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Integrated omics networks reveal the temporal
signaling events of brassinosteroid response in
Arabidopsis
Natalie M. Clark 1, Trevor M. Nolan 2,4, Ping Wang 2, Gaoyuan Song1, Christian Montes 1,

Conner T. Valentine1, Hongqing Guo 2, Rosangela Sozzani3, Yanhai Yin2 & Justin W. Walley 1✉

Brassinosteroids (BRs) are plant steroid hormones that regulate cell division and stress

response. Here we use a systems biology approach to integrate multi-omic datasets and

unravel the molecular signaling events of BR response in Arabidopsis. We profile the levels of

26,669 transcripts, 9,533 protein groups, and 26,617 phosphorylation sites from Arabidopsis

seedlings treated with brassinolide (BL) for six different lengths of time. We then construct a

network inference pipeline called Spatiotemporal Clustering and Inference of Omics Net-

works (SC-ION) to integrate these data. We use our network predictions to identify putative

phosphorylation sites on BES1 and experimentally validate their importance. Additionally, we

identify BRONTOSAURUS (BRON) as a transcription factor that regulates cell division, and

we show that BRON expression is modulated by BR-responsive kinases and transcription

factors. This work demonstrates the power of integrative network analysis applied to multi-

omic data and provides fundamental insights into the molecular signaling events occurring

during BR response.
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Brassinosteroids (BRs) are involved in a number of impor-
tant biological processes including cell elongation and
division, photomorphogenesis, reproduction, and both

biotic and abiotic stress responses. The BR-signaling pathway has
been well-established in Arabidopsis1–3. BRs are first sensed by
the plasma membrane-localized receptor BRASSINOSTEROID
INSENSITIVE 1 (BRI1)4–6. Upon BR binding, BRI1 recruits co-
receptors including BRI1-ASSOCIATED RECEPTOR KINASE 1
(BAK1) that are required for its activation7,8. In the absence of
BR, the GSK3 kinase BRASSINOSTEROID INSENSITIVE 2
(BIN2) phosphorylates numerous substrates including the tran-
scription factors (TFs) BRI1-EMS-SUPPRESSOR 1 (BES1), and
BRASSINAZOLE-RESISTANT 1 (BZR1)7,9–12. This phosphor-
ylation inactivates BES1 and BZR1 through cytoplasmic reten-
tion, degradation, and/or reduced DNA binding. When BRs are
present, the BRI1/BAK1 complex activates a kinase-signaling
cascade resulting in the inactivation of BIN2 and the depho-
sphorylation of BES1 and BZR1. This allows BES1 and BZR1 to
regulate target gene expression in the nucleus12–18. While there
are many conserved GSK3 phosphorylation sites in BES1 and
BZR1 proteins, the exact sites that are phosphorylated by BIN2
and the sites responsible for negative regulation of BES1 activity
are not fully defined19,20.

The role of BR in modulating cell division is well-documented,
particularly in the Arabidopsis root. It has been shown that BL
has a dose-dependent effect on cell division in the root meristem:
roots treated with higher levels of BL have more meristematic
cells. In addition, the bes1-D gain-of-function and bri1-116 loss-
of-function mutants have altered cell cycle progression, which
implicates that plant cyclins may be involved. Accordingly, it has
been shown that CYCLIN D3;1 (CYCD3;1) is induced by BL and
can rescue cell division defects in the bri1-116 mutant21,22. BR
has also been implicated in stem cell division and maintenance:
roots treated with BL have excessive Quiescent Center (QC)
divisions and altered expression patterns of QC cell identity
markers22–24.

The BR-signaling pathway in Arabidopsis is highly dependent
on the levels of protein phosphorylation, modulation of protein
levels, and downstream transcriptional regulation. Therefore, we
determined the dynamic response to BR signaling in Arabidopsis
by performing large-scale transcriptome and (phospho)proteome
profiling of seedlings treated with BL for different lengths of
time. We then inferred a set of integrated, TF-centered Gene
Regulatory Networks (GRNs) using our newly-developed Spa-
tiotemporal Clustering and Inference of Omics Networks (SC-
ION) pipeline. These networks illustrated how the phosphor-
ylation state of TFs is important for predicting their downstream
target genes. In addition, SC-ION allowed us to infer one net-
work per time point and visualize the early and late (phospho)
protein-transcript regulations in BR response. By combining
these TF-centered networks with a correlation-based kinase-
signaling (i.e., kinase-centered) network, we illustrated the tem-
poral cascade of BR response starting with kinase-signaling and
ending with differential transcript abundance. We were able to
use this network to predict and experimentally validate pre-
viously uncharacterized BIN2 phosphorylation sites on BES1. In
addition, through network motif analysis, we identified a number
of TFs putatively involved in BR response. In particular, we
identified a C2H2-like TF whose mutants displayed hypersensi-
tivity to BR, longer roots, and more cell divisions. The combi-
nation of this mutant’s developmental phenotype, as well as its
putative role in BR response, led us to name this TF BRON-
TOSAURUS (BRON). Together with our results provide a
comprehensive guide to molecular signaling changes that occur
in response to BR.

Results
Generating an integrated omics time course of BR response. To
investigate the temporal response to BRs, we established a treat-
ment system in which seedlings were sensitized to BRs by pre-
treatment with 1 μM of the BR biosynthesis inhibitor brassinazole
(BRZ)25 for 7 days to reduce background BR signaling. The 7-
day-old seedlings were then treated with a mock solvent or 1 μM
BL for six different lengths of time (15 min, 30 min, 1 h, 2 h, 4 h,
8 h) (Fig. 1a). To confirm the efficacy of the BL treatment, we
assayed BES1 by western blot (Supplementary Figure 1). In BRZ-
treated seedlings, we found that BES1 predominantly exists in its
phosphorylated form, while BL-treated seedlings showed an
accumulation of dephosphorylated BES1 over time. Specifically,
we observed an increase in the amount of dephosphorylated BES1
as early as 15 min after treatment, and the phosphorylated form
of BES1 was undetectable by 1 h after treatment (Supplementary
Figure 1). This demonstrates the expected BES1 response and
thus the efficacy of BL treatment.

Based on the dynamic nature of BL response, we expected
many transcripts, proteins, and phosphosites would have
differential responses depending on the length of BL treatment.
Thus, we performed multi-omics profiling of BL-treated and
mock-treated seedlings at each of the six timepoints (Fig. 1a). We
used 3′ QuantSeq26 to measure transcript levels and quantified
protein abundance and phosphorylation level by performing two-
dimensional liquid chromatography-tandem mass spectrometry
(2D-LC-MS/MS) on Tandem Mass Tag (TMT) labeled
peptides27–31.

