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1  | INTRODUC TION

Recent reductions in the size and cost of autonomous data collection 
equipment have allowed ecologists to better and more efficiently 
survey their study sites (Acevedo & Villanueva-Rivera, 2006). Much 
work has been done to examine the benefits of using camera trap 
networks to detect shy and retiring species whose detection prob-
abilities greatly decrease in the presence of human researchers 

(O'Connell et  al.,  2010). However, many species for which remote 
surveying techniques are optimal are difficult to properly monitor 
with camera traps due to their small body sizes and/or preference for 
heavy vegetative cover (Newey et al., 2015). A number of these spe-
cies, particularly interior forest birds, are much easier to detect via 
acoustic monitoring techniques due to their frequent, far-carrying 
vocalizations, and battery-operated automated recording units 
(ARUs) have recently become a cost-effective option for researchers 
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Abstract
1.	 The use of machine learning technologies to process large quantities of re-

motely collected audio data is a powerful emerging research tool in ecology and 
conservation.

2.	 We applied these methods to a field study of tinamou (Tinamidae) biology in Madre 
de Dios, Peru, a region expected to have high levels of interspecies competition 
and niche partitioning as a result of high tinamou alpha diversity. We used au-
tonomous recording units to gather environmental audio over a period of several 
months at lowland rainforest sites in the Los Amigos Conservation Concession 
and developed a Convolutional Neural Network-based data processing pipeline to 
detect tinamou vocalizations in the dataset.

3.	 The classified acoustic event data are comparable to similar metrics derived from 
an ongoing camera trapping survey at the same site, and it should be possible 
to combine the two datasets for future explorations of the target species' niche 
space parameters.

4.	 Here, we provide an overview of the methodology used in the data collection 
and processing pipeline, offer general suggestions for processing large amounts 
of environmental audio data, and demonstrate how data collected in this manner 
can be used to answer questions about bird biology.
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working with these species (Brandes,  2008). ARUs can operate in 
the field for much longer periods of time than humans observers can 
(several days or weeks in many cases), efficiently and safely survey 
remote areas early in the morning and late at night, and, like camera 
traps, minimize disturbance to sensitive species. An additional bene-
fit of audio recorders relative to camera traps is that audio recorders 
have a wider range of detectability than camera traps since they do 
not require direct line of sight, which increases the area of coverage 
and the likelihood of detecting rare species. However, in order to use 
audio recordings from ARUs, vocalizations from the target species 
must be detected among large quantities of survey audio. Efficiently 
and reliably identifying these detections presents a major challenge 
when developing a data processing pipeline. Although this task is 
still a nontrivial consideration in developing a study design, recent 
advancements in machine learning (ML) classification techniques, 
coupled with dramatic increases in the availability and accessibility 
of powerful hardware, have made this process easier than ever (Kahl 
et  al.,  2019). We strongly believe that the application of machine 
learning techniques to the processing of large quantities of auto-
mated acoustic event detection data will prove to be a transforma-
tive development in the fields of ecology and conservation, allowing 
researchers to tackle biological questions that have previously been 
impractical to answer.

Several life-history characteristics of tinamous (Tinamidae; 
Figure  1), a group of terrestrial birds that occur widely in the 
Neotropics, make them superb candidates for field-testing this 
type of audio processing pipeline. Although a few species in this 
family occupy open habitats, most show a high affinity for interior 
forest areas with thick vegetative cover (Bertelli & Tubaro,  2002). 
They are far more often heard than seen, and some species vocalize 
prolifically as part of the dawn and dusk choruses (Pérez-Granados 
et  al.,  2020). This preference for interior forest, along with their 
large body sizes and terrestrial nature, makes tinamous inordinately 
susceptible to the effects of anthropogenic habitat change, in terms 

of both outright habitat loss and to increased human hunting pres-
sure in fragmented forest patches near-populated areas (Thornton 
et al., 2012). Intensive life-history research in the coming years will 
be critical to conservation of tinamous and their habitats, and au-
tonomous recording has the potential to revolutionize this line of 
inquiry.

