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ABSTRACT: Biomass-derived porous carbon materials have a good application prospect in electrosorption because of their low
cost, abundant natural resources, and excellent performance. In this work, three-dimensional interconnected structure porous carbon
(CPC) was successfully synthesized from waste biomass chestnut shells by carbonization and chemical activation processes. The
unique structure of CPC could offer superior double-layer capacitance and excellent conductivity. The as-obtained CPC was applied
as an electrosorption electrode. In the deionization experiments, the removal efficiency of the CPC electrode in a 30 mg L−1

chromium(VI) aqueous solution at 1.0 V was 90.5%. The electrosorption follows pseudo-second-order kinetics. The CPC electrode
also presented good regeneration performance in the regeneration test. These results demonstrate that the as-prepared carbonaceous
material is an ideal material for capacitive deionization electrodes.

■ INTRODUCTION

Chromium(VI) has been widely used in industries, such as
corrosion protection, textile, pigment manufacturing, leather
tanning, and electroplating.1,2 Chromium(VI) is a non-
biodegradable and toxic pollutant that can cause nausea,
nervous disorder, kidney failure, and liver diseases.3−5

Therefore, developing effective methods to remove chromium-
(VI) from wastewater is very important. Over the years,
various technologies have been studied for removing
chromium(VI), including chemical precipitation, membrane
filtration, ion exchange, reverse osmosis, electrosorption, and
so on.6−10

Electrosorption is an emerging wastewater treatment
technology due to its environmental friendliness, low energy
consumption, low cost, and easy regeneration.11−14 The
electrosorption is an electrochemically controlled method
based on an electric double-layer capacitor (EDLC) to remove
ions.15 Under the action of an external power supply, ions in
the solution are adsorbed to the electrode, thus removing ions.
Electrode regeneration is realized by a short circuit or applying
reverse voltage.16,17 According to the electrosorption process,
the structure and properties of electrode materials determine
the capacitive deionization ability.13,18 The ideal capacitive
deionization electrode should possess high specific surface
area, good electric conductivity, high specific capacitance, and
reasonable pore size distribution. In addition, chemical stability

and cost issues are considerable as well. Carbon materials meet
most of these criteria. Up to now, activated carbon,19

graphene,20,21 carbon aerogels,22 carbon nanofibers,23,24 and
carbon nanotubes25,26 have been studied by researchers.
However, the development has been limited by these carbon
materials with complex synthesis processes and high costs,
particularly in wastewater treatment.27 The development of
high adsorption efficiency and low-cost capacitive deionization
electrode materials in water treatment has always been the
research target.
A biomass-derived carbon material is the most potential

industrialized electrode material, which has abundant existence
on earth, simple preparation method, nontoxic and pollution-
free, rich pore structure, good electrical conductivity, strong
chemical stability, and low price. Therefore, the biomass-
derived carbon material as a capacitive deionization electrode
material is very suitable.28,29 For instance, Liu and Tang30

using sugarcane bagasse as a precursor material prepared
biomass-derived carbon electrodes via microwave carbon-
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ization and activation. Zhao et al.31 prepared the carbon
material from watermelon peel and the obtained carbon
material was developed as electrodes for deionization
capacitors.
Chestnuts are widely cultivated as food and medicine

throughout the world. As the residual product of chestnuts,
millions of tons of chestnut shells have been directly
abandoned every year, resulting in a massive waste of
resources. Therefore, it is significant to synthesize carbon
materials from chestnut shells for high-performance capacitive
deionization applications. Herein, we provide a green and
economical route to synthesize the carbon material from the
chestnut shells through carbonization and chemical activation.
The obtained carbon material has a three-dimensional
interconnected porous structure. The unique structure of
porous carbon (CPC) could offer superior double-layer
capacitance and excellent conductivity. As expected, CPC
showed a high removal efficiency of 90.5% in a 30 mg L−1

chromium(VI) aqueous solution at 1.0 V. These findings
suggest that the CPC electrode should be an ideal electrode
material for electrosorption. This study realizes the resource
utilization of waste chestnut shells and provides an effective
measure for removing chromium(VI), which has high
application value.

