorption coefficient 
µa

(
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)

, which describes the conversion of light fluence to absorbed energy at each point and each wavelength. 
In turn, the absorption coefficient is described by the absorption spectra εi

(

��
)

 of all endmembers present at 
each point, weighted by their concentration at that point Ci(�r) (Eq. 1).

Once light has been absorbed and converted into acoustic waves, these waves spread outward from the point 
of origin according to the wave equation with wave-fronts traveling at the speed of sound νs in the medium, 
eventually reaching the detection transducers located at �rd , each of which has a solid angle d� describing the 
contribution of each imaged point to the overall measured signal at time t  (Eq. 2). This integration over the 2D 
detection surface is denoted by the double integral in Eq. 2.

Once data have been acquired using transducer geometry −→rd  and sampled at �t  , the time-dependent photoa-
coustic data must be reconstructed into the corresponding image. Thorough overviews of the state of the field 
have been compiled by various groups1,33–35. Reconstruction may be accomplished through either direct or inverse 
methods; the former encompasses such approaches as backprojection algorithms, while the latter encompasses 
any approach using a model of image formation mapping from H(�r) to pd

(

�t,−→rd
)

 and minimizing a cost func-
tion. For any given model or reconstruction approach, a variety of parameters and constraints may be applied 
to the process to enforce certain conditions such as non-negativity, or to regularize the reconstruction process 
and emphasize certain aspects of the data.

A general representation of the reconstruction process in discrete form is given by the optimization problem

where �I  represents the reconstructed image, �d the acquired data, M the forward model mapping �I  to �d , R a 
regularization function which is a function of �I and/or �d , and � a regularization parameter which adjusts the 
influence of the regularization term in the value of the objective function. Reconstruction may be performed 
using any norm, though the L2 Euclidean norm is most commonly used.

A plethora of pre- and post-processing approaches may be added to the analysis chain; reconstruction may 
be performed on the individual images, or jointly among several multispectral images simultaneously. Unmixing 
may be performed prior to, or after, reconstruction, and both reconstruction and unmixing may themselves be 
combined into a single operation to yield unmixed images directly from multispectral ultrasound data.

It is important that analyses be transparent, verifiable, and validatable. Many approaches may give ‘suitable’ 
results in a qualitative sense, but applying further quantitative analysis to these less than quantitative intermediate 
results can lead to spurious analyses and interpretation. It is thus key that assumptions be explicit for any analy-
sis, and that the analytical provenance for a given analyzed datum be recorded. As a salient example, bandpass 
filtering of the recorded ultrasound signal and deconvolution of the transducer impulse response are common 
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preprocessing steps36, but many deconvolution methods require an assumption of white noise, which is violated 
if bandpass filtering is performed prior to deconvolution.

It is also important that a given analysis be repeatable and consistent across datasets; indeed, if one has a 
dataset that benefitted from a particular analytical chain, then one would like to easily apply the same process-
ing parameters to other datasets under similar acquisition conditions. However, given the diversity of possible 
acquisition settings, an analysis must be sufficiently flexible to accommodate the details of each particular dataset, 
such as the order of wavelengths sampled.

Numerous tools are available to address individual components of this process; K-wave is an excellent toolbox 
developed over the past several years by Treeby and Cox, largely intended to simulate pressure fields in ultra-
sound and photoacoustic imaging contexts37. Toast++ and NIRFAST are toolboxes to simulate light transport 
efficiently38,39, while MCML addresses light transport from a Monte-Carlo perspective40. FIELD-II simulates 
acoustic sensitivity fields41,42. Given the existence of such tools, it is key that they can be effectively leveraged 
into the new RAFT framework.

Lastly, for any amount of computational power or configurability, it is critical that the use of such tools be 
straightforward and consistent, and that any changes made to a codebase do not interfere with established analy-
ses or reduce the overall quality of results. It is therefore key that there be means by which the framework is tested 
and updated automatically, or at least to a level of convenience enabling update and maintenance.

We address several of these problems and believe that this new tool will provide a foundation for the future 
development of photoacoustic imaging, and that further development of the RAFT will continue to expand its 
capabilities.

MSOT‑RAFT structure.  RAFT operates in a data-driven manner, directed by a configuration file which 
describes the parameters and methods used to perform a given analysis, and which acts as a record of how a 
given dataset is processed. Defaults are provided to enable immediate usage, but users may modify these defaults 
according to their preferences. For settings which are explicitly dependent on metadata, such as the number 
of samples acquired or the location of transducers, a metadata population step loads such information into 
a standard form, thereby generalizing the pipeline’s application beyond a specific manufacturer’s technology. 
Multiple extensions of the processing pipeline to different photoacoustic data are possible through modification 
with different loaders.

Data frames are loaded using a memory-mapped data interface, allowing large datasets to be handled with-
out loading the entire dataset into memory at one time. This enables the processing to be performed even on 
workstations with minimal available memory. The action is handled by a loader, which is instantiated using the 
metadata information associated with the MSOT dataset, giving it a well-defined mapping between a single scalar 
index and the corresponding data frame. Each raw data frame is associated with acquisition metadata, such as 
the temperature of the water bath or laser energy, and is output to the next processing step.

