Skip to main content
. 2021 Feb 6;11(7):jkab032. doi: 10.1093/g3journal/jkab032

Table 4.

Hyperparameters of selected CNN models from each population

Data DE No. Activation No. layers No. filters Filter size Epoch FCL Optimizer Dropout L2 Pooling
SP 1 linear 1 110 19 25 17 Adamax 0.197 0.21 Average
SP 2 Elu 1 16 15 32 110 rmsprop 0.146 0.03 Average
SP 3 Elu 1 15 8 44 79 rmsprop 0.692 0.02 Average
SP 4 linear 1 59 20 24 49 adamax 0.496 0.23 max
SP 5 linear 1 109 13 27 109 adam 0.827 0.01 Average
SC 1 linear 1 116 20 30 16 adam 0.370 0.10 Average
SC 2 linear 1 87 12 25 12 adam 0.086 0.13 Average
SC 3 linear 1 32 8 42 24 adam 0.250 0.19 Average
SC 4 linear 1 79 20 44 27 adamax 0.666 0.06 Max
SC 5 linear 1 98 16 40 153 adam 0.151 0.17 Average
RP 1 elu 2 [51,113] 18 22 50 adam 0.277 0.67 Average
RP 2 relu 3 [24,81,121] 12 27 268 adam 0.067 0.11 Average
RP 3 elu 2 [64,112] 13 45 278 adam 0.021 0.87 Average
RP 4 relu 3 [44,73,106] 13 47 326 adam 0.008 0.18 Average
RP 5 elu 3 [41,71,128] 5 41 238 adam 0.051 0.35 Average

SP, simulated pig dataset; SC, simulated cattle dataset; RP, real pig dataset; DE No., differential evolution of different data partitions; No. layers, number of convolutional layers; No. filters, number of filters applied based on No. layers; FCL, size (number of neurons) of the fully connected layer after flattened layer.