■ RESULTS AND DISCUSSION
Structural Characterization. The X-ray diffraction

spectrum of CPC is shown in Figure 1a. The X-ray powder
diffractometer (XRD) pattern of CPC exhibits two wide
diffraction peaks corresponding to (002) and (100) planes,
indicting the partial graphitization of the samples.32,33

The morphology of CPC was observed by SEM. As can be
seen from Figure 1b, CPC has many macropores, which are
interconnected to form a connected three-dimensional
channel. The connected three-dimensional channel forms an
ion buffer layer, which shortens the ion diffusion distance.34−36

In contrast, hydrothermal carbon (CHC) and 700 °C calcined
hydrothermal carbon (DCHC) show bulk structures without
pores (Figure S1 in the Supporting Information). This
indicates that KOH plays a critical role in the formation of
the three-dimensional interconnected porous structure. During
the calcination process, KOH reacts with C as follows.37,38

+ → + +2C 6KOH 2K 3H 2K CO2 2 3

The resulting metal K can effectively insert/penetrate the
carbon matrix, thus increasing the lattice spacing of carbon.
When treated with 1 M HCl, metal K and other K salts were
quickly removed, and the extended carbon lattice could not be
restored to the original compact structure. Therefore, the
three-dimensional interconnected porous structure was cre-

ated.39 The composition of chestnut shells from different
sources may be slightly different. Therefore, we choose
different sources of chestnut shells for comparison. The result
shows that the morphology of obtained CPC presents no
significant change, as shown in Figure S2.
The carbonization temperature also has a great effect on the

morphology and electric adsorption performances. Figure S3
shows the SEM images of CPC-400 and CPC-550. It can be
observed that when the calcination temperature is 400 °C, the
biomass carbon material structure is relatively dense, with a
very small number of pores. With the increase of carbonization
temperature, the number of pores in the product gradually
increases. The reason is that activation is more complete at
higher temperatures.31 When calcination temperature increases
to 700 °C, the product has three-dimensional interconnected
channels and many pores. A highly interconnected porous
structure facilitates the rapid transfer of electrons and the rapid
diffusion of electrolyte ions, leading to greatly improved
electrochemical performances.
The specific surface area and porous features of CPC were

investigated by nitrogen adsorption−desorption isothermal
analysis (Figure 2). The specific surface area of CPC is 429 m2

g−1 as calculated by the Brunauer−Emmett−Teller (BET)
method. CPC shows a mesopore distribution at 3.84 nm. As
presented by the SEM image and nitrogen adsorption−
desorption isotherm, CPC possesses a hierarchical porous
structure with macroporous and mesoporous features. For
comparison, CHC was also investigated (Figure S4). The
specific surface area and pore volume of CHC are 29 m2 g−1

and 0.08 cm3 g−1, respectively, which are significantly lower
than those of CPC. Furthermore, it can be seen from SEM that
CPC has a large number of macropores. In contrast, CHC
shows a bulk structure without pores. The electrosorption
performance depends largely on the pore structure of the
electrode material. The hierarchical and interconnected pore
structure can form a good ion transfer pathway to shorten the
ion diffusion distance, thus accelerating ion transport.40 Such a
feature is better for the enhanced capacitive deionization
performance.

Electrochemical Performance. Cyclic voltammetry (CV)
measurements of the CHC, DCHC, and CPC electrodes were
first performed to investigate the electrochemical properties
(Figure 3). CV measurements were performed in a 1 M
Na2SO4 electrolyte and a potential window ranging from 0 to
0.8 V. Obviously, the CV curve integrated area of CPC sample
is the largest among all carbon materials, indicating that the
CPC sample has the highest electrochemical specific
capacitance. Such a high specific capacitance also reflects the
high capacitive deionization ability of CPC. In addition, the
electrochemical performance of the samples obtained from

