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Abstract

Introduction: Functional networks develop throughout adolescence when anorexia nervosa (AN) normally debuts.
In AN, cerebral structural alterations are found in most brain regions and may be related to the observed functional
brain changes. Few studies have investigated the functional networks of the brain in adolescent AN patients.. The
aim of this explorative study was to investigate multiple functional networks in adolescent AN patients compared
to healthy age-matched controls (HC) and the relationship with age, eating disorder symptoms and structural
alterations.

Methods: Included were 29 female inpatients with restrictive AN, and 27 HC. All participants were between the
ages of 12 to 18 years. Independent component analysis (ICA) identified 21 functional networks that were analyzed
with multivariate and univariate analyses of components and group affiliation (AN vs HC). Age, age X group
interaction and AN symptoms were included as covariates. Follow-up correlational analyses of selected components
and structural measures (cortical thickness and subcortical volume) were carried out.

Results: Decreased functional connectivity (FC) in AN patients was found in one cortical network, involving mainly the
precuneus, and identified as a default mode network (DMN). Cortical thickness in the precuneus was significantly
correlated with functional connectivity in this network. Significant group differences were also found in two subcortical
networks involving mainly the hippocampus and the amygdala respectively, and a significant interaction effect of age
and group was found in both these networks. There were no significant associations between FC and the clinical
measures used in the study.

Conclusion: The findings from the present study may imply that functional alterations are related to structural
alterations in selected regions and that the restricted food intake in AN patients disrupt normal age-related
development of functional networks involving the amygdala and hippocampus.
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Introduction

Structural and functional changes in the brain have fre-
quently been revealed in patients with anorexia nervosa
(AN), a severe eating disorder characterized by abnor-
mally low body weight and a body image disturbance.
Cerebral structural alterations are found to mainly in-
volve reduction in gray matter (GM) in numerous brain
regions, and several studies find that most cortical areas
are affected [1-3]. Functional magnetic resonance im-
aging (fMRI) studies typically utilize stimulus paradigms
to uncover brain activity related to AN characteristic
traits such as body image disturbance [4] and food and
taste aversion [5]. These studies have revealed altered
activity in several brain regions and functional networks,
improving our understanding of the neurobiological cor-
relate to this disorder.

In recent years, it has become increasingly common to
investigate brain activity while subjects are at rest, not
responding to any stimuli in the scanner — so called
resting state fMRI (RS-fMRI). RS-fMRI can be used to
identify resting-state networks (RSNs) — spatially sepa-
rated areas of the brain where the BOLD-signal is tem-
porally correlated [6]. Several RSNs that are consistent
across trials and studies have been identified [7]. The
networks are linked to known cognitive domains such as
vision, somatosensation and motor function. A much
studied network is the default mode network (DMN) [8].
The DMN is found to correlate negatively with task-
driven activity in fMRI studies [9].

In RS-fMRI studies conducted in AN patients, several
different analytical approaches have been utilized. Many
studies have used seed-based approaches, which are use-
ful to investigate areas of interest. However, such ap-
proaches rely on a priori hypotheses and can thus fail to
detect alterations in unselected brain regions. Some
studies have investigated selected RSNs that may be
linked to core symptoms of the eating disorder such as
visuospatial [10] and executive control networks [11]
and suggest that altered connectivity in these networks
contribute to disturbance in body image perception and
excessive cognitive control, respectively.

