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Abstract

Background:  Larger brain volumes are often associated with more free-living physical activity (PA) in cognitively normal older adults. Yet, 
whether greater brain volumes are associated with more favorable (less fragmented) PA patterns, and whether this association is stronger than 
with total PA, remains unknown.
Methods:  Brain magnetic resonance imaging and wrist-worn accelerometer data were collected in 301 participants (mean age = 77 [SD = 7] years, 
59% women) enrolled in the Baltimore Longitudinal Study of Aging. Linear regression models were fit to examine whether brain volumes (cc) 
were cross-sectionally associated with: (a) total daily PA minutes and (b) activity fragmentation (mean number of PA bouts / total PA minutes × 
100). Sensitivity analyses were conducted by adjusting for counterpart PA variables (eg, fragmentation covariate included in the PA minutes model).
Results:  Greater white matter volumes in the parietal and temporal lobes were associated with higher daily PA minutes (2.6 [SE  =  1.0] 
and 3.8 [0.9] min/day, respectively; p < .009 for both) after adjusting for demographics, behavioral factors, medical conditions, gait speed, 
apolipoprotein E e4 status, and intracranial volume. Greater temporal white matter volume was associated with lower fragmentation (−0.16% 
[0.05], p  =  .003). In sensitivity analyses, observed associations between brain volumes and daily PA minutes remained significant while 
associations with fragmentation no longer remained significant.
Conclusions:  Our results suggest white matter brain structure in cognitively normal older adults is associated with the total amount of PA 
and, to a lesser extent, the PA accumulation patterns. More work is needed to elucidate the longitudinal relationship between brain structure 
and function and PA patterns with aging.
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With aging, the volume of brain gray and white matter declines, 
and the ventricles increase in size (1–4). Brain atrophy is associated 
with a higher risk of mild cognitive impairment and dementia, par-
ticularly Alzheimer’s disease and related dementias (5,6). Efforts to 
mitigate and even prevent cognitive decline that results in dementia 

have focused largely on changing health behaviors such as increasing 
physical activity (7,8).

The relationship between physical activity and brain health may 
be bidirectional (8). A large body of evidence shows that increasing 
volitional physical activity may slow cognitive decline and protect 
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against brain atrophy (9), largely observed in the frontal, parietal, 
and temporal lobes (10). Possible biological mechanisms include 
brain-derived neurotrophic factor expression (11) and cardiovas-
cular health through its role in supporting angiogenesis, neurogen-
esis, neuroplasticity, and synaptogenesis (12). Yet, little work has 
examined brain characteristics that influence total daily physical ac-
tivity and its accumulation throughout the day (8). This is important 
because brain atrophy, low daily physical activity, and greater sed-
entary behavior are all associated with adverse health outcomes 
(13–15).

Upon reaching older ages, it is likely that brain structural in-
tegrity may influence the amount of physical activity in which 
older adults engage, as well as the way they cycle through states 
of physical activity and inactivity throughout the day (eg, “activity 
fragmentation”), which may be attributable to the perception of 
activity-related fatigue and limitations in physical function (16,17). 
Activity fragmentation can be operationalized using continuously 
collected physical activity data from wrist-worn accelerometers—
portable, noninvasive devices that objectively measure daily physical 
activity over long periods of time. Activity fragmentation is more 
strongly associated with physical fatigability (18), low physical func-
tion and endurance (18), cancer history (19), and increased risk of 
mortality (20) than total daily physical activity. Moreover, activity 
fragmentation appears to occur before overall declines in physical 
activity and physical functioning (18) and may thus act as an early 
marker of adverse health conditions—such as accelerated brain at-
rophy—in older adults. Whether lower brain volumes (global or 
regional) are associated with higher activity fragmentation remains 
unexplored.

Using brain magnetic resonance imaging (MRI) and object-
ively measured physical activity from accelerometers, this study 
aimed to characterize the degree to which brain volumes are asso-
ciated with physical activity in terms of both amount of physical 
activity and patterns of physical activity accumulated throughout 
the day in well-functioning and cognitively normal older adults. 
We hypothesized that higher brain volumes are associated with (a) 
higher total daily physical activity and (b) lower fragmentation of 
physical activity.