Figure 1. XRD pattern of CPC (a) and scanning electron microscopy (SEM) image of CPC (b).
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different carbonization temperatures (400 and 550 °C) was
also tested (shown in Figure 4). Significantly, compared with
CPC-400 and CPC-550, the specific capacitance of CPC is
much higher than those of CPC-400 and CPC-550. The CPC
electrode offers the best performances that can be summarized
in the following reasons. CPC has a stable three-dimensional
honeycomb structure and abundant macropores and meso-
pores. The unique structure of CPC can not only offer a large

contact area with the electrolyte but also promote electronic
transport, which accelerates ion kinetic in the interior of the
CPC electrode.41−44

The CV behavior of the CPC electrode at 10−100 mV s−1

scanning rates was tested (shown in Figure 5a). At high CV
scan rates, the CV curves of CPC can still maintain a
rectangular-like shape, indicating excellent rate capability. At a

Figure 2. N2 sorption isotherm (a) and pore size distribution (b) of
CPC.

Figure 3. Comparison of electrochemical properties of CHC, DCHC,
and CPC.

Figure 4. Comparison of electrochemical properties of CPC-400,
CPC-550, and CPC.

Figure 5. CV curves of the CPC electrode at various scan rates (a)
and Nyquist profile of the CPC electrode (the inset is the enlarged
view of the high-frequency region) (b).
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scanning rate of 10 mV s−1, the specific capacitance of the CPC
sample is 131 F g−1. The capacitance of the electrode directly
affects the adsorption performance of the electrode. Therefore,
compared with the specific electric capacity of relevant carbon
materials, CPC prepared in this study has certain competitive-
ness.
Electrode conductivity and ion diffusion are very important

for the capacitance and capacitive deionization performance of
materials. Therefore, electrochemical impedance spectroscopy
(EIS) was used to characterize the impedance performance of
CPC, as shown in Figure 5b. The frequency range of EIS is
0.01 Hz−100 kHz, and the AC amplitude is 5 mV. CPC shows
a small semicircle diameter and a low intercept with Z′ in the
high-frequency region, indicating that CPC has small charge
transfer resistance and high conductivity45,46 Based on the
above electrochemical performance test results, it can be
inferred that CPC has great application prospects in the field of
electrosorption.
Electrosorption Performance. To study the electro-

sorption performance of CPC, the electrosorption experiments
of chromium(VI) on the CPC, CHC, and DCHC electrodes
were carried out at 1.0 V. The plot of removal efficiency versus
deionization time is shown in Figure 6. Under identical

conditions, the electrosorption capacity of chromium(VI) by
CHC and DCHC is significantly lower than that of CPC. This
is because CPC has a three-dimensional framework and a
hierarchical porous structure composed of macropores and
mesopores. In the process of electric adsorption, it can provide
more ion accumulation and adsorption sites, which is beneficial
to improve the removal efficiency. In addition, electrosorption
performance tests were performed on the electrodes at
different carbonization temperatures (400 and 550 °C).
Compared with CPC-400 and CPC-550, the removal efficiency
of the CPC electrode is higher than those of CPC-400 and
CPC-550 (shown in Figure 7). In general, the CPC electrode
has the best performance, which may be due to its stable three-
dimensional honeycomb structure and abundant macropores
and mesopores.
To investigate the effect of voltage on the electrosorption

performance, the adsorption experiments of the CPC electrode
under different voltages were carried out (shown in Figure 8).
From 0 to 2.0 V, the removal efficiency increases from 45.6 to
94.7%, indicating that the higher the voltage, the higher the

electrosorption efficiency. This is mainly because as the voltage
increases, the electrostatic force increases and the EDLC
thickens. It is also worth noting that the theoretical
decomposition voltage of water is 1.23 V.47 Excessive voltage
will increase operation energy consumption.
In practical application, the background ions have a great

influence on the electric adsorption performance. The effect of
electrolyte concentration on the electrosorption performance
of CPC was studied with NaCl as the representative
background electrolyte. As can be seen from Figure 9, with
the increase of NaCl solution concentration, the removal
efficiency of chromium(VI) ions increases from 82.8 to 90.5%.
The improvement of removal efficiency can be explained as the
conductivity increases with the addition of the electrolyte, and
the migration rate of ions accelerates.48,49