Here, we present the preliminary results of an ongoing field study 
that involves deploying ARUs at lowland Amazonian forest sites in 
Madre de Dios, Peru. Although this region has tentatively among the 
highest levels of tinamou alpha diversity in the Neotropics (11 co-
occurring species: eBird, 2017), there is currently a lack of research 
into which biological and ecological factors allow such high degrees 
of alpha diversity. We collected environmental audio of each day's 
dawn and dusk choruses and designed a data pipeline that uses a ma-
chine learning (ML) audio classifier to identify tinamou vocalization 
events in the audio data and organize the detections into a spatio-
temporal database for future use in producing occupancy models for 
the target species. To our knowledge, this technology has not previ-
ously been used to conduct community-level surveying for tinamous 
and represents a promising alternative to camera traps and more 
traditional point-count surveying as a means of studying elusive yet 
highly vocal bird taxa.

2  | MATERIAL S AND METHODS

2.1 | Data collection

Data collection was conducted under the auspices of the Amazon 
Conservation Association at the Los Amigos Conservation 
Concession (LACC), in the lowland rainforest of Madre de Dios, Peru. 
This site, which protects ~145,000  ha of forest along the Río Los 
Amigos basin, is one of the most biodiverse lowland rainforest sites 
in the Amazon basin with close to 600 bird species, eleven of which 

F I G U R E  1   Undulated Tinamou 
(Crypturellus undulatus), a common 
floodplain tinamou species at LACC. 
Photo credit Reid Rumelt
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are tinamous in the genera Tinamus and Crypturellus (eBird,  2017; 
Table 1). The station's biological diversity is due in part to its diver-
sity of terrestrial microhabitats, which include terra firme and flood-
plain primary forest, secondary and edge forest, Guadua bamboo 
stands, and Mauritia flexuosa palm swamps (Larsen et al., 2006). As 
studies at this site (Mere Roncal et al., 2019) and elsewhere in the 
Neotropics have demonstrated that tinamou species differ in their 
specific habitat utilization characteristics (Guerta & Cintra,  2014), 
LACC is an exemplary site for detecting tinamous across a variety 
of habitat gradients.

Acoustic monitoring was conducted using ten SWIFT ARUs (Kahl 
et al., 2019), provided by the Cornell Lab of Ornithology, from mid-
July to early October of 2019. This period overlaps with the latter 
half of the dry season at LACC. The SWIFT units were deployed on 
rotating 14-day deployment periods at terra firme and floodplain 
forest sites (Figures 2 and S1), 10 sites at a time, over three deploy-
ments from mid-July to late August. A fourth deployment, duration 
27 days, was conducted as a follow-up at five of the 30 sites from 
late September to early October. As the chosen sites are part of the 
station's existing camera trap system (approximately a 1-km2 grid 
located along the edge of open trails), we were able to merge our 
detection set with previously collected site-level habitat data as well 
as to compare our tinamou detection rates to those calculated using 
camera trap detections. Recorders were tied to trees at a height of 
approximately 1.5 m from the ground with the microphone facing 
downwards. Each unit was programmed to record for five hours 

a day, from 5:00 to 7:30 in the morning and 16:00 to 18:30 in the 
afternoon to early evening, in order to cover periods of high vocal 
activity for tinamous (Dias et al., 2016). The SWIFT unit firmware al-
lows for control of microphone gain and sampling frequency; we set 
these values to −33 dB (the default) and 16 kHz, respectively. Setting 
the sampling frequency to 16 kHz is a trade-off that limits the acous-
tic frequency bandwidth to 0–8 kHz (Landau, 1967) in exchange for 
smaller file sizes and lower power demands than the default value of 
32 kHz. These recording parameters are entirely acceptable for cap-
turing the vocalizations of tinamou species at this site, all of which 
have vocalizations that are 900–2900  kHz (Figure  3). The SWIFT 
firmware writes data as 30-min-long WAV files (~58 MB). Each unit 
was intended to collect data for the shorter of (a) the entire 14- or 
27-day recording period or (b) until battery power was exhausted. 
In practice, battery life was always the limiting factor, with a mean 
time-to-shutdown of 7.81 days (5.12 days for deployments 1–3 and 
21.8  days for deployment 4). Due to supply limitations, we were 
forced to use a different brand of battery for deployments 1–3 than 
for deployment 4, which we suspect is at least partially responsible 
for the longer per-recorder run times in the latter deployment. At 
the end of each deployment period, all units were removed from the 
field, loaded with fresh recording media and batteries, and deployed 
to their next assigned site on the following day. All audio data were 
backed up to rugged solid-state storage media for transport out of 
the field.