Method

Study Design and Population
Objective physical activity and brain MRI data were collected 
in the Baltimore Longitudinal Study of Aging (BLSA) between 
February 2015 and June 2018 (Supplementary Figure 1). The 
BLSA is an ongoing continuously enrolled cohort study primarily 
focused on studying normative aging in humans that is con-
ducted by the National Institute on Aging’s Intramural Research 
Program. Details of the BLSA and the enrollment criteria are pub-
lished elsewhere (21). Briefly, the BLSA recruits persons aged 20 
and older with no cognitive impairment, functional limitations, or 
major chronic disease (except hypertension or cancer within the 
past 10 years). Once enrolled, BLSA participants are followed up 
for life. Participants undergo comprehensive health, cognitive, and 
functional assessments during a 3-day stay at the NIA’s Clinical 
Research Unit located at Harbor Hospital in Baltimore, Maryland. 
Visits are regularly scheduled every 1–4 years depending on the 
participant’s age. Trained and certified staff administer all as-
sessments following standardized protocols. All participants pro-
vided written informed consent, and the study protocol has been 

approved by the National Institute for Environmental Health 
Sciences Internal Review Board.

Of 423 participants with brain MRI and wrist-worn 
accelerometry, 421 (99%; mean age  =  71 [SD  =  18] years) pro-
vided valid accelerometer data. Those younger than 65 years of age 
(n  =  106; mean age  =  54 [18] years) and those exhibiting cogni-
tive impairment (n = 14; mean age = 82 [8] years) were excluded. 
The final analytic sample included 301 participants (Supplementary 
Figure 1).

Accelerometer Variables
Participants were fitted with a wrist-worn Actigraph GT9X monitor 
(Actigraph, Pensacola, FL) during the last day of their BLSA clinic 
visit. The monitor, which contains a tri-axial accelerometer sensor, 
was positioned on the nondominant wrist. Participants were in-
structed to wear the Actigraph monitor for 7 consecutive days, 24 
hours per day. The monitor collects wrist movement in units of 
gravity (g) at a sampling rate of 80 Hz per second. After the col-
lection period, participants returned the Actigraph monitor to the 
Clinical Research Unit via express mail. Data were downloaded 
and preprocessed into 1-minute epoch level activity counts (unitless 
quantities of movement) using ActiLife Software (version 6.13.4).

Participants with at least 3 valid days were included in this ana-
lysis (22). A valid day was defined as having less than 10% missing 
data. After valid wear periods were determined, each accelerometer 
minute was label as either “active” if activity counts within that 
minute reached a threshold of at least 1853 counts per minute or 
“nonactive/sedentary” if the activity was less than 1853 counts per 
minute for that minute (23). Activity bouts were defined as con-
tiguous minutes registering as active. Nonactive bouts were defined 
as contiguous minutes registering as nonactive.

Two summary variables were derived: (a) total active minutes per 
day and (b) activity fragmentation. Total active minutes per day were 
calculated by summing the total number of active minutes and calcu-
lating the mean across valid wear days for each participant. Activity 
fragmentation was operationalized as the active-to-sedentary transi-
tion probability, calculated as the reciprocal of the average activity 
bout length for each participant (18,24). “Low,” “medium,” and 
“high” categories were derived for both total active minutes and ac-
tivity fragmentation at their respective tertiles.

Brain Imaging
A 3T Philips Achieva MRI scanner was used for brain imaging. 
T1-weighted brain scans were acquired using a MPRAGE (mag-
netization prepared rapid gradient echo) sequence (repetition 
time [TR] = 6.8 msec, echo time [TE] = 3.2 msec, flip angle = 8°, 
image matrix = 256 × 256, 170 slices, pixel size = 1 × 1 mm, slice 
thickness = 1.2 mm).

Anatomical labels and brain volumes (global and regional) were 
obtained using the Multi-atlas region Segmentation using Ensembles 
of registration algorithms and parameters (MUSE) approach (25,26). 
A priori brain regions of interest for this study included total brain, 
frontal, parietal, temporal, and occipital lobes and the hippocampus 
in units of a cubic centimeter (cc). Also, gray and white matter vol-
umes were examined within total brain and the lobar regions.