To facilitate the analysis of complex multi-run proteomics data
sets, we constructed an analysis pipeline for quantitative
proteomics data called TMT Normalization, Expression Analysis,
and statistical Testing (TMT-NEAT). Our pipeline, which works
on data generated from any organism, takes the TMT reporter
ion intensity values (i.e., MaxQuant proteinGroups or
PTM_Sites) and a metadata file containing sample information
and TMT-labeling scheme as input. It first cleans the data by
removing contaminants and appropriately labels the intensity
data using the metadata file. Second, TMT-NEAT performs
sample loading (within-run) and internal reference (between-run)
normalization to eliminate batch effects32. Third, it provides
multiple qualitative plots such as hierarchical clustering and
principal component analysis to visualize differences between
biological groups. Finally, it performs differential expression
analysis on the normalized values using a user-supplied p- or q
value threshold (Fig. 1b). TMT-NEAT is publicly available and
can be run through an RShiny Graphical User Interface (GUI)
(see Methods).

Using these methods, we identified 26,669 transcripts, 9533
protein groups, and 26,617 phosphosites (arising from 5865
phosphoproteins) across the six timepoints (Fig. 1c, Supplemen-
tary Data 1–3). We found that the number of differentially
expressed (DE) transcripts, proteins, and phosphosites varied
depending on the time point. When we examined the transcript
data, we found that only 208 transcripts (17 up, 191 down) were
DE in response to BL within the first 15 min, whereas 454 protein
groups (214 up, 250 down) and 590 phosphosites (237 up, 353
down) were DE at this same time point. In addition, many more
transcripts (2653 total: 1247 up, 1406 down) were DE beginning
at 30 min, which led us to speculate that the early BR response is
predominantly post-transcriptional. This is supported by the role
of BES1 and BZR1, which must be dephosphorylated in order to
enter the nucleus and transcriptionally regulate downstream
genes in response to BR9,12,16.

We next performed Gene Ontology (GO) analysis on the DE
transcripts, proteins, and phosphosites at early (1 h or earlier)
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and late (after 1 h) timepoints (Supplementary Figure 1,
Supplementary Data 4). We found that multiple BR-
response terms are enriched at different time points and for
different DE gene products. For example, BR-mediated
signaling pathway and cellular response to BR stimulus terms
are enriched in the DE phosphosites at both early and late
time points. In addition, BR biosynthetic process and BR
homeostasis are enriched in the DE transcripts at early
timepoints, and the term for response to brassinosteroid is
enriched in both DE transcripts and phosphosites. We also see
enriched terms that have been linked to BR response such as
cellular response to stress, response to auxin-mediated
signaling pathway, and defense response33. Taken together,
our omics profiling captures how different gene products
temporally respond to BR treatment in Arabidopsis.

Predictive networks illustrate the BR temporal cascade. We
have previously shown that integrating mRNA, protein, and
phosphorylation data sets greatly improves the predictive power
of reconstructed GRNs34. However, integrating these multi-omics
data types remains challenging. Thus, we next developed a net-
work inference pipeline, which we named SC-ION, to integrate
any number of different types of expression profiles into one
cohesive, predictive GRN (Fig. 2a, see Methods). SC-ION builds
on our MATLAB-based pipeline Regression Tree Pipeline for
Spatial, Temporal, and Replicate data (RTP-STAR)35,36, which is
an adaptation of the GENIE337 network inference method and
functions only on transcriptomic data sets. In SC-ION, we further
improve on RTP-STAR by: (1) incorporating Dynamic Time
Warping (DTW) clustering for temporal data38 and Independent
Component Analysis (ICA) clustering for non-temporal data39;
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Fig. 1 An integrated omics time course of BR response. a Samples were collected at six timepoints (15 min, 30min, 1 h, 2 h, 4 h, 8 h) from Mock and BL-
treated seedlings. b TMT-NEAT analysis pipeline for quantitative proteomics. c (left) Total number of transcripts, proteins, and phosphosites/
phosphoproteins quantified at each time point. (right) The number of DE transcript, proteins, and phosphosites/phosphoproteins at each time point.
Colored bars represent the relative number of DE gene products within each data type.
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(2) allowing the user to provide separate regulator and target
matrices for integration of DE gene products; (3) integrating any
number of different types of expression profiles into one GRN;
and (4) providing our pipeline as an RShiny GUI (Fig. 2a).

Here, we used SC-ION to infer two separate TF-centered
networks of BR response. In these TF-centered GRNs, TFs serve
as “regulators” used to infer their “target” genes. In the first
network, which we call the abundance network (blue, solid edges,
Fig. 3), TF protein abundance (when quantified) or TF transcript
abundance (when cognate protein was not quantified) was used
as the “regulator” value to infer their “target” transcript
abundance. In the second phosphosite network (green, dashed
edges, Fig. 3), we inferred the “target” transcript abundance using
TF phosphosite intensities as the “regulator” value. For each of
these networks, we took advantage of our temporal data by (1)
clustering the gene products using DTW to create temporally
informed regulatory modules and (2) inferring one network per
time point to visualize the regulations unique to each time point
(Fig. 2b). When connecting the timepoint-specific networks, we
found that there were distinct clusters of early and late
predictions. In addition, there is cross-communication between
the time points, where early regulators feed-forward into late
regulators, and conversely where late regulators feedback onto
early regulators (Fig. 2b).

In addition to our SC-ION-generated TF-centered GRNs, we
used our correlation-based approach to infer a kinase-signaling
network (purple, dotted edges, Fig. 3; see Methods)40. In this
network, we considered kinases with DE phosphosites in their

p-loop (also termed activation loop) domain as potential
regulators, as this phosphorylation in this region is necessary
for kinase activity41. Thus, activation loop phosphorylation can
be used to infer kinase activity and is useful for predicting kinase-
signaling40,42,43. In agreement with our previous work in maize40,
we observed that the correlation between kinase protein
abundance and kinase p-loop phosphorylation intensity (i.e.,
activation state) greatly varies depending on the time point
(Supplementary Figure 2), motivating our use of p-loop site
intensities rather than simply kinase abundance in our network.
This “kinase-centered” network complements our TF-centered
GRNs by predicting kinase-dependent signaling events.