Our chosen classification procedure is a type of supervised ma-
chine learning, which requires a significant amount of training audio 
to produce a working model (Kotsiantis et al., 2007). We used a set of 
~3,100 audio files of 2-s duration (the typical phrase length in tina-
mou calls) to train an initial classifier. These files were coded as one of 
twelve classes: one class for each tinamou species and a “junk” class 
containing audio of other bird species, nonbird organismal audio, and 
assorted environmental audio (Table 1). The training dataset was de-
rived from audio downloaded from the Macaulay Library of Natural 
Sounds (https://macau​layli​brary.org) and Xeno-Canto (http://www.
xeno-canto.org) databases (S2) as well as from exemplar cuts in the 
audio we collected in the field. Effort was taken to ensure that the 
training examples covered the full breadth of the acoustic param-
eter space of tinamous, including for the two species in this study, 
Crypturellus soui and Crypturellus variegatus, that were observed to 
use distinct call and song types in the survey audio. All audio was 
checked to ensure correct assignment to species before use.

2.2 | Data processing and classification

A series of preprocessing steps were applied to the audio after col-
lection, beginning with normalizing all survey audio to −2 dB maxi-
mum gain. The SWIFT recorder firmware writes a high amplitude 
audio spike at the beginning of the first file recorded after the unit 
wakes from standby (e.g., the beginning of the 5:00 and 16:00 audio 
files); therefore, we chose to overwrite the first five seconds of audio 
on each of these files to prevent this spike from impacting the gain 

TA B L E  1   List of tinamou species at Los Amigos Biological 
Station, with source audio totals (first classification totals/second 
classification totals)

Common name Scientific name
Training 
audio

Validation 
audio

Gray Tinamou Tinamus tao 370/419 50/50

Great Tinamou Tinamus major 252/2,000 50/50

White-throated 
Tinamou

Tinamus guttatus 263/1,266 50/50

Cinereous 
Tinamou

Crypturellus 
cinereus

252/2,000 50/50

Little Tinamou Crypturellus soui 276/461 50/50

Undulated 
Tinamou

Crypturellus 
undulatus

311/2,000 50/50

Brown Tinamou Crypturellus 
obsoletus

255/255 50/50

Brazilian 
Tinamou

Crypturellus 
strigulosus

242/2,000 50/50

Black-capped 
Tinamou

Crypturellus 
atrocapillus

79/79 25/25

Variegated 
Tinamou

Crypturellus 
variegatus

200/2,000 50/50

Bartlett's 
Tinamou

Crypturellus 
bartletti

320/2,000 44/50

Nontinamous 
audio

— 294/4,000 750/750

https://macaulaylibrary.org
http://www.xeno-canto.org
http://www.xeno-canto.org
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normalization step. As our chosen audio classifier architecture oper-
ates on fixed-length samples, we split each 30-min audio file into 
7,197 2-s-long overlapping audio “windows” that advance forward 
by 0.25  s per window. The classifier operates on a section of the 
log-Mel-weighted spectrogram (Knight et al., 2017) of each window 
between 900 and 2,900  Hz, which is created dynamically during 
classification using STFT utilities in the TensorFlow python module 
(Table 2) at a native resolution of 512 × 512 px.

Audio event detection was conducted using a set of Convolutional 
Neural Network classifiers. The chosen classifier architecture is 
adapted from the multiclass single-label classifier called “Model 1” in 
Kahl et al. (2017). Our decision to use a multiclass single-label clas-
sifier architecture was driven by a desire for reduced learning com-
plexity; however, we feel there is merit to introducing a multilabel 
classifier in future analyses as existing ML techniques are capable 
of dealing with this task with minor modifications (Kahl et al., 2017). 
For similar reasons, we reduced the number of neurons per hidden 
layer by half to account for limitations in available processing power 

and also down-sampled the 512  ×  512  px spectrogram images to 
256  ×  256  px before training and classification. The full classifier 
architecture is described in Table  3. All data processing was per-
formed either in Python, using a combination of TensorFlow 2.0 
(Abadi et  al.,  2016) and other widely used Python modules, or, in 
the case of later statistical testing, in R (R Core Team, 2019). During 
training, we applied the same STFT algorithm as used for the survey 
data to dynamically convert the training audio to log-Mel-weighted 
spectrograms, and implemented data augmentation to improve 
model generalization (Ding et  al.,  2016). These augmentation pa-
rameters, along with general model hyperparameters (Table 4), were 
chosen using a Bayesian hyperparameter search module in Python 
(Nogueira, 2014) that was driven to optimize the calculated multi-
class F1-score (Sokolova & Lapalme, 2009) (β = 1) on a set of known 
good clips (hereafter the “validation set”) created using a sample of 
clips not used in the training data (Table 1). F1-score was calculated 
as a macro-average of the 12 classes in order to give equal weight to 
rare classes. Although the goal of hyperparameter search techniques 