Covariates
Certified and trained study staff collected from participants self-
reported age, sex, self-identified race, and years of education. Body 
mass index (kg/m2) was calculated using measured weight (kg) and 

Journals of Gerontology: MEDICAL SCIENCES, 2021, Vol. 76, No. 8� 1505

http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaa294#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaa294#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaa294#supplementary-data


height (m). Usual gait speed (m/s) was measured over a 6-m course, 
with the faster of 2 trials used for analysis. Participants self-reported 
whether they were ever told by a physician or other health profes-
sional that they had any of the following conditions: cardiovascular 
disease including angina, myocardial infarction, congestive heart 
failure, peripheral arterial disease, and vascular-related procedures; 
hypertension or high blood pressure; stroke and transient ischemic 
attack; high cholesterol or triglycerides; chronic bronchitis, emphy-
sema, chronic obstructive pulmonary disease, or asthma; diabetes, 
glucose intolerance, or high blood sugar; cancer, malignant growth, 
or malignant tumor; arthritis or osteoarthritis. Responses were 
summed and categorized into a morbidity index score (0, 1, and 2+ 
morbid conditions). Depressive symptoms were measured using the 
20-item Center for Epidemiologic Studies-Depression scale, ranging 
from 0 to 60 where a higher score represents higher depressive symp-
toms (27). Apolipoprotein E (APOE) e4 carrier status was defined 
as the presence of at least 1 e4 allele versus 0.  Baseline intracra-
nial volume (cc), estimated at age 70 years using linear mixed-effects 
models, was used as a covariate (28). In brief, intracranial volume 
was the outcome variable with age, time from baseline, and sex 
treated as predictors. Random effects were included for the intercept 
and interval.

Statistical Approach
Baseline participant characteristics were descriptively examined by 
overall sample and low, medium, and high physically active groups. 
Differences in participant characteristics by groups were tested using 
analysis of variance for continuous variables and the chi-squared 
test for categorical variables. Descriptive statistics were calculated 
for accelerometer characteristics for the entire sample and by low, 
medium, and high groups of total physical activity (active minutes/
day) and activity fragmentation (%).

Multivariable linear regression models were used for all analyses. 
In all models, each brain volume measure was treated as the inde-
pendent variable and each physical activity metric as the dependent 
variable. Separate linear multivariable regression models were 
constructed to estimate the association between the brain volume 
variable (cc) and the continuous physical activity metric (eg, active 
minutes/day or activity fragmentation, %). Covariates were added 
successively to models. To test whether the association between 
brain volumes and activity fragmentation was stronger than for total 
active minutes per day, similar linear regression models were con-
structed and further adjusted for tertiles of the other physical activity 
metric (eg, active minutes per day or activity fragmentation). These 
tertile variables were used to (a) adjust for the degree of fragmen-
tation in the model of active minutes per day and (b) adjust for the 
volume of daily activity in the model of activity fragmentation, while 
avoiding collinearity between the continuous variables of time spent 
active and daily fragmentation (r = −0.77). The correlation between 
the tertile variables of time spent active and daily fragmentation in 
this sample was r = −0.61. Although the tertile analysis accounts for 
the shared and unique variance that occurs between the 2 physical 
activity metrics, a sensitivity analysis was also performed to adjust 
for only the unique variance of each counterpart physical activity 
variable. Fragmentation adjusted for the time spent active and time 
spent active adjusted for fragmentation were calculated by using the 
residuals from 2 separate univariate linear regression models, re-
spectively. For example, to calculate fragmentation adjusted for the 
time spent active, fragmentation was regressed on time spent active 
and the resulting residuals were used as an adjusted fragmentation 
covariate.

Statistical significance was determined using two-tailed hy-
pothesis testing with an alpha level = 0.05. All statistical analyses 
were performed using STATA software (v. 14.2; Stata Corporation, 
College Station, TX).