Processing proceeds via the transformation of data frames, which are arrays of data associated with a par-
ticular, well-defined coordinate system. An example is the data frame acquired from a single laser pulse and 
the resulting acoustic acquisition. Data frames may also have additional, contextual data, such as the time of 
acquisition or excitation wavelength. Figure 1 illustrates a commonly-used processing topology, with an overall 
effect of transforming a series of single-wavelength photoacoustic data frames into a series of multi-component 
image frames.

Figure 1.   Example pipeline structure. A stream of individual single-wavelength photoacoustic data frames 
is transformed through a cascade of processing actions to yield a series of spectrally unmixed images at each 
point in time. The pipeline takes advantage of the known acquisition geometry of the system to perform 
reconstruction, and user-defined spectral endmembers to perform unmixing. Figure created using a 
combination of MATLAB and Microsoft PowerPoint.
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Coordinates explicitly describe the structure of the data contained within data frames. Coordinates may be 
vectors of scalars or vectors of vectors. An example of the former is the use of two scalar coordinates to describe 
the X and Y position of a given pixel vertex (Fig. 2a, x and y coordinates), while an example of the latter is an 
index of transducers, each of which has an associated X,Y position (Fig. 2c, �s coordinate). Transformations 
between these spaces are effected by the forward model M (Fig. 2b) and the inverse solution operator given in 
Eq. 3 (Fig. 2d).

Some processing methods require that the procedure maintain memory of its state, e.g., in the use of recursive 
filters or online processing. We therefore implemented the filters using the MATLAB System Object interface, 
which provides a convenient abstraction to describe such operator mappings, where the transformation may 
have some time-dependent internal structure. Other processing methods benefit from the assumption that each 
data frame within a dataset may be treated independently, such as in the case of reconstruction, and the use of 
an object-oriented design ensures that the processing of such datasets can be effectively parallelized.

Implementation.  The most up-to-date version of the RAFT is available at https://​doi.​org/​10.​5281/​zenodo.​
46582​79, which may have been updated since the time of writing.

The RAFT is designed in a highly polymorphic manner, allowing different methods to be applied to each step, 
and for the overall pipeline topology to change. As an example, one can perform multispectral state estimation 
on the raw data prior to reconstruction, in contrast to the topology shown in Fig. 1, where the multispectral 
state estimation occurs after reconstruction. For succinctness, we will only be illustrating the pipeline topology 
shown in Fig. 1.

Following its loading into memory and calibration for laser energy variations, each raw data frame is precon-
ditioned by subtracting the mean of each transducer’s sampled time course, deconvolving the transducer impulse 
response using Wiener deconvolution43, bandpass filtering the signal, correcting for wavelength-dependent water 
absorption with the assumption of Beer’s law attenuation44, and interpolating the data frame into the coordinate 
system expected by the reconstruction solver.

Reconstruction proceeds by assuming the independence of each data frame, and is thus parallelized across 
an entire dataset through the use of a number of distributed workers, each performing the same processing on a 
distinct region of the overall dataset. During initialization, the reconstruction system creates a model operator, 
which is used during operation to reconstruct each frame into the target image coordinate system. Each frame 
is then written to disk until processing completes.

Spectral unmixing is accomplished by providing a stream of single-wavelength data frames to a multispectral 
state filter, which estimates the true multispectral image at each point in time45. This multispectral image estimate 
is then provided to another solver system which inverts the mixing model, derived from the known wavelength 
space and the assumed endmembers present.

To readily accommodate future methods, we established a consistent input configuration for processing 
steps. Reconstruction systems are constructed by pairing an inverse solver to a forward model: The forward 
model represents the mapping from some input space (here, an image) to some output space (here, a frame of 

Figure 2.   Image-data mappings. An image (a) consisting of some explicit values, is organized according to 
the coordinate system I  . (b) Through the transformation effected by the forward model operator M , one 
determines (c) the photoacoustic data in coordinate system D . In practice, one acquires the data and (d) seeks 
to reconstruct the corresponding image through the action of some reconstruction operator R . Iterative schemes 
are often favored for the reconstruction process, and so R is implicitly dependent on the operator M . Figure 
created using a combination of MATLAB and Microsoft PowerPoint.

https://doi.org/10.5281/zenodo.4658279
https://doi.org/10.5281/zenodo.4658279
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photoacoustic data), while the inverse solver takes the model as an argument and attempts to reduce some objec-
tive function subject to some input arguments. Models have a standardized initialization signature, requiring 
an input coordinate system, an output coordinate system, and a set of model-specific parameters, which, in the 
case of MSOT, necessarily includes the speed of sound of the medium.