F I G U R E  2   Map of survey points 
(subset of Los Amigos camera trap 
network). Group A: deployment 1; 
group B: deployments 2 & 4; group C: 
deployment 3
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is typically to identify an optimal set of parameters, we observed 
two apparent local optima that we chose to incorporate into our 
classification pipeline as two submodels: (a) submodel 1, which 
added artificial Gaussian noise to training spectrograms as part of 
the augmentation process and (b) submodel 2, which did not. The 
set of class probabilities returned for each clip was the mean of the 
probabilities reported by the two models (hereafter the “ensemble”). 
We validated each submodel, as well as the ensemble, on the same 
validation set used in hyperparameter search.

When deployed on survey data, our classification pipeline yields 
classifications as a sequence of probability vectors of size 12, where 
each vector corresponds to one window in the sequence of over-
lapping windows. Raw class probabilities for windows that contain 
only the very beginning or the very end of tinamou vocalizations are 
often classified incorrectly, which we believe results from the fact 
that different tinamou species often share structural similarities with 
one another in those regions of their vocalizations. To reduce the im-
pact of this pattern on our overall classification accuracy, we applied 
a “smoothing” postprocessing to the class probabilities where each 
probability value was replaced by the weighted average of that value 
(weight = 1) and the values immediately before and after it in the 
time sequence (weight = 0.5). Windows with a maximum class prob-
ability < 0.85 were removed, and the remainder assigned the label 
with the highest class probability. All windows detected as positive 
were manually checked for accuracy and relabeled if incorrect.

We assessed the degree of marginal improvement in classifier 
performance due to increased training dataset size and increased 
structural uniformity between training clips and survey audio by 
running a second “pass” of the acoustic classifier on the survey data 
with a set of models that had been trained using a larger training 
dataset. To generate this dataset, the original training dataset was 
supplemented with all ground-truthed positive windows from the 
initial classification (the first “pass”). We sampled from this dataset to 
produce a new training dataset (n = 18,480) with the larger of 2,000 
randomly selected clips (4,000 for the “junk” class), or as many clips 
as were available, per class (Table 1). We trained new submodels on 
these data using the same model architecture and hyperparameters 
that were used for models in the first pass. The sole change made 
to the training process between classifications 1 and 2 was to alter 
the batch generation code to produce batches with balanced class 
frequencies to offset the greatly increased degree of class imbalance 
in the supplemented dataset. Each submodel was validated using a 
new validation set that contained known good survey audio when-
ever possible in order to ensure that the calculated metrics would be 
more indicative of each submodel's real-world performance.

The survey data were classified with these new models, and the 
resulting class predictions were processed to extract probable de-
tections as described previously. In order to decrease labor time, all 
positive windows from the initial classification were “grandfathered 
in” as correctly identified due to having been manually checked 

F I G U R E  3   Example vocalizations 
of two common tinamou species at 
LACC, Great Tinamou (Tinamus major) 
and Variegated Tinamou (Crypturellus 
variegatus), collected from survey audio. 
Spectrograms vary drastically in quality 
depending on ambient noise and distance 
to recorder
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previously, which allowed us to only check positive detections that 
were newly identified during the second pass. Finally, all sequences 
of windows with a particular species classification that were ≥0.75 s 
apart from any other sequence were grouped as a single vocal event.

For the purposes of quantifying model performance and gener-
alizability, we calculated a precision, recall, F1-score, and precision–
recall area under the curve (AUC) performance metrics for the 
primary and secondary models, presented on a per-class basis or as 
macro-averages across classes, after Sokolova and Lapalme (2009). 
All metrics were calculated based on classifier performance on a set 
of known good clips (hereafter the “validation set”), using data from 
the survey audio whenever possible in order to ensure that the per-
formance metrics would be more indicative of each submodel's real-
world performance.