Results

Of the 301 BLSA participants, the mean age was 77 (SD = 7) years, 
59% were women, and 21% self-identified as Black (Table  1). 
Participants had a mean of 17 years of education, body mass index of 
27 kg/m2, Center for Epidemiologic Studies-Depression score aver-
aging 4.7, and a usual gait speed of 1.1 m/s. The average number of 
morbid conditions was approximately 2 with hyperlipidemia, osteo-
arthritis, and hypertension having the highest prevalence (>62%). 
Approximately 24% of participants were APOE e4 carriers. Baseline 
intracranial volume estimated at age 70 years averaged around 1390 
cc for the sample. Participants tended to be older and men across 
tertiles of decreasing physical activity. Those in the lowest tertile of 
physical activity tended to have a higher prevalence of self-reported 
cardiovascular disease, diabetes, and osteoarthritis and have larger 
intracranial volumes.

BLSA participants wore the wrist physical activity monitor for 
a mean of 6  days for approximately 24 hours per day (Table  2). 
Participants averaged 7 hours per day in an active state with an ac-
tivity fragmentation level of 25%. Compared to the low activity 
tertile, those in the high activity tertile engaged in approximately 3.5 
more hours of activity per day. For fragmentation, those in the high 
fragmentation tertile averaged a 30.8% probability of transitioning 
from an active to a sedentary state, compared to a 19.4% probability 
in the low fragmentation tertile.

Total brain, gray matter, and white matter volumes and total, 
gray, and white matter volumes in the frontal, parietal, and tem-
poral lobes were all associated with total time spent in daily activity 
(Table 3, Model 1), after adjusting for intracranial volume. After full 
covariate adjustment (Table 3, Model 3), for every 1 cc higher in 
total brain volume, 0.35 (SE = 0.13; p = .006) more minutes per day 
were spent in daily physical activity. This association with physical 
activity time was largely detected in the white matter (0.72 [0.23] 
min/day; p = .002), particularly in the parietal (2.60 [1.00] min/day; 
p = .008) and temporal lobes (3.83 [0.94] min/day; p < .001).

Total brain, gray matter, and white matter volumes, total, gray, 
and white matter volumes in the frontal and temporal lobes, and 
total and white matter volumes in the parietal lobe were all asso-
ciated with daily activity fragmentation (Table  4, Model 1), after 
adjusting for intracranial volume. After full covariate adjustment 
(Table  4, Model 3), for every 1 cc higher in total brain volume, 
there was an associated 0.02% (SE  =  0.007; p  =  .023) lower ac-
tivity fragmentation. This association was observed in total white 
matter (−0.03% [0.013]; p = .013), particularly in the temporal lobe 
(−0.16% [0.052]; p = .003).

Fully adjusted associations presented in Table 3 were attenu-
ated between (a) total brain, (b) total white matter, (c) total and 
white matter in the parietal lobe, and (d) total and white matter in 
the temporal lobe with total time spent in daily activity, after add-
itionally adjusting for tertiles of fragmentation in full covariate 
models (Table  5). Furthermore, the association between gray 
matter in the parietal lobe and total time spent in daily activity 
lost significance. In contrast, fully adjusted associations presented 
in Table 4 between brain volumes and activity fragmentation all 
lost significance after additionally adjusting for tertiles of ac-
tive minutes per day in full covariate models (Table 5). However, 
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when adjusting for only the unique variance of the counterpart 
physical activity metric, the statistically significant associations 
found for both time spent active and fragmentation remain robust 
(Supplementary Table 1).

Discussion

Our results show that higher brain volumes in the parietal and tem-
poral lobes, largely in white matter, are associated with higher daily 
physical activity and lower activity fragmentation in well-functioning 
older adults. The positive associations between brain volumes and 
the total amount of daily activity remained even after adjusting for 
activity fragmentation. In contrast, the inverse associations between 
brain volumes and fragmentation did not remain significant, after 
adjusting for daily activity minutes. Together, these results suggest 
that age-related brain atrophy may be reflected in reductions of total 
daily physical activity accumulation and, to a lesser extent patterns 
of accumulation, in well-functioning older adults without cognitive 
impairment.