When we merged our kinase-signaling network with our TF-
centered networks, we found that genes with known roles in the
BR response pathway1 were significantly enriched in the list of
network regulators (Hypergeometric test, p < 0.001). In addition,
we noticed that this merged network illustrates the temporal
cascade of BR response across these different omics levels (Fig. 3,
Supplementary Data 5). Our inferred network places the kinase-
signaling interactions (purple) towards the top of the network
(early in time). Next are the TF phosphosite-level regulations
(green), followed by the TF abundance-level regulations (blue).
Thus, our network predicts that BR response begins with kinase
signaling, followed by transcriptional regulation via modulation
of TF phosphorylation and/or abundance. This network predic-
tion is in agreement with what we currently know about BR
signaling, which begins with the kinases BRI1 and BAK1
initiating a series of (de)phosphorylation events leading to the

Abundance GRN Phosphosite GRN

15 min
30 min
1 hr
2 hr
4 hr
8 hr

b

a
DE 

gene-products

Clustering of 
co-expressed 
gene-products

Regression tree 
network inference

Infer one subnetwork 
per cluster

Connect clusters by 
inferring networks 

between hub genes

Spatiotemporal Clustering and Inference of Omics Networks (SC-ION)

Fig. 2 Timepoint-specific, integrative omics networks of BR response. a SC-ION pipeline. b Timepoint-specific networks using TF abundance (left) or TF
phosphosite intensity (right). Edge color represents the time point that regulation is predicted to occur. Nodes represent individual genes. The nodes are
arranged in a circular layout relative to timing—genes differentially expressed at the earliest time point (15 min) are placed at the top of the circle, and time
increases as one moves clockwise through the layout.
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regulation of downstream target genes by TFs including BES1 and
BZR1. Our timepoint-specific networks further illustrate which
regulations are predicted to occur in early or late BR response
(Fig. 2B).

Multi-omics networks reveal the BIN2-BES1 signaling cascade.
We extracted the first-neighbor network of BES1 to illustrate how
our multi-omics profiling and integrative network inference can
elucidate the signaling events that occur in response to BR
(Fig. 3). This network contains kinases that are predicted to be
upstream of BES1 phosphorylation, TFs that are predicted to
transcriptionally regulate BES1, and downstream targets of BES1.
Our kinase-signaling network predicted that Serine 179 and
Serine 180 (S179, S180) on BES1 is downstream of known BR-
responsive kinases such as BIN2, BAK1, and BSK18,9,44 (Sup-
plementary Figure 3a). The sites are largely conserved in BES1
and its homologs (Supplementary Figure 3b). In order to test if
they are BIN2 kinase phosphorylation sites, we mutated the two
sites from serine to alanine (phosphorylation null, designated as
BES1S2A) and tested phosphorylation by BIN2 in an in the vitro
kinase assay. While both BES1 and BES1S2A were phosphorylated
by BIN2, BES1S2A was phosphorylated to a lesser extent (Sup-
plementary Figure 3e), suggesting that S179 and S180 are BIN2
phosphorylation sites. We also transiently expressed BES1-FLAG
and BES1S2A-FLAG in Nicotiana benthamiana. Although a sig-
nificant amount of BES1-FLAG is phosphorylated 1 day after
transfection, BES1S2A-FLAG exists mainly in dephosphorylated
form. In addition, when co-expressed with BIN2, the phos-
phorylated form of wild-type BES1-FLAG was increased, whereas
the phosphorylated form of BES1S2A-FLAG was increased to a
lesser extent, which further supports the conclusion that S179 and
S180 are BIN2 phosphorylation sites (Supplementary Figure 3c).

In order to elucidate the functional consequences of the
phosphorylation on S179, S180, we generated transgenic
Arabidopsis plants overexpressing BES1-FLAG or BES1S2A-FLAG.
The majority (20/26: 77%) of the BES1S2A-FLAG T1 plants have
longer leaf petiole and curly leaves, a characteristic of gain-of-
function mutants in BR signaling12. Conversely, 13 of 14 (93%)
BES1-FLAG plants grown at the same time did not exhibit these
phenotypes (Supplementary Figure 3d). Taken together, our
results support our kinase-signaling network prediction that S179
and S180 are BIN2 phosphorylation sites whose phosphorylation
negatively impacts BES1 function.

Downstream of kinase signaling, BES1 is predicted to regulate
different downstream targets depending on whether its phospho-
site levels (green, dashed) or transcript abundance (blue, solid) is
used in the SC-ION pipeline. We mined Chromatin Immuno-
Precipitation (ChIP)-chip and ChIP-Seq data sets on BES1 and its
homolog, BZR113–15, and found that 88 out of 144 predicted first-
neighbor targets of BES1, in our network (61%), are directly
bound by BES1 or its homolog BZR1 (Fig. 3, orange circles;
Supplementary Table 1). Some of these validated genes with
known roles in BR response include IAA3/SHORT HYPOCO-
TYL 2 (SHY2)45, XYLOGLUCAN:XYLOGLUCOSYL TRANS-
FERASE 33 (XTH33)15,46 and SMALL AUXIN UP RNA 26
(SAUR26)13. Thus, we were able to validate the accuracy of our
integrative omics network using previously published ChIP data
and identify previously unknown BIN2 phosphorylation sites
on BES1.

Network motif analysis predicts TFs involved in BR response.
We next leveraged the network prediction to identify candidate
genes involved in mediating the response to BR. We used the
Network Motif Score (NMS)35,36 to classify genes in the TF-
centered networks based on their presence in certain biological

motifs, such as feedback and feed-forward loops. Genes with
higher NMS have been shown to have a more important role in
the biological process of interest35,36,47–49. Accordingly, BES1 had
the 25th highest NMS score (top 5%), illustrating that we could
use the NMS to identify BR-response regulators. We chose three
TFs, ANTHOCYANLESS 2 (ANL2), TCX2, and BRONTO-
SAURUS (BRON; AT1G75710), that had high (all in the top
35%) NMS in either the TF abundance or phosphosite GRNs
(Supplementary Data 5). We then examined subnetworks for
each of these TFs, starting with kinase signaling and ending with
transcriptional regulation.

SC-ION predicts that our first TF of interest, TCX2, and BES1/
BZR1 HOMOLOG 2 (BEH2) regulate each other in a feedback
loop (Supplementary Figure 4). In addition, TCX2 has a
documented root stem cell division phenotype35. Thus, we
reasoned that TCX2 may regulate cell division in response to BR
and treated the tcx2-2 and tcx2-3 mutants with 100 nM BL. In
WT plants, the addition of BL causes a dramatic reduction in the
root length. However, we did not find a significant difference in
BL response in either of the tcx2 mutant alleles compared to WT
(Supplementary Figure 4, Supplementary Table 2).

We then focused on the subnetwork for ANL2, which predicts
that ANL2 and BES1 regulate each other in a feedback loop
(Supplementary Figure 4). To test if ANL2 may be involved in BR
response, we treated WT, anl2-2, and anl2-3 plants with 100 nM
BL. We found that anl2 mutant roots shorten more than WT
when treated with BL, suggesting that the anl2 mutants are
hypersensitive to BL (Supplementary Figure 4, Supplementary
Table 2). It has also been shown that BL can induce excessive QC
divisions in the root22–24. Thus, we checked the anl2 mutant
roots for QC divisions as a secondary BR-response phenotype:
however, we found that anl2 mutant roots do not display
excessive QC divisions.

