Table 4.
Training and testing AUC values for US-GLM classifiers developed using different combinations of weakly correlated features.
| Feature combinations | Training AUC (95% CI) | Testing AUC (95% CI) |
|---|---|---|
| Mean | 0.82 (0.818-0.820) | 0.64 (0.629-0.657) |
| std | 0.86 (0.860-0.862) | 0.66 (0.650-0.674) |
| skewness | 0.59 (0.587-0.591) | 0.42 (0.405-0.443) |
| Kurtosis | 0.64 (0.635-0.639) | 0.34 (0.326-0.344) |
| energy | 0.85 (0.851-0.854) | 0.61 (0.600-0.621) |
| Mean, kurtosis | 0.82 (0.819-0.822) | 0.60 (0.581-0.618) |
| Std, skew | 0.86 (0.860-0.862) | 0.65 (0.643-0.664) |
| Std, kurtosis | 0.86 (0.858-0.860) | 0.65 (0.642-0.666) |
| Kurtosis, energy | 0.86 (0.856-0.858) | 0.63 (0.617-0.638) |
The 95% confidence of interval values are also shown in front of each mean AUC value.