Studies using objectively measured physical activity show asso-
ciations with both global and regional brain structures (29–32), pri-
marily observed in the gray matter of the hippocampus (33,34). Along 
with emerging aerobic physical activity intervention trials (35,36), these 
findings suggest physical activity can influence brain health. However, it 
can be postulated that declining cerebral blood flow, brain metabolism, 
neuroplasticity, and neurogenesis that occurs with structural brain at-
rophy may partly contribute to age-related declines in everyday phys-
ical activity patterns (12). Yet, to the best of our knowledge, only one 

study led by Arnardottir et al. (30) showed that measurements of either 
gray or white matter, measured at baseline and over time, were asso-
ciated with future accelerometer-derived measures of physical activity 
in older adults. Our findings add to the growing body of literature, by 
elucidating strong associations between daily activity quantities and 
patterns and white matter. It is important to note that the low physical 
activity group had the highest proportion of individuals carrying the 
APOE e4 allele, a genetic risk factor for Alzheimer’s disease and related 
dementias (37), which might suggest low physical activity may serve as 
a marker of impending impairment, warranting further longitudinal 
confirmation. Interestingly, the current study found no associations 
between gray matter, particularly in the frontal lobe or hippocampus, 
and physical activity. This difference is likely due to the fairly high 
usual gait speed—a hallmark indicator of survival (38) and promising 
marker of lower dementia incidence (39)—observed in this sample of 
older adults. Additionally, our study examines physical activity broadly 
as routine movement-based behavior performed throughout the day 
whereas other studies linking gray matter and frontal lobe regions re-
lated to motor function with physical activity focus largely on exercise 
(ie, physical activity intended for health benefits) and markers of car-
diorespiratory fitness (40).

Previously, Spartano et  al. (29) found no associations between 
light-intensity physical activity (the most common type of physical ac-
tivity in older adults) and hippocampal volume or gray matter in 2354 
participants whose mean age was 53 years; almost 25 years younger 
on average than the BLSA participants in this study. Furthermore, they 
found that light-intensity physical activity was more strongly related 
to white matter, specifically to white matter hyperintensities. This 

Table 1.  Overall Participant Characteristics and by Daily Physical Activity 

Overall (n = 301)
High Daily Active 
Minutes (n = 100)

Medium Daily Active 
Minutes (n = 100)

Low Daily Active 
Minutes (n = 101)

p Value 
for 
Trend

Age in years, mean (SD) 77.2 (7.2) 75.5 (7.2) 77.9 (7.1) 78.1 (6.9) .01
Women, n (%) 177 (58.8) 69 (69.0) 65 (65.0) 43 (42.6) <.001
Black, n (%) 64 (21.3) 27 (27.0) 21 (21.0) 16 (5.8) .07
Years of education, mean (SD) 17.1 (2.5) 16.9 (2.5) 17.3 (2.6) 17.2 (2.4) .38
Body mass index, kg/m2, n (%) 27.0 (4.6) 27.1 (4.7) 26.3 (4.4) 27.7 (4.7) .37
No. of morbid conditions, n (%) 2.5 (1.3) 2.5 (1.2) 2.3 (1.2) 2.5 (1.5) .98
  0 16 (5.3) 2 (2.0) 8 (8.0) 6 (5.9) .16
  1 52 (17.3) 17 (17.0) 16 (16.0) 19 (18.8) .87
  2 or more 233 (77.4) 81 (81.0) 76 (76.0) 76 (75.3) .57
  Hypertension, n (%) 143 (47.5) 56 (56.0) 41 (41.0) 46 (45.5) .09
  Stroke or TIA, n (%) 20 (6.6) 5 (5.0) 6 (6.0) 9 (8.9) .51
  Cardiovascular disease, n (%) 33 (11.0) 4 (4.0) 13 (13.0) 16 (15.8) .02
  Hyperlipidemia, n (%) 187 (62.1) 63 (63.0) 59 (59.0) 65 (64.4) .72
  Pulmonary disease, n (%) 32 (10.6) 9 (9.0) 8 (8.0) 15 (14.9) .23
  Diabetes, n (%) 49 (16.3) 23 (23.0) 8 (8.0) 18 (17.8) .01
  Cancer, n (%) 100 (33.2) 29 (29.0) 32 (32.0) 39 (38.6) .33
  Osteoarthritis, n (%) 175 (58.1) 65 (65.0) 61 (61.0) 49 (48.5) .05
MMSE score ranging from 0 to 
30, mean (SD)