AN typically has its debut in adolescence [12], during
a period in development where drastic changes occur in
the organization of brain networks, both internally
within networks and between different RSNs [13]. Dur-
ing adolescence intra-network connectivity appears to
increase and inter-network connectivity decreases, sug-
gesting that the networks become more established and
that communication between networks becomes more
efficient with increasing age [13]. Particularly RSNs in-
volving areas such as the precuneus, the cingulate cortex
and the insula were found to gain increasing intra-
network connectivity during adolescence. AN often de-
lays normal developmental processes such as the onset
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of puberty and may also delay structural and functional
brain development. To our knowledge, no studies have
investigated the relationship between alterations in brain
networks and development in adolescent AN patients.
Adolescent AN patients are found to have a greater GM
volume reduction compared to adults AN patients [2],
and there may be considerable spatial overlap between
functionally and structurally altered regions. A
structure-function relationship is suggested, but not
established in adult AN [14]; Scaife et al. (2017) reported
that GM morphometrics explained functional connectiv-
ity alterations [15], and de la Cruz (2021) found reduced
connectivity in regions where cortical thickness was re-
duced in AN patients [16]. Two other studies did not
detect such a relationship [10, 17]. Seidel et al. (2019) re-
ported a decreased structure-function relationship in
AN relative to HC [17]

As the structural alterations in AN appear to be occur-
ring across most of the cortex and several subcortical re-
gions [1-3], it is possible that networks in several
anatomical areas are affected. A common method for in-
vestigating whole-brain connectivity is independent
component analysis (ICA). ICA is data-driven and does
not require a-priori selection of regions to examine. To
our knowledge, only one study has conducted whole
brain ICA in adolescent AN patients, examining all the
known RSNs detected [18]. The authors found that in-
creased functional connectivity in a fronto-parietal net-
work and DMN were associated with problems with
interoceptive awareness.

The aim of this study was to investigate multiple net-
works detected in our dataset, covering large parts of the
cortex and some subcortical regions that may be related
to eating disorder symptoms, such as visuospatial-, ex-
ecutive control- and default mode-networks. Further-
more, we investigate the relationship between functional
networks and age in adolescent AN-patients compared
to healthy controls (HC). As a structure-function link
may exist, we also aimed to examine the relationship be-
tween functional networks and structural measures (cor-
tical thickness and subcortical volume) in relevant
anatomical regions.

Methods

Study design and sample

Acutely ill patients admitted to one of two clinics (Re-
gional Center for Eating Disorders at the University Hos-
pital of North Norway in Tromsg, and Oslo University
Hospital). In total, 29 female patients with AN (Age: M =
15.9 SD=1.7) and 27 gender and healthy age-matched
controls (Age: M = 16.1, SD = 1.9) between the ages of 12
to 18 years were recruited for the study (8 patients and 8
controls were tested and scanned at the Oslo clinic and
the rest were included in Tromsg). The HC participants
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were recruited from local high schools. All participants
were scanned in the afternoon. The inpatient AN group
were scanned after dinner but before supper at the hospital.
However, the exact time between meal to scanning were
not recorded for any of the participants but the scanning
did not interfere with the meal plan for any of the patients.
In the healthy control group, the scanning was performed
between 3 and 8 pm. During scanning, all participants were
asked to stay awake and keep their eyes open and fixate
their gaze on a cross on the in-scanner screen.

Inclusion criteria for AN patients were DSM-5 criteria
for restrictive AN (no history of binge-purge episodes),
diagnosis set by a clinical specialist in psychology or
psychiatry. Age-adjusted, standardized body mass index
values (BMI-SDS) were calculated using Norwegian nor-
mative data from the Bergen Growth Study [19]. Exclu-
sion criteria for all participants were neurological
disorders and organic brain injury, developmental dis-
order, history of bulimia nervosa, schizophrenia, psych-
otic episodes, and the use of antipsychotic medication.
Additional exclusion criteria for HC were lifetime or
current eating disorders, BMI < 17.5 or obesity (BMI >
30). The sample is the same as described in two previ-
ously published articles [3, 20].