When applying a novel survey methodology to a system, it is im-
portant to establish a baseline with which to compare survey results. 
We chose to compare our audio detection counts to camera trap cap-
ture rates for tinamous reported by Mere Roncal et al. (2019), which 
was conducted from February 2017 to June 2018 at LACC. Camera 
trap capture rates suggest seasonally driven differences in tinamou 
activity rates, so we only considered detection rates from the dry 
season portion of this study (July–September 2017), which limited 
our comparison to the five tinamou species reported by Mere Roncal 
et al. (2019) for which dry season camera trap data are available. This 
study reports frequencies as captures per 1,000 hr of recording time, 
which allows us to correct for site-level differences in survey effort 
(3  months per site for camera traps vs. 2 weeks for acoustic moni-
tors). Due to the relatively small number of camera trap captures per 
site, we chose to examine aggregate values rather than comparing re-
corder and camera trap data from each site. Following Mere Roncal 
et al. (2019), we used independent captures as the basis for our com-
parison, which involves lumping detections separated by less than one 
hour. Occurrence frequencies were calculated from the acoustic mon-
itoring data as the average of the distributions from terra firme and 
floodplain sites. In addition, we compared detection effort and cost 

TA B L E  2   STFT settings

Setting Value

Dimensions 512 × 512 px

Channels 1 (grayscale)

Window size 1,024

Stride 64

Frequency band 900–2,900 Hz

Sampling rate 16 kHz

Mel bin number 64

TA B L E  3   CNN architecture

Layer type Details

Input Size 256 × 256 × 1

Conv2D Size 32 × 7 × 7, Stride 2

MaxPooling2D Size 2

Conv2D Size 64 × 5 × 5, Stride 1

MaxPooling2D Size 2

Conv2D Size 128 × 3 × 3, Stride 1

MaxPooling2D Size 2

Conv2D Size 256 × 3 × 3, Stride 1

MaxPooling2D Size 2

Conv2D Size 512 × 3 × 3, Stride 1

Flatten (None)

Dense 256 Units

Dropout 0.5

Dense 4 Units

Note: L2 kernel and activity regularization (1e−06, with default biases 
turned off) were applied to each Conv2D layer, with batch normalization 
(momentum = 0.01) applied between the Conv2D and MaxPooling2D 
layers. ReLU activation was used for all Conv2D layers and the first 
Dense layer, with Softmax activation applied to the output layer.

Parameter Type Range Value

Batch size Hyperparameter [16, 32, 64, 128] 64

Dropout Hyperparameter [0.2, 0.5] 0.5

Epochs Hyperparameter 20 20

L2 amount Hyperparameter [1e−6, 1e−2] 1e−6

Learning rate Hyperparameter [1e−9, 1e−2] 0.0075

Network size scale Hyperparameter [1, 2, 3, 4] 2

Gaussian noise intensity Augmentation [0, 20] 0.8

Gaussian blur Augmentation [0, 3] 0

Horizontal shift Augmentation [0, 50 px] [0, 20 px]

Random dB offset Augmentation [0, −40 dB] [0, −40 dB]

Vertical shift Augmentation [0, 5 px] [0, 2 px]

Note: Single value ranges indicate that the parameter was held constant. Zero-values for 
continuous parameters indicate that the parameter was not used. Values that are ranges indicate 
that values were randomly chosen from this range on a per-spectrogram basis (augmentation only).

TA B L E  4   Ranges and chosen values 
for hyperparameters and augmentation 
parameters
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per unit detection between the two survey methods by comparing 
capture rates to equipment costs from the two studies (S4). Detection 
effort multiplier was calculated as the ratio of capture rates, and cost 
per unit survey effort was calculated as total equipment cost divided 
by capture rate.

We also examined community science observation data for tina-
mous from eBird, as this dataset represents a potential source of data 
to use in future species distribution modeling studies in this region 
(Sullivan et al., 2009, 2014). We used stationary and traveling check-
lists containing tinamous that were submitted at the LACC hot spot 
between the months of July and October, removing stationary check-
lists with durations >150  min and traveling checklists with lengths 
>0.5 km in order to constrain the sampling effort parameter space of 
the eBird data such that it was more comparable to our 2.5-hr morn-
ing and afternoon recording periods. Despite these filtering steps, the 
final eBird dataset still contained all locally occurring tinamou species. 
However, it was clear that our acoustic data density for Crypturellus 
strigulosus vastly outstripped eBird data density, so we excluded this 
species from our analysis as we feel it warrants separate discussion. 
We produced estimates of occurrence probabilities from the filtered 
eBird dataset by sampling checklists containing tinamous and tabu-
lating presence–absence values for each tinamou species. We then 
examined the density distribution of eBird checklist durations and 
created a sampling kernel that could select periods of time from the 
acoustic monitoring dataset with random start times and lengths that 
follow this same density distribution. We used this kernel to estimate 
occurrence frequencies separately for terra firme and floodplain habi-
tat types, and these values were averaged.