28.5 (1.3) 28.6 (1.4) 28.5 (1.4) 28.5 (1.3) .64

CES-D score ranging from 0 to 
25, mean (SD)

4.7 (4.6) 4.9 (4.5) 4.2 (4.1) 5.0 (5.1) .76

Usual gait speed, m/s, mean (SD) 1.1 (0.2) 1.1 (0.2) 1.1 (0.2) 1.1 (0.2) .48
Apolipoprotein E e4 risk allele, 
n (%)

71 (23.6) 23 (23.0) 20 (20.0) 28 (27.7) .43

Intracranial volume, cc, mean 
(SD)

1389.6 (132.1) 1360.1 (129.6) 1375.5 (118.3) 1432.8 (137.6) <.001

Notes: TIA = transient ischemic attack; MMSE = Mini-Mental State Examination where higher scores represent the higher cognitive mental state (51) (n = 298); 
CES-D = Center for Epidemiological Studies-Depression where higher scores represent higher depressive-like symptoms (27).
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suggests that myelination degradation may affect connections between 
gray matter structures (41) that potentially contribute to shrinking 
daily physical activity routines (29). One possible explanation is that 
temporal lobe deterioration may lead to impaired memory retrieval 
(42) and/or auditory and visual processes (43) while parietal lobe deg-
radation may involve compromised spatial awareness, sensory input, 
and perception (44), all of which may promote decreased confidence 
and self-efficacy to perform daily activities. Another possible explan-
ation is that the integrity of white matter, its role in functional connect-
ivity for motor function, and related white matter tracts that connect 
the brain to the musculoskeletal system are compromised (32), an area 
that has been implicated with gait speed decline in older adults (45–
48). Together, these deteriorations may affect the higher-order mental 
(planning/organizing, intent, and spatial awareness) and physical (co-
ordination, balance, movement) functioning needed to maintain rou-
tine physical activity participation.

Temporal white matter and total parietal lobe volumes were 
also associated with activity fragmentation—a novel pattern of 

objectively measured physical activity. However, our findings suggest 
the possibility that these brain regions have more robust associations 
with total active minutes per day than with daily fragmentation. One 
explanation is that certain types of sedentary behavior captured by 
activity fragmentation may be associated with better cognition and 
brain structure, such as sitting to read a book (49) or resting to re-
cover from higher intensity activity. Another possible explanation is 
that age-related activity fragmentation may only detect more prox-
imal prodromal symptoms of brain-related diseases and dementias 
that were not observed in this sample of well-functioning, cogni-
tively intact older adults. Lastly, the association between brain vol-
umes and fragmentation may be stronger earlier in life (eg, later 
stages of midlife). Collectively, further research is needed to under-
stand the context of fragmentation performed throughout the day, 
and longer follow-up is needed to evaluate whether fragmentation 
occurs with early symptoms of mild cognitive impairment and pro-
gression to Alzheimer’s disease and other dementias in more cogni-
tively impaired populations.

Table 2.  Accelerometer Characteristics, n = 301

Mean (SD) Minimum Maximum

Days of device wear time 5.9 (0.4) 3 11
Device wear time, h/day 23.9 (0.2) 22.7 24
Hours spent physically active (h/day) 7.0 (1.6) 3.4 11.7
  Low physical activity (n = 101) 5.2 (0.7) 3.4 6.1
  Medium physical activity (n = 100) 7.0 (0.4) 6.2 7.6
  High physical activity (n = 100) 8.7 (0.9) 7.7 11.7
Activity fragmentation, % 24.9 (5.3) 12.9 45.7
  Low fragmentation (n = 101) 19.4 (2.3) 12.9 22.5
  Medium fragmentation (n = 100) 24.5 (1.1) 22.5 26.7
  High fragmentation (n = 100) 30.8 (3.7) 26.7 45.7

Notes: Hours spent active and activity fragmentation were tertiled to determine low, medium, and high categories. Activity fragmentation was operationalized 
as the active-to-sedentary transition probability, calculated as the reciprocal of the average daily activity bout length for each participant (18,24).