BRONTOSAURUS regulates cell division in response to BR.
Our last TF of interest, BRON, is predicted to be regulated by TFs
whose phosphorylation is dependent on multiple BR-signaling
kinases such as BAK1, BSKs, and SERKs in our network (Fig. 4a).
We obtained a weak (bron-1) and a strong (bron-2) allele for
BRON (Supplementary Figure 5) and examined their BR response
as well as their root development. We found that roots from both
alleles shorten more in response to BL than the wild type,
demonstrating that bron mutant roots are hypersensitive to BL
treatment (Fig. 4b, Supplementary Table 2). In addition, we
observed that bron mutants have longer roots with more mer-
istematic cells (Supplementary Figure 5), as well as significantly
more divisions in the QC (Fig. 4c–e). bron-2 also displays
excessive columella divisions and a higher number of undivided
(i.e., actively dividing) cortex endodermis initials (CEI), whereas
bron-1 only shows excessive endodermis divisions, potentially due
to its weaker effect on BRON expression (Fig. 4e). This led us to
hypothesize that BRON could regulate cell division in response to
BR.

To determine the transcripts modulated by BRON, we
performed RNAseq on root tissue from the bron-2 mutant
(Supplementary Data 7). We found that a range of BR-responsive
genes identified from our time course profiling was enriched in
this mutant, particularly those genes repressed by BL after 15 min
and induced by BL after 1 or 2 h in our time course (p < 0.001)
(Supplementary Data 8). Further, we found that most of the genes
have lower expression in the bron-2 mutant, suggesting that
BRON transcriptionally activates these genes (Supplementary
Figure 5, Supplementary Data 8).

Given the role of cyclins in regulating cell division50, we
specifically examined the expression of cyclins in the bron-2
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mutant. We found that four cyclins are DE in the bron-2 mutant:
three are repressed by BRON (CYCD3;1, CYCP4;1, CYCP4;2),
whereas one is induced by BRON (CYCP3;2). Further, two of
these cyclins, CYCD3;1, and CYCP4;1, are significantly induced
by BL at 4 and 8 h after treatment Supplementary Figure 6).
Importantly, it has been shown that CYCD3;1 is induced by BL

and contributes to BL-regulated cell division21,22. We also
examined the cell-type-specific expression of CYCD3;1, CYCP4;1,
and BRON in the root stem cells and mature root cells35,51, and
we found key differences in where CYCD3;1 and CYCP4;1 are co-
expressed with BRON. For example, CYCP4;1 is co-expressed
with BRON only in the QC. In contrast, BRON and CYCD3;1 are
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co-expressed in the Epidermis/Lateral Root Cap (Epi/LRC)
initials and the mature columella (Supplementary Figure 6).
These results suggest that BR induces the expression of CYCD3;1
and CYCP4;1, and therefore cell division, through the repression
of BRON.

Our GRN predicts several kinases and TFs as putative
upstream regulators of BRON (Fig. 4a). These putative regulators
are also responsive to BL in our time course (Supplementary
Data 1–3), suggesting that they may be a part of the BR-BRON-
CYCLIN signaling cascade. Thus, we measured BRON expression
via RT-qPCR in mutant lines for six of these putative regulators:
BRI1-ASSOCIATED RECEPTOR KINASE (BAK1), SNF1
KINASE HOMOLOG 10 (KIN10), ATMAP4K ALPHA1
(MAP4Kα1), MAP KINASE 6 (MPK6), TRANSMEMBRANE
KINASE 1 (TMK1), and VASCULAR-RELATED DOF2
(VDOF2). We found that BRON is significantly induced in
bak1-4 and mpk6-4 mutants and significantly repressed in
map4ka1, tmk1-1, and vdof2 mutants. These results suggest that
BAK1 and MPK6 repress BRON, whereas MAP4Kα1, TMK1, and
VDOF2 activate BRON (Fig. 5a, Supplementary Table 3).

Another prediction in our GRN is the feedback loop between
BRON and VDOF2 (Fig. 4a). Feedback loops are one of the
developmentally important motifs that we used to calculate the
NMS, which is how we chose BRON as a putative regulator of BR
response. Accordingly, we also measured VDOF2 expression via
RT-qPCR in bron-1 and bron-2 mutants and found that both
mutants have significantly higher levels of VDOF2 (Fig. 5a,
Supplementary Figure 5, Supplementary Table 3). This suggests
that BRON represses VDOF2, forming a negative feedback loop
between these two components of the signaling pathway.

Taken together, these results validated our GRN-predicted
upstream regulators and informed us about downstream targets
of BRON (Fig. 5b). In our network, BRON is coordinately
regulated by the BR-responsive kinases BAK1, MAP4Kα1, MPK6,
and TMK1 as well as the BR-induced TF VDOF2. In addition,
BRON represses VDOF2, forming a negative feedback loop. The
net effect of this regulation is the BR-modulated repression of
BRON. This lifts the repression on CYCD3;1 and CYCP4;1 by
BRON, allowing for BR-induced cell divisions in the
Arabidopsis root.
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Discussion
Here, we used a systems biology approach to unravel the tem-
poral response to BR in Arabidopsis. By generating and inte-
grating omics data sets, we were able to quantify how transcript,
protein, and phosphorylation levels change in response to BR
over time. We found that most of the (phospho)protein response
occurs in the earlier timepoints (before 1 h), whereas there are
sets of early- and late-responsive transcripts (Fig. 1). This sug-
gested that BR first triggers the phosphorylation of TFs, which
then go on to regulate transcripts at later timepoints. Our pre-
dictive network reconstructed using SC-ION corroborated this
hypothesis, illustrating how BR-responsive kinase signaling leads
to phosphorylation of TFs and downstream transcriptional reg-
ulation (Fig. 3). Further, our timepoint-specific networks allow us
to predict which regulations occur early and late in BR response
(Fig. 2).

One well-known example of BR response involves the TFs
BES1 and BZR1, which are dephosphorylated in response to BR,
allowing them to move to the nucleus and transcriptionally reg-
ulate downstream genes. It is well-established that the GSK3
kinase BIN2 phosphorylates BES1 and BZR1 negatively regulate
their functions through the promotion of cytoplasmic retention,
inhibition of DNA binding, and protein degradation of BES1 and
BZR11. Although there are >20 predicted sites, the exact BIN2
phosphorylation sites on BES1 are not functionally characterized.
Through our omics profiling and network analysis, we predicted
that S179 and S180 in BES1 are potentially phosphorylated by
BIN2. Further mutational analysis indicated that the phosphor-
ylation of the two sites contributed to BES1 phosphorylation by
BIN2 and are important for BES1 activity. Our study, therefore,
identified two key BIN2 phosphorylation sites that negatively
regulate BES1 activity and hence BR signaling (Supplementary
Figure 1).