3  | RESULTS

3.1 | Model performance

The performance of all models is summarized in Figures  4–6 and 
Tables 5–6. At the macro-averaged level, the ensemble model per-
formed better than either submodel individually within each clas-
sification pass (Table  5). The addition of random artificial noise in 
submodel 2 improved both precision and recall in pass 1, though 
only recall in pass 2 (Table 5). The ensemble model of pass 2 per-
formed substantially better than the corresponding model in pass 
1 (Figure 6), likely due to both the larger training dataset used for 
this pass and the fact that the training and validation datasets used 
during this pass were both comprised of audio collected by us in the 
field, thus being more similar to one another than they were in pass 
1. This increased similarity between training and validation datasets 
in pass 2 is also a potential explanation for the observed decrease 
in recall score with added artificial noise during this pass, though 
we did not perform further analysis of this specific result. Per-class 
performance was generally good, with visible improvements from 
pass 1 to pass 2 in most, though species with subjectively more vari-
able vocalizations (e.g., Tinamus major) performed less well (Figure 5, 
Table  6). Intriguingly, the increase in classification accuracy we 
observed at the macro-averaged level did not hold uniformly true 
at a class level, with submodel 1 or 2 often yielding better results 
(Table 6). An analysis of classifier score distributions for positive de-
tections showed increased score separation between true-positive 
and false-positive detections in pass 2 relative to pass 1 (Figure 6), 

F I G U R E  4   Precision–recall curves for submodels 1 (solid line), 2 (dashed line), and ensemble (dotted line) for classification passes 1 (gray) 
and 2 (black), macro-averaged metrics. Dark blue lines indicate recall and precision measured at the chosen probability value for positive 
detections (p = 0.85)
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indicating better overall predictive power in the case of the latter 
model (Knight et al., 2017). We also observed that our chosen score 
threshold yielded precision and recall values that were close to the 
inflection point of the precision–recall curve, indicating this value 
was an appropriate choice for ensuring a good balance of the two 
metrics (Table 7).

3.2 | Collection data and ecological analyses

We collected a total of 1,216.5  hr of audio, of which 544.5  hs 
(45%) came from deployment 4 and 225.5 (19%), 201.0 (17%), and 
245.5 hs (20%) came from deployments 1, 2, and 3, respectively (S3). 
The total number of recording hours per habitat type (899.0 hs in 
terra firme, 317.5 hs in floodplain) was roughly proportional to the 
number of site-deployment combinations in each habitat type (24 
vs. 13). We detected a total of 15,878 tinamou vocalization events, 

2,189 of which were added after the second classification pass. Our 
detections represent nine of the 11 species present at LACC, with 
data densities ranging from 4,468 events for C. strigulosus to 26 for 
Tinamus tao (S3). Two species were not detected: Crypturellus atri-
capillus and Crypturellus obsoletus. Both species are uncommon at 
Los Amigos (eBird, 2017; personal obs.), are known to have affinities 
for brushy edge habitats that were located away from most of the 
recorders (Anjos, 2006; Cabot et  al.,  2020), and were entirely ab-
sent from the camera trap dataset. Therefore, we suspect that their 
lack of detection indicates true absence from the dataset rather 
than poor class performance. Removing nonindependent events 
yielded 771 captures (Table 8). The relative occurrence frequency 
of the tinamou species as measured by our audio detection pipeline 
differs significantly from the observation frequencies reported by 
eBird (χ2  =  567.4, p  <  2.2e−16; Figure  7b), but notably there was 
no significant difference between these frequencies and camera 
trap capture rates for the five species represented in both datasets 

F I G U R E  5   Precision–recall curves for submodels 1 (solid line), 2 (dashed line), and ensemble (dotted line) for classification passes 1 (gray) 
and 2 (black), per class
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(χ2 = 0.072352, p > 0.1; Figure 7a). Acoustic monitoring was far more 
efficient as a survey method than camera trap surveying, collecting 
captures at a 301× higher rate and 147× lower cost per unit effort 
(Table 8).