Table 3.  Association Between Brain Region (cc) and Total Daily Activity (min/day), n = 301

Model 1 Model 2 Model 3

 Beta Coefficient (SE) in units of min/day

Total brain 0.38 (0.11)*** 0.33 (0.13)** 0.35 (0.13)**
Gray matter 0.50 (0.17)** 0.30 (0.23) 0.35 (0.22)
White matter 0.73 (0.20)*** 0.74 (0.23)** 0.72 (0.23)**
Ventricles −0.14 (0.27) 0.06 (0.29) 0.11 (0.29)
Frontal 0.73 (0.26)** 0.50 (0.34) 0.49 (0.33)
  Gray 1.03 (0.47)* 0.30 (0.59) 0.32 (0.58)
  White 1.17 (0.45)* 1.01 (0.53) 0.96 (0.53)
Parietal 1.86 (0.52)*** 1.54 (0.61)* 1.81 (0.60)**
  Gray 2.55 (0.84)** 1.64 (1.00) 2.31 (0.99)*
  White 2.68 (0.92)** 2.48 (1.00)* 2.60 (1.00)**
Temporal 2.14 (0.50)*** 2.07 (0.59)** 1.94 (0.59)**
  Gray 2.00 (0.81)* 1.19 (0.93) 1.11 (0.93)
  White 3.88 (0.86)*** 4.02 (0.94)*** 3.83 (0.94)***
Occipital 0.96 (0.60) 0.33 (0.68) 0.41 (0.67)
  Gray 1.12 (0.92) −0.26 (1.07) −0.01 (1.05)
  White 2.45 (1.36) 1.93 (1.43) 1.86 (1.42)
Hippocampus 8.27 (7.66) 0.50 (8.68) 2.40 (8.65)
Cerebellum (n = 282) 1.04 (0.56) 0.76 (0.60) 0.80 (0.59)

Notes: Model 1 adjusted for intracranial volume (cc). Model 2: Model 1 + age (years), sex, race, education (years). Model 3: Model 2 + body mass index  
(kg/m2), depressive symptoms, usual gait speed (m/s), number of morbid conditions, Apolipoprotein E4 status.

*p < .05, **p < .01, ***p < .001.
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Our cross-sectional findings cannot confirm temporality and 
warrant a longitudinal investigation into the sensitivity of daily 
physical activity patterning with brain aging. Other limitations 

included restricted generalizability of results to well-functioning 
older adults, unknown activity context of the accelerometer data 
(eg, sitting vs standing), collection of activity from the wrist may 
not capture light lower body movements as accurately as ankle 
or hip monitors, different intensities of physical activity were not 
assessed and may have different associations with the brain, and 
accelerometer-based activity thresholds may misclassify activity 
performed by oldest-old as sedentary. Study strengths include 
large sample size, use of MRI for brain imaging, and extracting 
both traditional and novel measures of physical activity patterns 
from accelerometer data.

In summary, our findings suggest that brain morphometry and 
physical activity are intrinsically linked, and that sensitive and 
important structural brain changes potentially indicative of sen-
sorimotor loss may be detected through objective patterns of phys-
ical activity deterioration in older adults. More work is needed to 
examine accelerometry with other aspects of the brain, such as net-
work connectivity (50). Future studies are needed to further eluci-
date the dynamic, bidirectional relationship between the brain and 
patterns of physical activity as aging occurs.
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Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.

Funding
This research was supported by the Intramural Research Program of the 
National Institute on Aging of the National Institutes of Health. Data used 
in the analyses were obtained from the Baltimore Longitudinal Study of 
Aging, a study performed by the National Institute on Aging Intramural 
Research Program. A.A.W.  is supported by R01AG061786, U01AG057545, 
P30AG059298, and P30AG021334. J.A.S.  is supported by R01AG061786 
and U01AG057545. A.P.S. is supported by U01AG057545.