Pipeline parallelization.  MSOT data processing is computationally intensive, and the associated large 
problem sizes incur substantial processing time. In biological research, where cohorts of animals may be assessed 
multiple times over the course of a study, this processing time can result in prohibitively long experimental itera-
tions, hindering effective development of methods. If there is no co-dependence among individual acquisitions, 
it is possible to parallelize computationally intensive steps, and particularly desirable to do so when such steps 
require a long time to process46,47. We therefore implemented the toolbox using MATLAB’s object-oriented 
functionalities to enable one processing system to be copied among an arbitrary number of parallel workers, 
and to demonstrate the benefits of parallelization in the case of reconstruction. When many datasets are to be 
processed using the same configuration, it is desirable to parallelize the processing at the scale of datasets. To this 
end, we implemented a Nextflow wrapper around the toolbox to illustrate a possible scenario of deploying the 
toolbox on a computational cluster. With a cluster scheduler, an arbitrary number of datasets can be processed 
simultaneously, enabling substantial horizontal scalability.

Comparison of processing methods.  There is a practically infinite number of combinations and permu-
tations of different reconstruction methods, preconditioning steps, solver settings, cost functions, and analyses, 
resulting in a highly complex optimization problem. By providing means to generate arbitrary amounts of test 
data in a parametric fashion, and by describing processing pipelines using well-defined recipe files, we enable 
optimization of the complex parametric landscape describing all possible processing pipelines. We illustrate the 
use of the pipeline to assess the effects of different processing approaches in providing an end analysis.

Methods
Results were processed using MATLAB 2017b (MathWorks, Natick, MA), though we include continuous inte-
gration testing intended to provide consistency between versions. All figures were created using a combination 
of MATLAB and Microsoft PowerPoint.

All animal work was conducted under animal protocol (APN #2018-102344-C) approved by the UT South-
western Institutional Animal Care and Use Committee. All animal work was conducted in accordance with the 
UT Southwestern Institutional Animal Care and Use Committee guidelines as well as all superseding federal 
guidelines and in conformance with ARRIVE guidelines.

We verified the ability of the pipeline to perform reconstructions through the use of several testing schemes. 
First, we implemented analytical data generation, both single-wavelength and multispectral, in order to test 
the numerical properties of models and reconstructions. Data were generated consisting of random paraboloid 
absorbers across a field of view, along with the corresponding photoacoustic data, for a variety of pixel resolu-
tions. For each model, 50 random images were generated with random numbers of sources, random sizes, and 
random locations at each of the chosen resolutions, and the correspondence of each model’s forward data to the 
analytical data was quantified. The assumption of point detectors allows one to find the analytical signal expected 
at a given sampling location, and the assumption of linearity allows one to calculate the total signal from sev-
eral non-overlapping sources. This provides validation of imaging models, by comparing the known image of 
sources against the model output. We use this process to demonstrate the potential use of the RAFT as a process 
optimization tool, informing selections of methods and parameters under different use-cases.

To test the performance of the different models and solvers at different imaging resolutions, we generated 
numeric data of paraboloid absorbers. The span of each paraboloid was constrained to lie in the field of view of 
the reconstructed image. Given a known set of paraboloid parameters, it is possible to construct the correspond-
ing projection of the paraboloids onto the image space and the data space. Given the known source image, we 
compared the output of each model to the ground truth data. To compare solvers, given the output data, we 
compared the reconstructed image against the known ground truth image, creating an error image (Eq. 4). We 
quantified the mean bias (Eq. 5), average L1 (Eq. 6) and L2 norms (Eq. 7), scaled by the number of pixels in an 
image frame or reconstruction:
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The bias of the reconstruction signifies the tendency of the reconstruction process to over- or under-estimate 
the pixel values of the reconstructed image—bias values close to 0 indicate that the reconstructed values are on 
average equal to the true values. The L1 and L2 norms reflect the error in the reconstruction—lower values of 
each indicate that the solution converges to a more precise estimate of the true image values.

We additionally quantified the Structural Similarity Index (SSIM)48, a measure of image similarity, as a scale-
invariant figure of merit:

The average norms and the SSIM were calculated for the error images for each gener-
ated phantom image, and this process was repeated N = 50 times at each resolution tested 
( Nx = Ny ∈ [30, 50, 100, 150, 200, 250, 300, 350, 400] ). For the solver comparisons, we additionally calculated 
the number of negative pixels in each image as well as the relative residual at convergence for each method, with 
the relative residual given by:

To demonstrate application to biological data, we analyzed two preclinical imaging scenarios: The first (Data-
set A) was a dynamic observation of a gas challenge followed by administration of a vascular disrupting agent 
(VDA). A male NOD-SCID mouse (Envigo) with a human PC3 prostate tumor xenograft implanted subcutane-
ously in the right aspect of the back was subjected to a gas breathing challenge, while continuously anesthetized 
with 2% isoflurane. Prior to imaging, the animal was shaved and depilated around the imaging region to avoid 
optical or acoustic interference from fur. Gas flow was maintained at 2L/min throughout the imaging session and 
mouse was allowed to equilibrate in the imaging chamber for at least 10 min before measurements commenced. 
Initial air breathing was switched to oxygen at 8 min, back to air at 16 min, and again to oxygen at 24 min. At 
34 min, the animal was given an intraperitoneal injection of 120 mg/kg combretastatin A-4 phosphate (CA4P) 
in situ49–51, and observed for a further 60 min. Imaging proceeded by sampling the wavelengths [715, 730, 760, 
800, 830, 850] nm, with each wavelength oversampled 6 times, but not averaged. Overall, 52,091 frames of data 
were acquired.