4  | DISCUSSION

The machine learning pipeline we used in this study appears to be 
an effective tool for collecting occurrence data across a range of 

F I G U R E  6   Relative density of classifier 
true-positive (TP) and false-positive 
(FP) detections on the validation set 
by submodel and training pass. “Final, 
Ensemble” (lower right) was the model 
used to classify survey data

Classification pass Submodel Precision Recall F1-Score prAUC

1 No noise 0.777 0.803 0.735 0.797

Artificial noise 0.783 0.827 0.754 0.788

Ensemble 0.803 0.845 0.773 0.803

2 No noise 0.878 0.846 0.820 0.909

Artificial noise 0.853 0.890 0.856 0.933

Ensemble 0.875 0.882 0.861 0.938

Abbreviation: prAUC, Precision–recall AUC.

TA B L E  5   Overall classifier 
performance (after Knight et al., 2017; 
Sokolova & Lapalme, 2009)
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habitat types at our target site, both in terms of data density and 
in terms of cost. Although the lack of statistically significant differ-
ences in relative detection frequencies between the audio and cam-
era trap data conflicted slightly with our expectation that acoustic 
sampling would yield different occurrence metrics than camera trap 
sampling, it is encouraging that our frequencies are so similar as they 
may both be good approximations of the true values. Increasing the 
sample size of the camera trap dataset and collecting audio samples 
from the wet season may yet allow us to identify true underlying 
differences in detection probabilities for tinamous when surveyed 
acoustically versus visually.

The significant differences in detection frequency we observed 
between our data and the eBird data are likely a result of nonrandom 
spatial sampling. An example of this spatial nonrandomness with a 
clear causative explanation is the relatively higher eBird detection 
frequency for Crypturellus undulatus, a species that is present widely 
in floodplain and transitional forest but is also extremely common 
in edge habitat near the station dwellings where ecotourists and 
birders visiting the station spend time when not hiking on trails 
(eBird, 2017; personal obs). We chose not to include C. strigulosus in 

TA B L E  6   prAUC scores for each submodel type, per class

Classification 
pass Species

No 
noise

Artificial 
Noise Ensemble

1 C. atricapillus 0.891 0.921 0.968

C. bartletti 0.748 0.826 0.770

C. cinereus 0.934 0.930 0.926

C. obsoletus 0.981 0.992 0.996

C. soui 0.680 0.683 0.684

C. strigulosus 0.577 0.614 0.597

C. undulatus 0.982 0.981 0.981

C. variegatus 0.703 0.576 0.671

Junk 0.896 0.925 0.902

T. guttatus 0.903 0.931 0.882

T. major 0.386 0.216 0.387

T. tao 0.933 0.915 0.932

2 C. atricapillus 0.536 0.705 0.725

C. bartletti 0.995 0.964 0.994

C. cinereus 0.981 0.984 0.982

C. obsoletus 0.928 0.985 0.983

C. soui 0.886 0.918 0.912

C. strigulosus 0.965 0.960 0.965

C. undulatus 0.996 0.999 0.999

C. variegatus 0.919 0.939 0.938

Junk 0.991 0.995 0.995

T. guttatus 0.953 0.951 0.955

T. major 0.913 0.899 0.920

T. tao 0.892 0.944 0.936

Note: Filled-in cells indicate the model with the maximum prAUC value 
for each class within the two passes.
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frequency analyses as it is represented in our audio dataset mainly 
by detections at sites east of the Río Los Amigos that birders and 
ecotourists visiting the station are rarely if ever able to access, 
therefore heavily limiting its sampling density in the eBird dataset 
(personal obs). However, even in the absence of quantitative assess-
ment, we nonetheless believe this is another clear case of spatially 
nonrandom eBird sampling patterns relative to the more structured 
audio and camera trap data. We therefore advise caution when using 
eBird data to generate site-level relative occurrence frequencies for 
tropical forest birds, as doing so properly requires a substantially 
better-informed set of sample bias corrections than we chose to use 
for this illustratively naïve approach. eBird's own Status and Trends 
methods are a classic example of how this can be done analytically, 
though the relatively low eBird data density across the Neotropics 
has meant that analyses using these methods have mainly been fo-
cused on the temperate zone (Fink et al., 2020; Sullivan et al., 2009, 
2014). Employing study designs that use eBird data as an adjunct to 
more structured surveying techniques is a possible strategy (Reich 
et al., 2018), as it would reduce the proportion of overall bias due to 
nonrandom spatial sampling in eBird while retaining the benefits of 
using multiple independent datasets to address the same question. 
As the eBird dataset is likely to be used as a basis for future species 
distribution modeling studies in this region that will go on to inform 
conservation assessments and NGO land purchasing decisions, we 
recommend that any such study should include a structured mon-
itoring component, like camera trapping or acoustic monitoring, 
to make the conclusions of the study more relevant at specific 
Neotropical forest sites or narrow ecological regions.