To explore the influence of adsorption time on the
electrosorption performance of CPC, the adsorption kinetics
of CPC on chromium(VI) was studied by changing the
adsorption time with other experimental conditions un-
changed, as given in Figure 10. The result shows that the
adsorption rate of CPC to chromium(VI) is very fast in the
initial stage and gradually slows down until equilibrium. In the
initial stage, a large number of chromium(VI) ions in the
solution resulted in a high adsorption rate. As the adsorption
process progresses, the number of chromium(VI) ions

Figure 6. Electrosorption curves of CHC, DCHC, and CPC.

Figure 7. Electrosorption curves of CPC-400, CPC-550, and CPC.

Figure 8. Effect of applied voltages on the electrosorption
chromium(VI) performance of CPC.
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decreases, leading to the decrease of the adsorption rate.
Moreover, as the active center is occupied, it is not conducive
to further adsorption.
The adsorption kinetics of the capacitive deionization

process was studied.50−53 The electrosorption kinetics of
chromium(VI) on the CPC electrodes at different voltages is
shown in Figure 11. The kinetic adsorption parameters of
chromium(VI) are listed in Table 1. At each applied voltage,
the pseudo-second-order fitting data are better than the
pseudo-first-order fitting data, which indicates that the pseudo-
second-order model can better describe the adsorption and
electric adsorption processes. This deionization process is
because of the electrostatic interaction between ions and the
electrode.54,55

The recycling stability of the CPC electrode was also
investigated. The cyclic test was carried out in the chromium-
(VI) solution at 1.0 V. As shown in Figure 12, the
electrosorption capacity is not significantly reduced after 10
cycles, indicating that CPC has excellent recycling ability.
Therefore, CPC should be a promising electrode material for
electrosorption.
Table S1 compares the removal efficiency of CPC with those

of other adsorbents reported in the literature.55−57 The result
shows that CPC has a good ability to remove chromium(VI).
As the residual product of chestnuts, millions of tons of

chestnut shells have been directly abandoned or burnt every
year, resulting in massive waste of resources. In addition,
burning it can cause air, water, and soil pollution. Using waste
chestnut shells as a carbon source can not only reduce the cost
but also alleviate environmental pollution. In summary, this
study realizes the resource utilization of waste chestnut shells
and provides an effective measure for removing chromium-
(VI).

Figure 9. Effect of the electrolyte ion concentration on electro-
sorption.

Figure 10. Effect of contact time on the electrosorption performance
of CPC.

Figure 11. Fitting plots on chromium(VI) adsorption by the CPC
electrode using pseudo-first-order (a) and pseudo-second-order (b)
kinetic equations.

Table 1. Kinetic Parameters for Chromium(VI)
Electrosorption by the CPC Electrode

0 0.5 1.0 1.5 2.0

Applied Voltages (V)

qe (exp) (mg
L−1)

43.18 59.81 77.68 83.09 89.71

Pseudo-first-order
qe (cal) (mg
L−1)

21.26 57.12 63.05 55.01 71.63

k1 (min−1) 0.0281 0.0417 0.0439 0.0473 0.0542
R2 0.934 0.965 0.829 0.820 0.867

Pseudo-second-order
qe (cal) (mg
L−1)

48.40 66.53 87.72 91.49 97.85

k2 [g (mg
min)−1]

0.0023 0.0011 0.0011 0.0010 0.0010

R2 0.997 0.998 0.994 0.996 0.998
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■ CONCLUSIONS
In summary, we provide a green and economical route for
synthesizing the carbon material from chestnut shells by
carbonization and chemical activation processes. The obtained
CPC material has a three-dimensional frame structure with
interconnected channels and abundant macropores and
mesoporous. Because of the unique structure, the CPC
electrode has satisfactory electrosorption performance. The
CPC-based capacitive deionization showed a high chromium-
(VI) removal efficiency of 90.5% at 1.0 V. The adsorption
kinetics were found to best agree with the pseudo-second-
order model. Besides, the CPC electrode showed good
regeneration behavior. These results demonstrate that CPC
with three-dimensional interconnected porous structures
derived from chestnut shells should be an ideal electrode
material for capacitive deionization.