The second scenario (Dataset B) examined a single gas challenge, wherein a female nude mouse (Envigo) was 
implanted with a human MDA-MB-231 breast tumor xenograft in the right dorsal aspect of the lower mammary 
fat pad. The gas challenge consisted of 11 min breathing air, 8 min breathing oxygen, followed by 10 min breath-
ing air. Imaging proceeded by sampling the wavelengths [715, 730, 760, 800, 830, 850] nm, with each wavelength 
oversampled 2 times but not averaged. Overall, 11,184 frames were acquired.

We tested the scalability of the pipeline by performing reconstruction of two experimentally-acquired data-
sets of 52,091 frames (Dataset A) and 989 frames (Dataset C, acquired during a tissue-mimicking phantom 
experiment), using two distinct indirect methods and one direct method. Reconstruction was performed using 
either the Universal Backprojection (BP) algorithm21, chosen for its intrinsic universality, or the closely related 
direct interpolated model matrix inversion28 (dIMMI) or curve-driven model matrix inversion26 (CDMMI) 
models. The two models differ in how they discretize the photoacoustic imaging equations. The dIMMI model 
uses a piecewise-linear discretization with a defined number of points sampled along the wavefront, and uses 
bilinear interpolation to assign weights to nearby pixels. CDMMI, in contrast, assumes a spherical wavefront 
and exactly calculates the arc-length of the wavefront within each pixel. The solvers used for reconstruction were 
either MATLAB’s built-in LSQR function with default parameters, or the non-negative accelerated projected 
conjugate gradient (nnAPCG) method52. The total processing time for reconstructing all frames of Dataset A 
was determined using N = [4, 8, 12, 16, 20, 24] distributed workers, while N = [1, 2, . . . , 24] distributed workers 
were applied to Dataset C.

We used the RAFT to execute two distinct processing pathways on each biological dataset, using the package’s 
default parameter settings except where otherwise specified: The first, so-called ‘unconstrained’ method, used 
the dIMMI model and an LSQR solution of the imaging equations, and a sliding-window multispectral state 
estimation filter to produce a complete multispectral image at each point in time.

Unmixing was then performed using the pseudoinverse of the mixing equations:
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Here, �I�j (�r) represents the spectral image at each wavelength �j and each pixel location �r . Variations in flu-
ence are assumed to be negligible, and so the multispectral image is assumed to be approximately equivalent to 
the actual absorption image µa . The mixing matrix E is constructed by taking the molar absorption coefficients 
of each endmember Ci at each wavelength �j . The unmixed concentration image is thus derived by multiplying 
I(�r, �� ) on the left by the pseudoinverse E+ , itself calculated by using MATLAB’s pinv function. In this work, the 
endmembers were assumed to be only oxyhemoglobin and deoxyhemoglobin, with values derived from the 
literature53.

The second, so-called “constrained” approach, used the CDMMI method and an nnAPCG solution of the 
imaging equations to provide a non-negativity constraint, and an αβ Kalata filter45 for the multispectral state 
estimation at each point in time to provide a kinematic constraint on the time-evolution of the signal. Unmixing 
was then performed using the nnAPCG solver applied to the mixing equations. The second imaging scenario was 
additionally processed using an second constrained approach, using an α Kalata filter. The α filter is very effective 
at reducing noise over time, but is unable to reliably track rapid dynamic changes in the underlying signal, caus-
ing a lagged response. The αβ filter, by contrast, has lower noise-suppression properties but is much more able to 
follow signal dynamics. This is in essence due to the fact that the α filter assumes the underlying signal is static.

All approaches were preconditioned by first subtracting the mean from each transducer’s pressure data, 
Wiener deconvolution of the impulse response function, bandpass filtering between 50 kHz and 7 MHz, and 
correction by the water attenuation coefficient for a given frame’s acquisition wavelength, assuming a general path 
length of 3 cm. All images were reconstructed at 200 × 200 resolution and a 2.5 cm field of view unless otherwise 
specified. The effects of the combination of these steps can be seen in Supplementary Fig. 1.

We assessed the variation in quantitation by several approaches. For Dataset A, we quantified the indicator 
function H−(x) of negative pixels throughout, i.e., the number of times each pixel in the reconstructed images 
attained a negative value throughout the imaging session. The occurrence of negative pixels creates interpretation 
difficulties, and it is desirable to have few or no negative pixels in a dataset. The unmixed values of hemoglobin 
([Hb]MSOT), oxyhemoglobin ([HbO2]MSOT), total hemoglobin ([HbTot]MSOT), and oxygen saturation (SO2

MSOT) were 
compared between the two methods using a randomly-sampled binned Bland–Altman analysis with 100 × 100 
bins, randomly sampling 10% of all pixels throughout the image time course. In Dataset A, the significance of 
the difference in each unmixed parameter before and after drug was quantified, using a two-population T-test 
and N = 100 frames between [19900:20000] frames and [51900:52000], corresponding to 10 s immediately before 
administration of the drug and 10 s immediately before the end of the imaging session. The T-score itself was 
used as the figure of merit. We additionally quantified the relative effect of the CA4P response by using the initial 
gas challenge as a measure of scale, relating the Cohen’s D of the CA4P response to the Cohen’s D of the transi-
tion from oxygen-air at 16 min. This was done based on the presumption that the initial gas challenge provides 
indications of the patency of vasculature, which should be related to the response to CA4P. Details of this analysis 
are presented in Supplementary Information.