We further used our network to predict novel roles for the TFs
ANL2 and BRON in BR response (Figs. 4 and 5, Supplementary
Figure 4). We found that mutants of both TFs are hypersensitive
to BL treatment, but only bron mutants display excessive cell
divisions. Given anl2’s hypersensitivity to BL, it would be inter-
esting to investigate its role in BR response in the future, given
that it likely has a different role than BRON. We additionally
found a significant overlap between genes DE in the bron-2
mutant and genes induced or repressed by BR. Specifically, we
observed a significant overlap in disease resistance, drought
response, and stress response genes which were repressed by BL
15 min after treatment and repressed in the bron mutant (Sup-
plementary Figure 5, Supplementary Table 4, Supplementary
Data 9). Crosstalk between BR and drought response is well-
known and involves other TFs such as WRKY46/54/70, RD26,
and TINY33,52–54, but the temporal aspects of this signaling have
not been previously examined. Our observation that these genes
are regulated by BLs as early as 15 min after treatment suggests
that inhibition of stress responses quickly follows activation of the
BR pathway.

We found that cyclin genes, specifically CYCD3;1 and
CYCP4;1, are induced by BL and repressed by BRON, suggesting
that BR induces these cyclins through its repression of BRON
(Fig. 5c). These results are supported by multiple studies which
elucidate the role of CYCD3;1 in BR-induced cell division21,22

and describe how BR specifically induces QC division in the
root22–24. Although CYCP4;1 has not been directly implicated in
BR response, its co-expression with CYCD3;1 in both the bron
mutant and BL time course suggests that it may have a similar
function as CYCD3;1 in the Arabidopsis root. Further, by mining
cell-type-specific transcriptomic data sets35,51, we gained insight
into the cell types in which these cyclins are active. We found that
CYCP4;1 and BRON are specifically co-expressed in the QC,

suggesting that BRON may repress QC division through
CYCP4;1. In contrast, CYCD3;1 and BRON are co-expressed in
the Epi/LRC stem cell initials as well as the mature columella. We
found that bron-2 mutants have excessive columella divisions
(Fig. 4e), suggesting that perhaps BRON represses cell division in
the columella and lateral root cap through CYCD3;1. It would be
of interest in the future to unravel BRON’s cell-type-specific
repression of cell division in response to BR.

In addition to identifying putative downstream targets of
BRON, we also validated our GRN prediction that BAK1,
MAP4Kα1, MPK6, TMK1, and VDOF2 regulate BRON (Fig. 5).
Our network predicts that the kinases in this list may phos-
phorylate the TF bZIP69 (AT1G06070), which putatively reg-
ulates BRON. Although we conclude that these kinases do
regulate BRON expression, it is unclear whether this regulation is
direct or indirect. In addition, we showed that all of these reg-
ulators are BR-responsive in our time course data set. Some of
these regulators already have documented roles in BR response,
such as BAK1, which is a key component of the early BR response
pathway7,8. It has been shown that BES1 is a direct substrate of
MPK655, and recent results suggest that MPK6 has an important
role in BR-autophagy crosstalk56. It has also been shown that
VDOF2 overexpression lines have higher levels of BR-related
transcripts and enrichment of BR-related GO terms57. An
interesting component of this regulatory network is the negative
feedback loop between BRON and VDOF2 (Fig. 5b). VDOF2 is
induced by BL in our time course, and our RT-qPCR results
suggest that VDOF2 activates BRON. However, our time course
also shows that BL represses BRON. Based on our results, the
repression of VDOF2 by BRON likely overcomes its activation,
resulting in net repression of BRON by BL. Future work could
investigate the coordinated regulation of BRON by this suite of
upstream regulators and the resulting effect on BR-induced cell
division.

Taken together, our temporal, integrative omics data set, kinase
signaling, and TF-centered networks can be used as a resource to
identify additional genes like BRON, which are implicated in BR
response in Arabidopsis.

Methods
Plant materials and growth conditions. The Arabidopsis accession Columbia-0
was used as the wild-type control in all experiments. The T-DNA insertion mutants
tcx2-2 (SAIL_808_H08), tcx2-3 (SALK_021952), anl2-2 (SALK_000196C), anl2-3
(SAIL_418_C10), kin10 (SALK_127939C), mpk6-4 (SALK_062471C), and tmk1-1
(SALK_016360) were described previously35,58–60. The bes1-D and bri1-301
mutants were also described previously4,12,23,61. The T-DNA insertion mutants
at1g75710/bron-1 (SALK_048268), at1g75710/bron-2 (SALK_046220C), bak1-4
(SALK_116202C), map4ka1 (SALK_033601C), and vdof2 (SALK_130584) were
obtained from the Arabidopsis Biological Resource Center (ABRC: https://
abrc.osu.edu/).

For the BL time-series profiling experiments, WT seeds were sterilized with 70%
EtOH + 0.1% Triton for 15 min, washed with 100% EtOH three times, and plated
on 1/2 LS plates with 1% sucrose and 1000 nM BRZ with nylon mesh overlaid on
top of the agar. After 3 days of stratification at 4 °C, the plates were placed under
continuous light at 22 °C for 7 days. BL treatments were performed by transferring
the seedlings on the nylon mesh to 1/2 LS liquid medium with either 1 µM BL or
dimethyl sulfoxide (DMSO) for 15 min, 30 min, 1 h, 2 h, 4 h, or 8 h. Four biological
replicates were collected for BL- and mock-treated samples at each time point
(48 samples total). Samples were blotted dry with Kimwipes, flash-frozen in liquid
nitrogen, and ground for 15 min under liquid nitrogen using a mortar and pestle.

For the bron-2 RNAseq experiment, seeds were wet sterilized using 50% bleach,
10% Tween, and water and stratified at 4 °C for 2 days. Seeds were plated on 1×
MS, 1% sucrose plates with Nitex mesh, and grown under long-day conditions
(16 h light/8 h dark) at 22 °C for 5 days. Three biological replicates of 10 plates each
were collected in RLT buffer, and RNA extraction was immediately performed.