■ EXPERIMENTAL SECTION
Preparation of Samples. The chestnut shell wastes were

collected from farms and then crushed. The crushed chestnut
shells were cleaned and dried in an oven at 100 °C. Chestnut
shells (7.5 g) were added to 70 mL of the citric acid solution
(0.1 M) under vigorous stirring. The obtained mixture was
transferred to an autoclave and reacted at 200 °C for 6 h. The
resultant hydrothermal carbon (CHC) was recovered by
filtration.
A certain amount of CHC was immersed in the KOH

solution (4 M) for 12 h, filtered, and freeze-dried for 48 h.
Subsequently, the mixture was heated to 350 °C for 1 h in an
Ar atmosphere. Then, the temperature was increased to 700
°C for 2 h. The resulting black powder was soaked in HCl (1
M) for 6 h and then washed with deionized water to neutral.
The chestnut shell-based biomass carbon material was
obtained.
To study the influence of pyrolysis treatment temperature

on the products, the final pyrolysis treatment was carried out at
400 and 550 °C. The products were named CPC-400 and
CPC-550, respectively. Without KOH activation treatment,
hydrothermal carbon was directly heated to 350 °C in an Ar
atmosphere and heat-treated for 1 h. Then, the temperature
was increased to 700 °C for 2 h. The resulting sample was
named DCHC.
Characterization. The crystal structure, surface morphol-

ogy, and specific surface area of the samples were characterized

using an X-ray powder diffractometer (Rigaku D/max-IIIB
diffractometer XRD), a scanning electron microscope (Philips
XL30 SEM), and a surface area and porosity analyzer
(Quantachrome 2010e), respectively.
The electrochemical performance of the biochar electrode

was evaluated by cyclic voltammetry (CV) and electrochemical
impedance spectroscopy (EIS) on an electrochemical work-
station (CHI660E). A standard three-electrode test system
including a platinum counter electrode, a saturated calomel
electrode, and a CPC working electrode was used in the test
process. The working electrode consisted of CPC (80 wt %),
PTFE (10 wt %), and acetylene black (10 wt %). After
ultrasonication, the mixture was coated on nickel foam (1 × 1
cm2) and dried at 60 °C. The specific capacitances were
calculated by eq 1

∫ ν= ΔC i V Vmd /
(1)

where i, v, ΔV, and m denote the real-time current density, the
potential scan rate, the potential window, and the weight of
active CPC loaded on nickel foam, respectively.

Electrosorption Experiments. Electrosorption experi-
ments were carried out in a cuvette with the chromium(VI)
aqueous solution (30 mg L−1). The electrodes consisted of
CPC (80 wt %), PTFE (10 wt %), and acetylene black (10 wt
%). The carbon slurry was coated on nickel foam and then
transferred to a 60 °C oven for one night. The size of
electrodes was set to be 2 × 2 cm2. In the electroadsorption
experiment, the capacitive deionization reactor was precharged
with the specified voltage for 10 min before the start of the
electroadsorption experiment to ensure that the electrode
reached a stable state. The chromium(VI) concentration was
determined at 540 nm with a 722 s spectrophotometer. The
electrosorption capacity and removal efficiency were evaluated
using the following equations

= − ×R C C C( )/ 100%0 e 0 (2)

= −q C C V m( ) /e 0 e (3)

where C0 is the initial concentration of chromium(VI) ions
(mg L−1), Ce is the final concentration of chromium(VI) ions
(mg L−1), V (L) is the total volume of the chromium(VI)
aqueous solution, and m is the mass of active CPC loaded on
nickel foam (g).
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