The MDA-MB-231 gas challenge was assumed to have a rectangular input pO2 waveform. We quantified 
the centered correlation of each pixel in each channel for each method against this known input function, 
and calculated the mean and variance of the correlation within tumor, spine, and background ROIs, as well as 
an ROI covering the whole animal cross-section. Statistical significance of differences between each method’s 
correlation coefficient was quantified using Fisher’s Z transformation on the raw correlation coefficients and a 
two-population Z-test. Significance was set at α = 0.01 , while strong significance was set at α = 0.0001.

We additionally tested the ability of each of the processing approaches (Unconstrained, Constrained + αβ , 
Constrained + α ) to provide results which were amenable to further analysis, in this case fitting a 7-parameter 
exponential model (Supplementary Methods) to the [HbO2]MSOT time course in each pixel for each method.

Computation was performed using the UT Southwestern BioHPC computational resource; timing was cal-
culated using computational nodes with between 256 and 384 GB of RAM and 24 parallel workers.

Results
When comparing CDMMI to dIMMI in terms of accurate prediction of model output data, both methods 
performed with statistical equivalence at high resolutions (Fig. 3). At lower resolutions, there was a notable 
increase in the modelling error of the CDMMI method. This may be attributed to the problem of aliasing; the 
dIMMI method allocates additional sampling points along the integral curve during model calculation, acting 
as an anti-aliasing filter, which reduces the incidence of high-frequency artifacts exacerbated by the differentia-
tion step. However, the CDMMI model seems to indicate a trend towards statistically improved performance 
at higher resolutions.

Reconstruction performance contrasts the modelling results (Figs. 4 and 5); when images were reconstructed 
using the LSQR method (Fig. 4) and considering the L1 and L2 norms (Fig. 5d, e), the CDMMI method had 
statistically superior performance over dIMMI (N < 250), though at higher resolutions the difference was neg-
ligible. In contrast, when considering the relative residual (Fig. 4b), dIMMI provided superior reconstruction 
performance. Similar results were seen for the nnAPCG method (Fig. 5), though we note the minimum relative 
residual, L1 norm, and L2 norm were achieved at a lower resolution (N = 150). This discrepancy between the 
resolutions of minimum relative residual or norm potentially indicates a need for additional iterations at higher 
resolutions for the nnAPCG method. We note, however, that the presence of a minimum indicates that the RAFT 
itself may be optimized through the use of randomly-generated data to provide optimal reconstruction settings.

The choice of distinct reconstruction methods has a salient impact on the quality of the reconstruction, as 
well as the sensitivity of the method to solver parameters. The solution process in MSOT does not necessarily 
converge after infinite iterations due to ill conditioning of singular values, and so must be halted at an early stage, 
or a truncated singular value decomposition (T-SVD) be used as a regularization process. This explains the higher 
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variation in the various error metrics shown in Figs. 4 and 5—LSQR internally uses a more numerically stable 
algorithm and converges more efficiently than the fundamentally nonlinear nnAPCG method. Together with 
convergence, a similar question applies to analytical quality; although the absolute error of a given reconstruc-
tion may be low in a numerical or simulated environment, artifacts may appear in real data due to nonlinearities 
and modelling inaccuracies, which are not fully captured by the forward models. LSQR, despite its favorable 
numerical properties, provides no guarantees of converging to a sensible value, and due to the non-local nature 
of the photoacoustic imaging equations, errors or nonphysical values in one pixel will affect the reliability of 
values in other pixels. Due to this combination of factors, we recommend the use of the nnAPCG method when 
possible, as it provides an inherently constrained reconstruction suitable for use in further analyses, particularly 
regarding spectral unmixing. Indeed, the use of a non-negative analysis constrains the possible SO2

MSOT values 

Figure 3.   Comparison of dIMMI and CDMMI models. The dIMMI model has statistically superior 
performance in accurately modelling the photoacoustic imaging process for low image resolutions (a, b) under 
both the L1 and L2 norms. At high resolutions, CDMMI trended towards superior performance over dIMMI, 
though does not consistently achieve statistical separation. (c) Both dIMMI and CDMMI have improved SSIM 
scores as a function of pixel resolution; CDMMI achieves slightly better performance at high resolutions. Figure 
created using a combination of MATLAB and Microsoft PowerPoint.