For RT-qPCR experiments, seeds were wet sterilized using 20% bleach and
stratified at 4 °C for 2 days. Seeds were plated on nylon mesh on 1/2× LS, 1%
sucrose plates supplemented with 1000 nM BRZ, and grown under long-day
conditions at 22 °C for 7 days. The seedlings on the mesh were then transferred to
agar plates containing 1/2× LS, 1% sucrose for 4 h to simulate mock conditions.
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Three biological replicates of 2 plates each were collected and flash-frozen in liquid
nitrogen prior to RNA extraction.

Antibodies. The anti-BES1 antibody was generated in ref. 14 and used at a dilution
of 1:5000. The anti-FLAG antibody was obtained from Sigma-Aldrich (Cat #F7425,
RRID: AB_439687) and used at a dilution of 1:1500. The anti-GFP antibody was
generated in ref. 62 and used at a dilution of 1:1000.

BES1 western blot. To monitor BES1 protein levels and phosphorylation status,
BL treatment was performed as described above. Approximately 100 mg of ground
tissue powder was resuspended directly in 300 μL 2× SDS sample buffer (100 mM
Tris-Cl, pH 6.8, 4% (w/v) sodium dodecyl sulfate, 0.2% (w/v) bromophenol blue,
20% (v/v) glycerol and 200 mM dithiothreitol) before sodium dodecyl
sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting
using anti-BES1 antibody at a dilution of 1:500014.

RNA sequencing and data analysis. For the BR timecourse, total RNA was
extracted using Zymo Direct-zol kit (Zymo Research). RNA concentration was
measured with Qubit RNA HS assays (ThermoFisher #Q10213) and integrity
checked with AATI Fragment Analyzer with Standard Sensitivity RNA Analysis Kit
(DNF-489-0500). Approximately 500 ng of RNA was used for library construction
via the QuantSeq 3′ mRNA-Seq Library Prep FWD Kit for Illumina. Sequencing
was performed on a HiSeq 3000 with 50 bp single-end reads. Raw sequencing data
are deposited at the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE147589). Reads were mapped to the TAIR10 genome using
the STAR aligner63. Differential expression between BL-treated and mock seedlings
at each time point was performed using PoissonSeq64 using a q value cutoff of 0.05
and a fold-change cutoff of 1.25.

For bron-2 transcriptional profiling, total RNA was isolated from ~2mm of 5-
day-old Col-0 and bron-2 root tips using the RNeasy Micro Kit (Qiagen). cDNA
synthesis and amplification were performed using the NEBNext Ultra II RNA
Library Prep Kit for Illumina. Libraries were sequenced on an Illumina HiSeq 2500
with 100 bp single-end reads. Reads were mapped to the TAIR10 genome using
Cufflinks65. Differential expression was performed using PoissonSeq with a p value
cutoff of 0.05. Raw sequencing data are deposited at the Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE157000).

Protein extraction and digestion. The proteomics experiments were carried out
based on established methods28,29,31. Protein was extracted from aliquots of the
tissue used for transcriptome profiling and digested into peptides with trypsin and
LysC using the phenol-FASP method detailed in28,31. The resulting peptides were
desalted using 50 mg Sep-Pak C18 cartridges (Waters), dried using a vacuum
centrifuge (Thermo), and resuspended in 0.1% formic acid. Peptide amount was
quantified using the Pierce BCA Protein assay kit.

TMT labeling. The TMT-labeling strategy used in this experiment is provided in
Supplementary Table 5. In all, 45 µg of peptides were taken from each individual
sample, pooled, and then split into two pooled references. TMT10plexTM label
reagents (ThermoFisher, Lot #UD280154) were used to label 200 µg of peptides,
from each sample or pooled reference, at a TMT:peptide ratio of 0.2:131. After 2 h
incubation at room temperature, the labeling reaction was quenched with hydro-
xylamine. Next, the ten samples were mixed together, an aliquot of 75 μg of pep-
tides was reserved for protein abundance profiling, and the remaining peptides
were used for phosphopeptide enrichment and stored at −80 °C. Labeling effi-
ciency was checked by performing a 60-minute 1D run on 200 ng of TMT-labeled
peptides. All samples had labeling efficiencies ≥94.7% (Supplementary Table 5).

Phosphopeptide enrichment. The TMT-labeled phosphopeptides were first
enriched using the High-Select TiO2 Phosphopeptide Enrichment Kit (Thermo)
using the manufacturer’s protocol. The High-Select Fe-NTA Phosphopeptide
Enrichment Kit (Thermo) was then used on the flowthrough from the TiO2

enrichment to enrich additional phosphopeptides. The manufacturer’s protocol for
the Fe-NTA kit was used except the final eluate was resuspended with 50 μL 0.1%
formic acid. The eluates from the TiO2 and Fe-NTA enrichments were combined
and stored at −80 °C until analysis by LC-MS/MS.

LC-MS/MS. An Agilent 1260 quaternary HPLC was used to deliver a flow rate of
~600 nL min−1 via a splitter. All columns were packed in-house using a Next
Advance pressure cell, and the nanospray tips were fabricated using a fused silica
capillary that was pulled to a sharp tip using a laser puller (Sutter P-2000). In all,
25 μg of TMT-labeled peptides (non-modified proteome), or ~10 μg TiO2-enriched
peptides (phosphoproteome), were loaded onto 20 cm capillary columns packed
with 5 μM Zorbax SB-C18 (Agilent), which was connected using a zero dead
volume 1 μm filter (Upchurch, M548) to a 5 cm long strong cation exchange (SCX)
column packed with 5 μm PolySulfoethyl. The SCX column was then connected to
a 20 cm nanospray tip packed with 2.5 μM C18 (Waters). The three sections were
joined and mounted on a Nanospray Flex ion source (Thermo) for online nested
peptide elution. A new set of columns was used for every sample. Peptides were

eluted from the loading column onto the SCX column using a 0 to 80% acetonitrile
gradient over 60 min. Peptides were then fractionated from the SCX column using
a series of 18 and 6 salt steps (ammonium acetate) for the non-modified proteome
and phosphoproteome analysis, respectively. For these analyses, buffers A (99.9%
H2O, 0.1% formic acid), B (99.9% ACN, 0.1% formic acid), C (100 mM ammonium
acetate, 2% formic acid), and D (2M ammonium acetate, 2% formic acid) were
utilized. For each salt step, a 150-minute gradient program comprised of a 0–5 min
increase to the specified ammonium acetate concentration, 5–10 min hold,
10–14 min at 100% buffer A, 15–120 min 10–35% buffer B, 120–140 min 35–80%
buffer B, 140–145 min 80% buffer B, and 145–150 min buffer A was employed.