A common question posed by research scientists in the pursuit 
of an efficient but effective machine learning platform is “how much 

training data is enough data.” Our two-pass classification strategy 
demonstrated clear classification accuracy improvements over a sin-
gle pass, though the degree to which our ensemble modeling strategy 
improved classification performance varied substantially between 
classes. We suspect that most of the performance improvements 
that could be gained beyond what we saw in our analysis would come 
from gathering additional survey data, iterating the data collection 
and training processes to increase sample sizes, and further improv-
ing the model architecture and hyperparameters. It is important to 
note that the main limiting factor for our use of machine learning 
classification has been the amount of computational power available 
to us, which required us to decrease the complexity of our neural 
networks and the resolution of our spectrograms relative to those 
mentioned in the literature (Kahl et  al.,  2019; Knight et  al.,  2017). 
While doing so allowed us to produce classification results within ac-
ceptable time constraints, this speed benefit potentially came at the 
cost of reduced classification accuracy. An important future goal for 
our analyses is to securing sufficient computational power to run the 
classification at full resolution to quantify improvements in accuracy, 
as we strongly believe that understanding the minimum acceptable 
resolution necessary to achieve a given level of accuracy is a crucial 
logistical consideration for researchers seeking to build hardware 
systems to support similar data processing pipelines.

One potential pitfall of using positive detections from one 
network to train a larger second network is that one risks miss-
ing out on gaining training examples where the acoustic profile of 
the call is in some way intrinsically different from the bulk of the 
other training examples, causing the second model to become bi-
ased toward false negatives. This could occur if the target taxa use 
distinct song and call vocalization types, as was indeed the case for 

TA B L E  8   Analysis of detection effort and cost per detection for acoustic monitoring and camera trapping

Acoustic 
captures

Acoustic 
capture rate

Cost Per acoustic capture 
per 1,000 trap days

Camera trap 
captures (estimated)

Camera trap 
capture rate

Cost per camera capture 
per 1,000 trap days

Bartlett's Tinamou 85 1,676.9 $1.67 0.029 3.1 $406.71

Cinereous 
Tinamou

131 2,584.5 $1.08 0.063 6.6 $191.03

Undulated 
Tinamou

58 1,144.3 $2.45 0.073 7.7 $163.74

White-throated 
Tinamou

74 1,459.9 $1.92 0.037 3.9 $323.28

Great Tinamou 129 2,545 $1.10 0.095 10 $126.08

Total 477 9,410.6 $8.22 0.297 31.3 $1,210.84

Species not present in camera trap dry season dataset:

Little Tinamou 11 217 $12.90 — — —

Brazilian Tinamou 119 2,347.7 $1.19 — — —

Variegated 
Tinamou

150 2,959.3 $0.95 — — —

Gray Tinamou 14 276.2 $10.13 — — —

Note: Camera trap captures are estimates made by applying the capture rates reported in Mere Roncal et al. (2019) to the survey duration of the 
acoustic monitoring project. In this system, the acoustic monitoring survey method collected detections at a 301× higher rate than camera trapping 
while being 147× less expensive per unit effort.
Bold values represent the sum for each column in the upper part of the table for which complete data is available.
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two of the species in this study, C. soui and C. variegatus. Special 
effort was made to gather audio that represented the full breadth 
of the acoustic parameter space for each species prior to training 
network 1, and the relatively simple and stereotyped nature of tin-
amou vocalizations (with the noted caveats for soui and variegatus) 
alleviated some of these concerns. However, it is possible that this 
false-negative bias would become more harmful for taxa with more 
varied vocalizations. Extreme care must be taken to ensure that 
training examples are fully representative of real-world acoustic 
space, and research teams seeking to replicate this methodology 
should possess strong domain knowledge both of machine learning 
and of their target taxa.

Acoustic monitoring represents a promising method for studying bird 
biology and life history. We are particularly excited by the prospect of 
being able to use this SWIFT survey data in future analyses to identify 

the life-history and microhabitat characteristics that result in niche parti-
tioning in the tinamou community of lowland Madre de Dios. We antic-
ipate that additional data collection, particularly during the wet season, 
and further refinement of this machine learning pipeline will allow us to 
build occupancy models for these species using elevation maps and veg-
etation structure datasets that were collected for use with the associate 
camera trap grid as environmental covariates (Royle & Nichols, 2003).
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