Figure 4.   Comparison of dIMMI- and CDMMI-based reconstructions using the LSQR reconstruction 
algorithm. (a) Both models have a tendency towards increasing absolute error as a function of image size, 
though (b) the relative residual for CDMMI is higher than dIMMI for low image resolutions, converging at 
higher resolutions. (c) Both models incur similar numbers of negative pixels in their reconstructions. These 
trends are reversed, however, when considering the reconstruction L1 norm (d) and L2 norm (e) for each model, 
with CDMMI outperforming dIMMI when reconstructing at low resolutions; again, both methods perform 
similarly at high resolutions. (f) depicts the ground truth, reconstructed, difference, and SSIM images for each 
of the methods. Both methods appear to perform similarly well, and the introduction of reconstruction artifacts 
as seen in the SSIM images affects both to comparable degrees. Figure created using a combination of MATLAB 
and Microsoft PowerPoint.
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to the range of [0,1] instead of [ −∞,∞ ], which may result from various combinations of positive and negative 
values of oxy- and deoxy-hemoglobin.

Figure 6 illustrates differences in reconstructed performance for three individual pixels in distinct regions of 
a tumor in a mouse, each showing specific cases within a single study where the constrained approach provides 
benefits. Though the shapes of the time courses of each parameter within each pixel are consistent between 
methods, it is clear that the constrained method produces less noisy data. This is due in large part to the use 
of the αβ multispectral Kalata filter, which reduces inter-frame noise45. The unconstrained approach (red) also 
demonstrates the risks of using inappropriate analyses when processing data. The [Hb]MSOT values in the tumor 
pixel were negative for a large portion of the experiment (Fig. 6, Pixel 1), which resulted in [SO2]MSOT values 
exceeding 1. Such pixels can corrupt both spatial and temporal averages, but are not readily compensated; at the 
same time, the responses of these pixels have resolvable structure, indicating that there is biologically useful data 
present. The use of the constrained analysis thus provides more complete and more reliable analyses.

As applied to Dataset A, the effects of processing choice are salient: Fig. 7 shows the total number of negative-
valued pixels throughout the study. The constrained analysis yields no negative values, while the unconstrained 
analysis results in negative values in various locations through various channels. Even within the tumor bulk, 
there are substantial regions where the values of [HbO2]MSOT, [Hb]MSOT, and SO2

MSOT attain negative values. The 
presence of these values would compromise biological inference due to the non-physicality of negative values. 
Overall differences between the methods for each channel are shown in the Bland–Altman plots (Fig. 8). There 
is generally good agreement between each, though the constrained method tends to provide lower estimates 
than the unconstrained method. The presence of an overall diagonal structure reflects the non-negativity of the 
constrained analysis.

When examining changes in response to treatment, the constrained approach leads to greater significance 
when comparing each of the parameter values before and 60 min after administration of CA4P (Fig. 9), allowing 
the resolution of significant changes even in low-signal areas. Similar results were seen when considering the 
relative effect of the drug administration normalized by the oxygen-air transition response (Fig. 10). There is a 
large region of anomalous response in the [Hb]MSOT and [HbO2]MSOT channels, signified by the magenta arrows 
in Fig. 10, for both the constrained and unconstrained methods. These variations are attributable to variations 
in [Hbtot]MSOT , which may themselves be due to temperature-dependent signal changes in the animal54,55 or sys-
temic blood pressure effects due to CA4P administration56. As a result, SO2

MSOT provides a more reliable metric 
of variation due to its intrinsic calibration against [Hbtot]MSOT. Similarly, SO2

MSOT is less sensitive to variations 
in light fluence, likely due to variations in light spectrum as a function of wavelength being weaker throughout 
the bulk of the animal than the variations in light intensity. The unconstrained approach results in a greater 

Figure 5.   Comparison of dIMMI- and CDMMI-based reconstructions using the nnAPCG reconstruction 
algorithm. (a) Both models tend towards increasing absolute error as a function of image size though (b) 
the relative residual for CDMMI is higher than dIMMI for low image resolutions, converging at higher 
resolutions. (c) Neither model incurs negative pixels due to the non-negative constraint. When considering the 
reconstruction L1 norm (d) and L2 norm (e) for each model, CDMMI results in a lower norm at low resolutions; 
again, both methods perform similarly at high resolutions. (f) depicts the ground truth, reconstructed, 
difference, and SSIM images for each of the methods. Both models underestimate the true image intensity for 
high-intensity objects when reconstructed using nnAPCG, causing mismatches towards the center of each 
object. Figure created using a combination of MATLAB and Microsoft PowerPoint.
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Figure 6.   Comparison of different processing approaches implemented using the MSOT-RAFT for analysis 
of Dataset A. (a) Mean cross-sectional [Hbtot]MSOT image. S: Spine, T: Tumor. (b) Expanded view of tumor 
periphery, with pixels of interest highlighted; relative size of highlighted squares is larger than a single pixel to 
improve visibility. The unconstrained approach (red) is substantially noisier and regularly incurs non-physical 
negative values in the low-signal outer tumor (Pixel 1, [Hb]MSOT), which result in spurious values exceeding 1 
for downstream SO2

MSOT calculation (Pixel 1, SO2
MSOT). Poor SNR as seen in Pixel 2 is managed with an αβ filter 

(black), making the transitions between gases much more conspicuous. The αβ filter preserves the dynamical 
structure of each pixel as well, as seen in the transitions of Pixel 3. Figure created using a combination of 
MATLAB and Microsoft PowerPoint.