Image acquisition

MR scanning was performed with a 3T Siemens Magne-
tom Skyra Syngo MR D13C in Tromse and a Phillips
Achieva 3 T scanner in Oslo, both equipped with 64 chan-
nel head coils. At both sites, high-resolution 3D T1-
wheighted images were acquired. In Tromsg, we used a
magnetization-prepared rapid gradient-echo (MPRAGE)
sequence with the following parameters: Orientation = Sa-
gittal, No. of slices=176; Voxel size=1x1x1; Slice
thickness = 1 mm; repetition time (TR)=2300ms; echo
time (TE) =2.98 ms; field of view (FOV) =256 x 256; Flip
angle =9° and inversion time (TI)=900ms. In Oslo, a
3D-TFE sequence was used with the following parameters:
Orientation = Sagittal; No of slices = 184; Voxel size =1 x
1 x 1; Slice thickness = 1 mm; TR = 2300 ms; TE = 2.98 ms;
FOV =256 x 256; Flip angle = 8% and TT = 900 ms.

The following parameters were used for functional im-
aging at both sites: Voxel size: 3x3x3, matrix size: 80 x
80, TR: 2500 ms., TE: 30 ms., acquisition order: inter-
leaved (43 slices), no. volumes: 288. Scan-time for fMRI
sequence was 12.08 min.

A group analysis of the potential confounding effect of
scan site (Oslo > Tromsg) was conducted using partici-
pants from the HC group.

Preprocessing and image analyses

The functional and structural images were preprocessed
using FSL FEAT (FSL ver. 5.0.11, fsl.fmrib.ox.ac.uk). The
functional images were corrected for scan-to-scan
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motion, coregistered to the high-resolution anatomical
image, warped to the MNI152 template and spatially
smoothed with an 8 mm FWHM Gaussian filter. No
temporal filtering was applied. Next, motion-related in-
dependent components were removed with ICA-
AROMA [21, 22].

The software Group Independent Component Ana-
lyses Toolbox (GIFT) was used to extract functional net-
works (components) from the dataset and all further
analyses [23]. ICA applies blind source separation to ex-
tract statistically independent components in the dataset.
Group ICA was performed on the preprocessed images
with the Infomax algorithm. Based on results from sev-
eral large sample RSN studies [7, 24—26] a decision was
made to set component numbers to 25. The module
ICASSO implemented in GIFT was set to run the Info-
max algorithm 10 times, as is recommended [27]. ICAS
SO graphs were inspected and evaluated by their com-
ponent stability/cluster quality index (Iq>.80), repre-
senting the difference between intra and extra-cluster
similarity, and visual inspection of component maps.
Two of the authors (PMA and ADM) rated the compo-
nents. This process is further described in the Supple-
mentary material 1. One noise-related component
(activation outside the cortex and in the ventricles) was
identified by visualization and excluded from further
analyses. Two components seemingly representing audi-
tory networks were also excluded from further analyses
as we did not hypothesize an impact of AN core symp-
toms in such networks. One cerebellar network received
a low score from the two raters and was also excluded
from further analyses. The excluded components are
presented in Supplemental Fig. 2.

Statistical analyses

Group difference in sample characteristics were investi-
gated with Mann-Whitney U-Tests using IBM SPSS 26.
Shapiro-Wilk tests were used to test normality of the
sample characteristics, cortical thickness, and cortical
volumes. Furthermore, visual inspection of Q-Q- and
Boxplots was performed. Significant deviations from a
normal distribution were found for all sample character-
istics variables except age.