Eluted peptides were analyzed using a Thermo Scientific Q-Exactive Plus high-
resolution quadrupole Orbitrap mass spectrometer, which was directly coupled to
the high-performance liquid chromatography (HPLC). The data-dependent
acquisition was obtained using Xcalibur 4.0 software in positive ion mode with a
spray voltage of 2.10 kV and a capillary temperature of 275 °C and an RF of 60.
MS1 spectra were measured at a resolution of 70,000, an automatic gain control
(AGC) of 3e6 with a maximum ion time of 100 ms and a mass range of
400–2000 m/z. Up to 15 MS2 were triggered at a resolution of 35,000 with a fixed
first mass of 120 m/z for phosphoproteome and 115 m/z for proteome. An AGC of
1e5 with a maximum ion time of 50 ms, an isolation window of 1.3 m/z, and
normalized collision energy of 33. Charge exclusion was set to unassigned, 1, 5–8,
and >8. MS1 that triggered MS2 scans were dynamically excluded for 45 or 25 s for
phospho- and non-modified proteomes, respectively.

Proteomics data analysis. The raw data were analyzed using MaxQuant version
1.6.7.066. Spectra were searched, using the Andromeda search engine in
MaxQuant67 against the Tair10 proteome file entitled “TAIR10_pep_20101214”
that was downloaded from the TAIR website (https://www.arabidopsis.org/
download_files/Proteins/TAIR10_protein_lists/TAIR10_pep_20101214) and was
complemented with reverse decoy sequences and common contaminants by
MaxQuant. Carbamidomethyl cysteine was set as a fixed modification while
methionine oxidation and protein N-terminal acetylation were set as variable
modifications. The phosphoproteome “Phospho STY” was also set as a variable
modification. The sample type was set to “Reporter Ion MS2” with “10plex TMT
selected for both lysine and N-termini”. TMT batch-specific correction factors were
configured in the MaxQuant modifications tab (TMT Lot UD280154). Digestion
parameters were set to “specific” and “Trypsin/P;LysC”. Up to two missed cleavages
were allowed. A false discovery rate, calculated in MaxQuant using a target-decoy
strategy68, less than 0.01 at both the peptide spectral match and protein identifi-
cation level was required. The “second peptide” option to identify co-fragmented
peptides was not used. The match between runs feature of MaxQuant was not
utilized. Raw proteomics data have been deposited on MassIVEand can be accessed
at the link ftp://massive.ucsd.edu/MSV000085606/

Statistical analysis was performed using TMT-NEAT Analysis Pipeline version 1.4
(https://doi.org/10.5281/zenodo.5237316). This pipeline takes the “proteinGroups”
(protein abundance) or “Phospho(STY)Sites” (phosphoproteome) tables output from
MaxQuant as well as a metadata file detailing the TMT-labeling scheme and sample
information as input. Example input files are provided in the GitHub repository. First,
the MaxQuant output table is trimmed to only include the needed information for
statistical analysis, and the columns are re-labeled using the provided sample
information. Contaminants are removed at this stage. Next, data are normalized using
the sample loading normalization and internal reference normalization methods such
that samples can be compared across runs32. Quantitative plots such as boxplots,
hierarchical clustering, and principal components analysis are provided for quality
control. Finally, statistical analysis is performed using PoissonSeq64, and histograms of
p- or q value distributions are generated. Proteins and phosphosites were categorized
as differentially accumulating between the mock and BL-treated samples at each time
point if they had a p value <0.05 and fold-change >1.1.

GO analyses. GO analysis on the DE transcripts, protein, and phosphoproteins
were performed using PANTHER69. Genes were separated depending on whether
they were induced or repressed by BL in early (1 h or prior) or late (after 1 h) time
points. Biological process GO terms were considered significantly enriched if they
had a corrected p value ≤0.05 (Supplementary Data 4).

GRN inference and validation. TF-centered GRNs were inferred using SC-ION
version 2.1 (https://doi.org/10.5281/zenodo.5237310). SC-ION builds on the RTP-
STAR pipeline35,36 by incorporating DTW and ICA clustering38,39 and integration
of different data types. SC-ION uses an adapted version of GENIE337, which allows
for the separate regulator and target data matrices34. This allows the user, for
example, to use protein abundance data for regulators (TFs) and transcript data for
targets (all genes). SC-ION takes regulator and target lists and regulator and target
data matrices as input. In addition, SC-ION takes a clustering data matrix, which
can be different from the regulator and target data matrices. This allows the user to
cluster genes based on different data types. A version of SC-ION without this
clustering step is also available. SC-ION outputs a table of the predicted regulations
as well as a weight for each edge, where a higher weight indicates higher confidence
in that inferred edge37. This table can be imported into software such as
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Cytoscape70 for network visualization. Test input files for SC-ION are provided on
GitHub.

Two TF-centered networks were inferred (Supplementary Figure 7). In the first
network, TF protein abundance (when quantified) or TF transcript abundance
(when cognate protein was not quantified) was used as the “regulator” value to
infer their “target” genes’ transcript abundance. In the second phosphosite
network, we inferred the transcript levels of “target” genes using TF phosphosite
intensities as “regulators.” In both the networks, only the regulators and targets DE
at each time point were used in these individual subnetworks. Next, the clustering
matrix was constructed by combining the “regulator” (TF abundance) and “target”
(transcript levels) data so that genes were clustered based on the protein/
phosphosite levels of the regulators and transcript levels of the targets. So, for
example, TF protein abundance is clustered with the transcript abundance of its
potential target genes. Clustering was then performed using the DTW method
given the temporal nature of our data. After clustering, six subnetworks were
inferred for each TF-centered network, where each subnetwork represents the
regulations predicted to happen using only one timepoint (15 min, 30 min, 1 h, 2 h,
4 h, 8 h). This allows us to denote which regulations are predicted to happen early
or late in BR response. Further, TFs are only predicted to regulate transcripts in
their same cluster. This allows the clustering to inform the network prediction by
reducing the possible number of edges. The six subnetworks were combined in a
union in Cytoscape to form the final abundance and phosphosite networks.
Cytoscape was also used to create the merged abundance, phosphosite, and kinase-
signaling networks (Supplementary Data 5).

We have previously used the Normalized Motif Score (NMS) to predict
biologically important genes in GRNs from Arabidopsis35,36. Four different motifs
were used to calculate the NMS for the merged abundance and phosphosite
networks separately: feed-forward loops, feedback loops, diamond motifs, and bi-
fan motifs. First, the number of times a gene appeared in each motif was counted
using the NetMatchStar app71 in Cytoscape. Then, the counts were normalized to a
scale from 0 to 1 and summed to calculate the NMS for each gene.