Figure 7.   Total occurrence of negative pixels in each channel for the constrained and unconstrained analyses 
on Dataset A. Animal outline shown, S: Spine, T: Tumor. The constrained analysis results in no negative 
pixels at any point throughout the imaging time course, reflecting the consistent preservation of the non-
negative constraint. The unconstrained analysis, by contrast, develops a large number of negative pixels, 
including numerous regions within the animal. Figure created using a combination of MATLAB and Microsoft 
PowerPoint.
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number of small-scale anomalous responses (Fig. 10, white arrows) due to the non-physical values of various 
parameters in those pixels. In contrast, the relative effect of the constrained SO2

MSOT is much more consistent, 
showing vessel-like structures in the response within the tumor bulk, with a dramatically reduced occurrence 
of anomalous responses.

Increases in correlation against the known pO2 waveform were seen for both the α and αβ constrained meth-
ods when compared to the unconstrained approach (Figs. 11, 12). Though the distributions of correlation were 
similar (Fig. 11), the constrained methods improved the positive correlation with [HbO2]MSOT and SO2

MSOT and 
the negative correlation with [Hb]MSOT, while having a relatively mild effect on [HbTot]MSOT (Fig. 12). Despite 
the visual similarities in correlation values between α and αβ filtered timeseries (Fig. 11), the αβ filter has the 
advantage of quickly following dynamic changes, while the α filter naturally suffers from a lag time after such 
changes. Nevertheless, the α filter suppresses noise effectively, leading to the improved correlations shown in 
Fig. 12. The improvements in correlation were particularly significant in the HbO2 and SO2 channels, possibly 
reflecting the suitability of these channels for measuring response to gas challenge. The constrained methods 
were also able to achieve better model fits, as seen in Fig. 13. The unconstrained approach provided results which 
were generally consistent with the constrained approaches, but resulted in many noncausal switching time values 
in the tumor region.

The process of reconstruction benefits from parallelization, enabling faster processing. As shown in Fig. 14, 
even a few additional logical cores, as is available on most modern processors, provided dramatically improved 
performance. The model-based approaches generally benefited more from this parallelization; due to the larger 
proportion of the processing time per-frame taken up by the solution process itself, increased parallelization 
provides greater benefit to the model-based reconstructions. Diminishing returns with increasing numbers of 
processors are attributable to network and hard-disk limitations. We note that the scaling performance is com-
parable for each method, indicating that the relative overhead of parallelization for each method is comparable.

Figure 8.   Bland–Altman plots between the constrained and unconstrained analyses on Dataset A. (a) 
[HbO2]MSOT, (b) [Hb]MSOT, (c) [Hbtot]MSOT, (d) SO2

MSOT. There is generally good agreement throughout all 
channels, though there appears to be a consistently lower estimate of all parameters using the constrained 
approach. The appearance of diagonal structure in (a–c) is due to the non-negative constraint, while the band of 
finite width in (d) is the result of the constrained method’s SO2 estimates being confined to [0,1]. Figure created 
using a combination of MATLAB and Microsoft PowerPoint.
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Discussion
The MSOT-RAFT provides a common platform for reconstructing optoacoustic tomography data in a variety 
of scenarios. The package is open-source and may be scaled to accommodate the computing resources avail-
able. Configuration of the overall pipeline during preprocessing enables the straightforward usage of default 
processing approaches, while simultaneously providing the flexibility for more sophisticated modification of 
the processing path. We note that this publication is a static record, and recommend examining the Zenodo 
repository for any updates.

Figure 9.   T-scores of difference in each parameter before and after CA4P administration in Dataset A. Across 
all channels, the constrained method results in T scores with substantially increased magnitude, corresponding 
to greater significance. The large positive region in the upper-left of the [Hb]MSOT

, [HbO2]MSOT, and [Hbtot]MSOT is 
likely due to physiological effects unrelated to the local vascular effects of CA4P or the choice of processing. This 
effect is normalized in the ratiometric calculation of SO2

MSOT. Figure created using a combination of MATLAB 
and Microsoft PowerPoint.

Figure 10.   Relative Cohen’s d (Supplementary Information) of drug administration calibrated against oxygen-
air transition during initial gas challenge in Dataset A. In both constrained and unconstrained [Hb]MSOT and 
[HbO2]MSOT images, there is a large region of anomalous relative effect (magenta arrows), likely due to changes 
in measured [Hbtot]MSOT over the course of the experiment. This large region is absent in the SO2

MSOT analyses 
due to the ratiometric calculation. More localized artifacts such as those highlighted in the unconstrained 
analysis (white arrows) are due to modelling or reconstruction inaccuracies, and so are not compensated by 
calculating SO2

MSOT. Figure created using a combination of MATLAB and Microsoft PowerPoint.
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The MSOT-RAFT is accessible through a variety of interfaces, whether as a MATLAB toolbox or as a compiled 
executable library usable through other methods, with imminent deployment of Docker images capable of run-
ning on Singularity-enabled high performance computing environments. This allows it to be flexibly used in a 
broad array of contexts, whether running on an individual machine or as a component of a much larger distrib-
uted processing pipeline. There are numerous additional factors to consider; light fluence φ

(

�r, ��
)

 is inhomogene-
ous throughout the imaging region, owing to the removal of photons via absorption by superficial layers. Fluence 
is also inhomogeneous through wavelength, due to the generally inhomogeneous distribution of endmembers 
within superficial layers. These additional considerations necessitate additional processing steps, which could 
be conveniently added through the modular structure of the framework.