Multivariate group analyses were conducted on time-
courses spectra and spatial maps of the selected 21 com-
ponents (Supplemental Fig. 1), including age and
age*group interaction term as covariates. In subsequent
analyses steps, BMI-SDS, the two EDE-Q scales “Restric-
tion” and “Concerns about figure” [28] were included as
covariates in separate models. The two subscales were
selected because they did not correlate as highly with
each other as the remaining subscales and thought to
capture different presentations of AN. All analyses were
performed with the MANCOVAN toolbox implemented
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in GIFT software [26]. MANCOVAN performs back-
ward selection of predictors (factors and covariates) by
testing whether each predictor in the model explains
variability in the multivariate response using a multivari-
ate analysis of covariance (MANCOVA), and for the re-
duced model of significant predictors proceeds to
perform univariate tests corrected for multiple compari-
sons [26]. The multivariate results determine the signifi-
cant covariates used in univariate analyses for
timecourses spectra and spatial maps. False discovery
rate (FDR) correction is implemented in MANCOVAN
for multiple comparison corrections. Results retaining
p<0.05 after FDR were considered statistically signifi-
cant. Estimates of effect sizes are shown by weighted
Beta values (group coding: 0 = AN, 1 = HC) for each sig-
nificant covariate. In the MANCOVAN toolbox, Beta
values are averaged using weighted mean activated num-
ber of voxels in the groups. Following group analyses,
we investigated the relationship between significant
components and structural measures (cortical thickness
and volume) extracted with FreeSurfer software [29],
version 6.0 (FS 6.0) [30, 31];. This procedure has been
described previously in [3, 20]. To perform correlations
between the significant RSN components and structural
measures, the maximum activation (peak) value in the
selected RSN networks was extracted from MANCO-
VAN to SPSS and correlated (Pearson correlations) with
the mean thickness data from FreeSurfer corresponding
to the anatomical location of the maximum activation in
the network. The mean value of thickness from both
hemispheres were used. Bonferroni corrections were ap-
plied to correct for multiple testing in the correlational
analyses of structure — function. Structural data were
parcellated with the Desikan-Kiliany atlas [32], and re-
gions overlapping spatially with significant RSN’s were
selected for analyses.

Results

Sample characteristic

Table 1 shows sample characteristics and tests of group
means for AN and HC. AN patients had significantly
lower BMI and higher scores on self-report measures of
eating disorder and depressive symptoms. Table 2 shows
additional characteristics of the AN group only.

Multivariate results

Multivariate analyses of spatial maps showed that there
was a significant group effect (p <.05) in five networks
(Fig. 1), when including age and the interaction term
age*group as covariates. Including BMI-SDS in this
model did not alter results. A significant effect of age
and a significant interaction effect of group and age was
found in three of these networks (C6, C15 and C24).
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Table 1 Sample characteristics

AN HC U-value p
Mean (SD) Mean (SD)
N 29 27
Age 159 (1.7) 16.1 (1.9) 33 37
BMI 16.3 (1.7) 220 (3.1) 50 <.001
BMI-SDS -24(13) 04 (0.9) 49 <001
Left hand dominant 2 2
BDI II? 24.1 (12.6) 43(5.2) 1166 <.001
EDE-Q restriction® 33(19 03(05) 1129 <001
EDE-Q eating® 25(1.6) 02 (05) 11275 <001
EDE-Q weight® 32(.7) 0.7 (0.8) 11175 <.001
EDE-Q figure® 41(1.7) 08 (0.9) 11485 <.001
EDE-Q global® 33(1.5) 05 (0.5) 1155 <001

Note: Mann-Whitney U-Test. BMI Body mass index, BMI-SDS Standardized BMI
values based on Norwegian norms for children, BDI Becks Depression
Inventory Il, EDE-Q Eating Disorder Examination Questionnaire. AN N =27

The multivariate model including EDE-Q restriction
scale as a covariate showed similar results with signifi-
cant effects of group, age and age*group interaction in
the same networks and an additional significant effect of
EDE-Q on a fifth network (C17). However, the EDE-Q
variables were not retained for univariate analyses and
are not reported further.

Univariate results

Univariate results of spatial maps showed significant
group difference in C4 a default mode network. Figure 2a
shows that the group difference (B=-3.1) is most
prominent in the central part of network C4 (peak vox-
els coordinates: X: -12, Y: -56, Z: 56). Univariate results
of group*age showed a significant interaction effect in
network C6 (B=-3.1) and C24 (B=1.1), the two sub-
cortical networks with peak activation in the amygdala
(X: -26, Y: -6, Z: - 20) and hippocampal areas (X: -30, Y:
-30, Z: — 16) (Fig. 2b and c). Results for the left amygdala
network (C6) indicates that there is a positive relation-
ship with group*age, indicating greater intra-network

