Skip to main content
. 2021 Sep 23;11:715332. doi: 10.3389/fonc.2021.715332

Table 4.

Training and testing AUC values for US-GLM classifiers developed using different combinations of weakly correlated features.

Feature combinations Training AUC (95% CI) Testing AUC (95% CI)
Mean 0.82 (0.818-0.820) 0.64 (0.629-0.657)
std 0.86 (0.860-0.862) 0.66 (0.650-0.674)
skewness 0.59 (0.587-0.591) 0.42 (0.405-0.443)
Kurtosis 0.64 (0.635-0.639) 0.34 (0.326-0.344)
energy 0.85 (0.851-0.854) 0.61 (0.600-0.621)
Mean, kurtosis 0.82 (0.819-0.822) 0.60 (0.581-0.618)
Std, skew 0.86 (0.860-0.862) 0.65 (0.643-0.664)
Std, kurtosis 0.86 (0.858-0.860) 0.65 (0.642-0.666)
Kurtosis, energy 0.86 (0.856-0.858) 0.63 (0.617-0.638)

The 95% confidence of interval values are also shown in front of each mean AUC value.