Table 5.  Association Between Brain Region and Each Activity 
Metric Adjusted for Each Other, Mean (SD), n = 301

Physical Activity  
Amount (min/day)†

Fragmentation  
(%/day)‡

 Beta Coefficient (SE)

Total brain 0.20 (0.09)* −0.01 (0.005)
Gray matter 0.12 (0.17) −0.01 (0.010)
White matter 0.46 (0.18)* −0.02 (0.010)
Ventricles 0.15 (0.21) −0.003 (0.01)
Frontal 0.21 (0.25) 0.02 (0.014)
  Gray matter −0.07 (0.43) −0.04 (0.025)
  White matter 0.57 (0.39) −0.03 (0.023)
Parietal 1.21 (0.45)** −0.04 (0.026)
  Gray matter 1.20 (0.73) −0.06 (0.042)
  White matter 2.02 (0.75)** −0.06 (0.043)
Temporal 1.11 (0.45)* −0.03 (0.026)
  Gray matter 0.36 (0.70) −0.04 (0.040)
  White matter 2.46 (0.71)** −0.04 (0.043)
Occipital −0.20 (0.51) −0.02 (0.029)
  Gray matter −0.65 (0.79) −0.03 (0.045)
  White matter 0.33 (1.08) −0.06 (0.062)
Hippocampus −3.27 (6.53) −0.36 (0.375)
Cerebellum  
(n = 282)

0.70 (0.44) 0.003 (0.025)

Notes: All models adjusted for intracranial volume (cc), age (years), sex, 
race (white vs other), education (years), body mass index (kg/m2), depression, 
usual gait speed (m/s), number of morbid conditions, and Apolipoprotein E4 
status.

†Additionally adjusted for tertiles of fragmentation.
‡Additionally adjusted for tertiles of time spent active.
*p < .05, **p < .01, ***p < .001.

Table 4.  Association Between Brain Region (cc) and Daily Activity Fragmentation (%/day), n = 301

Model 1 Model 2 Model 3

 Beta Coefficient (SE) in units of %/day

Total brain −0.02 (0.006)** −0.01 (0.007)* −0.02 (0.007)*
Gray matter −0.03 (0.010)** −0.02 (0.013) −0.02 (0.012)
White matter −0.03 (0.012)** −0.03 (0.013)* −0.03 (0.013)*
Ventricles 0.02 (0.016) 0.01 (0.016) −0.0002 (0.016)
Frontal −0.04 (0.015)** −0.03 (0.019) −0.03 (0.018)
  Gray −0.07 (0.027)* −0.04 (0.033) −0.03 (0.032)
  White −0.05 (0.026)* −0.05 (0.030) −0.05 (0.029)
Parietal −0.08 (0.030)* −0.06 (0.034) −0.08 (0.033)*
  Gray −0.12 (0.048)* −0.06 (0.056) −0.10 (0.055)
  White −0.09 (0.053) −0.09 (0.057) −0.11 (0.055)
Temporal −0.11 (0.029)*** −0.11 (0.034)** −0.09 (0.033)**
  Gray −0.13 (0.046)** −0.10 (0.052) −0.08 (0.051)
  White −0.15 (0.050)** −0.17 (0.054)** −0.16 (0.052)**
Occipital −0.05 (0.034) −0.02 (0.038) −0.02 (0.037)
  Gray −0.07 (0.052) 0.01 (0.060) −0.008 (0.058)
  White −0.11 (0.078) −0.09 (0.081) −0.10 (0.078)
Hippocampus −0.52 (0.436) −0.21 (0.490) −0.28 (0.478)
Cerebellum (n = 282) −0.03 (0.032) −0.01 (0.034) −0.01 (0.033)

Notes: Model 1 adjusted for intracranial volume (cc). Model 2: Model 1 + age (years), sex, race, education (years). Model 3: Model 2 + body mass index (kg/
m2), depression, usual gait speed (m/s), number of morbid conditions, and Apolipoprotein E4 status.

*p < .05; **p < .01, ***p < .001.
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