The end goal of imaging is the ability to quantitatively resolve the spatial distribution of a variety of param-
eters, and the reconstruction procedures presented may be augmented for truly quantitative measurements. The 
reconstructed photoacoustic image is an inversion of a linear map representing the time-distance relationship 
under the assumption of zero acoustic attenuation and homogenous speed of sound. As others have noted, 
improved image quality can be attained with spatially-variant time-distance relationships57,58. The determination 
of the local speed of sound could be performed through Bayesian-type methods58, geometric simplification, or 
adjunct imaging such as transmission-reflection ultrasound59.

Though the MSOT-RAFT is presently developed for the input of photoacoustic imaging data acquired using 
the iThera MSOT imaging systems, we note that this is a question of input format; additional manufacturers and 
even experimental systems may generate data, which could be successfully reconstructed after suitable input 
formatting. We anticipate that the MSOT-RAFT will provide an effective starting point for future developments. 
In particular, the modular structure of the pipeline, and the end-to-end comparisons of reconstruction qual-
ity, enable external optimization of the entire system, so as to achieve optimal performance. Since the RAFT 
is parameter-driven, it could be tuned using a hyperparameter optimizer such as Spearmint in order to create 
more effective reconstruction pipelines60–62. The resulting optimized pipeline could then be recorded and shared, 
enabling more rapid dissemination of successful processing motifs.

The RAFT is broadly broken down into modular steps, and they do not all need to be performed using the 
toolbox itself. Indeed, one could use the RAFT for a large portion of the analysis, and inject additional processing 
to the analytical chain. This provides for extensive future developments, for example adding fluence correction 
prior to spectral unmixing.

We plan to extend the filter interface to allow for the calling of external subroutines, such as efficient GPU 
kernels, compiled C and C++ functions, and various Python scripts. We additionally hope to add support for 

Figure 11.   Correlation images against known inhaled O2 time course for Dataset B. U: Unconstrained analysis. 
C-αβ : Constrained analysis using αβ Kalata filter. C-α : Constrained analysis using α Kalata filter. The use of 
the constrained approach results in improved Pearson’s correlation ( ρ ) with the gas challenge pO2 time course 
across all channels. Figure created using a combination of MATLAB and Microsoft PowerPoint.



14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19872  | https://doi.org/10.1038/s41598-021-97726-1

www.nature.com/scientificreports/

standard imaging formats such as DICOM or OME-XML, to enable management of data using PACS systems 
and inclusion in other studies and databases ranging from the experimental to the clinical.

Conclusion
We have described the implementation and demonstrated the performance of MSOT-RAFT, an open-source 
toolbox for processing and reconstructing photoacoustic imaging data, and have demonstrated its use for pro-
cessing and analyzing photoacoustic imaging data.

Figure 12.   Plots of average correlation for distinct ROIs of Dataset B. A general improvement in correlation is 
seen using either of the constrained approaches, though the superior noise-rejection properties of the α filter 
enable it to achieve better overall correlation with the gas challenge pO2 time course. Figure created using a 
combination of MATLAB and Microsoft PowerPoint.
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Figure 13.   Selected parameters from fitting Dataset B using 7-parameter monoexponential model 
(Supplementary Information) using three different processing approaches. U: Unconstrained analysis. 
C-αβ : Constrained analysis using αβ Kalata filter. C-α : Constrained analysis using α Kalata filter. Although 
performance of the model fit is similar across much of the imaged area, the unconstrained analysis assigns 
inaccurate values of switching times to a large region on the interior of the tumor (white arrows). Figure created 
using a combination of MATLAB and Microsoft PowerPoint.

Figure 14.   Reconstruction using different algorithms for varying numbers of parallel workers. Both Dataset 
A (left) and Dataset C (right) benefit from parallelization, though both show diminishing returns. When 
reconstruction time is normalized to the time required for a single worker (left) or 4 workers (right) to execute, 
it becomes clear that both model-based approaches benefit greatly from parallelization, while backprojection 
(BP) more rapidly saturates due to the greater proportion of its reconstruction which is non-parallelizable. For 
large numbers of workers, it becomes evident that system overhead becomes restrictive, as there is a decrease 
in relative speedup. Note separate axes for dIMMI and CDMMI (left) versus BP (right). Figure created using a 
combination of MATLAB and Microsoft PowerPoint.
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Code availability
The most up to date publicly available version of the RAFT, along with examples of usage and test data, can be 
found at https://​doi.​org/​10.​5281/​zenodo.​46582​79 and is available under the MIT license.

Data availability
All data analyzed in this study are available from the corresponding author (RPM) on reasonable request.
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