The kinase-signaling regulatory network was inferred using a previously
reported correlation-based approach40. Kinases with phosphosites in the activation
loop, also called p-loop, the domain that was DE in response to BL were used as the
potential regulators. All genes with phosphosites that were DE in response to BL
were used as the potential targets. We used phosphosite intensity rather than
abundance for the regulators as it has been shown that phosphosite intensity has
greater predictive power40 (Supplementary Figure 2). Pearson and Spearman
correlations were calculated for each regulator-target pair, and edges were kept for
those pairs with Pearson correlation ≥0.5 or Spearman correlation ≥0.6
(Supplementary Figure 7).

Activation loop domains, also called p-loop domains, in protein kinases, were
identified using a modified version of the pipeline described in56 as follows. All
35,386 protein sequences available in the TAIR10 annotation were searched for
kinase domains using The National Center for Biotechnology Information batch
conserved domain search tool72. From this list of 1522 proteins with identified
kinase domains, 878 were also annotated with activation loop (p-loop) coordinates
by the search tool. The kinase domains of proteins lacking the p-loop coordinates
were aligned using MAFFT73. The resulting alignment was manually searched for
the well-conserved p-loop beginning and end motifs. An extra 482 p-loop
coordinates were obtained, for a total of 1360 protein kinases with p-loop
coordinates.

Targets in the first-neighbor BES1 subnetwork (Fig. 3) were validated using a
list of targets shown to be bound by BES1 or its homolog BZR1 in various ChIP
studies13–15. The results of this validation are reported in Supplementary Table 1.

Supplementary Figure 2 For more details on the GRN inference methodology,
please see Supplementary Methods.

Mutant BES1 cloning and protein level detection. The two Serine (S179 and
S180) to Alanine mutations were introduced by two-step PCR using the primers
provided in Supplementary Table 6. Two BES1 fragments were generated and
combined to form the full-length mutant BES1. The full-length mutant BES1 was
then cloned to Pro35S:FLAG vector to generate Pro35S:BES1S2A-FLAG.
Pro35S:BES1-FLAG was subcloned from Pro35S:BES1-GFP12.

The in vitro kinase assay was based on ref. 74. Specifically, 0.2 µg of GST-BIN2 and
2 µg of MBP-BES1 or MBP-BES1S2A were used in 20 µl reactions, and the reactions
were stopped by adding an equal volume of 2× SDS buffer at different time points
(5 min, 10min, 20min, 30min, 60min) to observe the phosphorylation dynamics.
The in vitro kinase reactions were then resolved on 8% SDS-PAGE incorporated with
phostag reagent. The phostag gel was made following the manufacturer’s instructions
(AAL-107, http://www.Phos-tag.com). SYPRO Ruby protein gel stain was used to
stain the gel following the manufacturer’s instructions (Invitrogen). The quantification
of BES1-P/BES1 ratio and BES1S2A-P/BES1S2A ratio was performed in ImageJ.

For transient expression in Nicotiana benthamiana, agrobacterium containing
Pro35S:BES1-FLAG or Pro35S:BES1S2A-FLAG was infiltrated to mature N.
benthamiana leaves. Agrobacterium containing Pro35S:YFP-BIN2 was used for co-
expression. Leaf discs were collected 24 h after infiltration and flash frozen in liquid
nitrogen. The samples were ground in 2× SDS buffer and resolved on SDS-PAGE.
Anti-Flag antibody at a dilution of 1:1500 was used for western blotting.

BR phenotyping methods. BL phenotyping was carried out as based on75 as
follows. Seeds were sterilized for 4 h in a Nalgene Acrylic Desiccator Cabinet
(Fisher Scientific, 08-642-22) by mixing 200 mL bleach (8.25% sodium hypo-
chlorite) with 8 mL concentrated hydrochloric acid to generate chlorine gas. Seeds
were then resuspended using 0.1% agarose solution for plating. Control (BL0;
DMSO solvent only) or BL100-treated (100 nM Brassinolide; BL, Wako chemicals)
were plated on ½ LS plates supplemented with 1% (w/v) sucrose. After seeds were
plated, the plates were sealed with breathable tape (3M Micropore) and placed in
the dark at 4 °C for 5 days for stratification. Plants were grown for 7 days at 22 °C
under continuous light. Plates were imaged with an Epson Perfection V600 Flatbed
Photo scanner at a resolution of 1200 DPI and root length was then measured in
ImageJ.

bron root phenotyping. Confocal imaging was performed on a Zeiss LSM 710. Cell
walls were counterstained using propidium iodide. The number of meristematic
cells and cell divisions were manually counted.

RT-qPCR. Total RNA was isolated 1 cm of 7-day-old root tips using the Zymo
Direct-zol kit (Zymo Research). RT-qPCR was performed with SYBR green
(Invitrogen) using a CFX96 Real-Time PCR System (BioRad) with 40 cycles. Data
were analyzed using the 2−ΔΔCΤ (CΤ: cycle threshold) method and normalized to
the expression of the reference gene AT4G3427076. RT-qPCR was performed on
two technical replicates of three independent RNA samples (biological replicates).
CΤ values were normalized between runs based on the average CΤ values for the
reference gene in the WT samples. Primers used for qPCR are provided in Sup-
plementary Table 6. A melt curve was performed all on primer pairs to confirm
gene-product specificity.

Statistics. A generalized mixed linear model with penalized quasi-likelihood
(glmmPQL in R) was used to determine the genotype × treatment interaction p
values for the BL phenotyping experiment. In this model, the genotype and
treatment effects were considered fixed, and the experiment date and plate number
were considered random effects with a Gaussian error distribution. Hypergeo-
metric and/or Chi-squared tests were used for test for enrichment in the RNAseq
DE gene lists. For bron mutant root phenotyping, a two-tailed Wilcoxon test was
used for statistical significance as some of the data did not follow a normal dis-
tribution. For RT-qPCR, a z test was used to compare each sample to the mean and
standard deviation of the expression of the gene in WT. Hypergeometric testing
was performed in R using the phyper function. Chi-squared, Wilcoxon, and z tests
were performed using JMP Pro 15 (jmp.com). To select p- and q value cutoffs for
the large-scale omics experiments, we used the distribution of p- and q values
generated from the statistical tests based on refs. 77,78.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw sequencing data are deposited at the Gene Expression Omnibus with accession
numbers GSE147589 and GSE15700. Raw proteomics data have been deposited on
MassIVE with accession number MSV000085606. Source data are provided with
this paper.

Code availability
Quantitative proteomics statistical analysis was performed using TMT-NEAT Analysis
Pipeline version 1.4 (https://doi.org/10.5281/zenodo.5237316)79. TF-centered GRNs were
inferred using SC-ION version 2.1 (https://doi.org/10.5281/zenodo.5237310)80.
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