Table 2 Characteristics of the AN group

AN

Mean (SD)
N 29
BMI admission 150 (1.4)
BMl-increase ° 0.9 (0.5)
Drugs (SSRI/GH)? 4
Weeks admitted 46 (42)
Time since first GP contact (years) 16 (1.5)

Note: ®BMI increase between admission and scan date. ®5 subjects on
serotonin reuptake inhibitor (SSRI), 2 on growth hormones (GH). Time since
first GP contact = Consultation concering eating disorder symptoms.
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Fig. 1 Spatial maps of components showing significant group effect. The three most informative slices in sagittal, coronal and axial view are
presented for each component. Images are thresholded at Z > 2. C4: Posterior default mode network, C6: Subcortical (amygdala) network, C8:
Anterior default mode network, C24: Subcortical (hippocampus) network, C15: Sensorimotor network
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connectivity with increasing age in AN group (coded 1).
Figure 2c shows that the significant interaction effect in
C24 is negative, indicating decreasing intra-network con-
nectivity in AN patients with increasing age compared
to HC.

Correlation with structural measures

Correlational analyses of structural measures were per-
formed with the network that were significantly different
between AN patients and controls, or had a significant
interaction of group*age, namely C4, C6, and C24. The
correlation analyses showed that precuneus thickness
and component C4, the precuneus network, was signifi-
cantly associated (r = .53, p <.001). The overlap between
the precuneus area and the C4 component is shown in
Fig. 3, whereas the correlation between C4 and precu-
neus thickness is shown in Fig. 4. Amygdala and hippo-
campal volumes were not significantly correlated with
the components comprising these areas (component
number C6 and C24 respectively).

Control variables
We performed a between-site (Oslo vs. Tromsg) ana-
lyses of HC participants to test for the effect of scanner

site. To test for the effect of drug use, all analyses were
re-performed controlling for/excluding the AN patients
who were on prescribed drugs at the time of scanning
(N =5). We found no significant effect of scanner site or
drug use.

Discussion

Compared with HC, AN patients had decreased con-
nectivity in a DMN network involving mainly the precu-
neus. Age affected two subcortical networks involving
the hippocampus and amygdala differently for AN and
HC. In AN patients increasing age was associated with
increasing connectivity within a network involving the
amygdala and decreasing connectivity within a network
involving the hippocampus. Precuneus thickness, found
in our previously published study [3] to be reduced in
AN compared to HC, was significantly associated with
connectivity in the DMN (precuneus) network.

The precuneus is a parietal region bordering to the
visual cortex and is considered to be a functional core of
the DMN [33]. In AN patients functional alterations are
found repeatedly in this region, and have been linked to
body image perception [4, 34—36] most often in terms of
reduced activity or altered connectivity with other
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Univariate Results (Spatial maps)

Significant Effects Of Group_(1) - (0) (p < 0.05)

-

Univariate Results (Spatial maps)

Significant Effects Of Group_X_Age_((Age)) X [(1) - (0)) (p < 0.05)

- &% 5

Univariate Results (Spatial maps)

Significant Effects Of Group_X_Age_((Age)) X [(1) - (0)) (p < 0.05)

Fig. 2 Univariate results showing a) significantly lower intrinsic connectivity in the AN group in component C4, and a significant group x age
interaction effect in component C6 (b) and C24 (c)

Fig. 3 The overlap between the cortical areas constituting the precuneus (yellow color) from FreeSurfer and the activation found in the resting-
state fMRI analysis (blue color)
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Fig. 4 Pearson correlation between mean precuneus thickness (mean of left + right precuneus) in the precuneus and the peak activation in C4.

regions Results from the present study did not show a
significant association with the self-reported measure of
“concerns about figure”, as one might expect in light of
previous findings.

Correlational analyses showed that connectivity in
the precuneus network was associated with precuneus
thickness, suggesting a cerebral structure-function
link. Several studies have reported decreased volume
or cortical thickness in the precuneus in AN patients
[37-42], and a recent study in adult AN patients
showed a relationship between precuneus thickness,
reduced in their AN sample, and functional connect-
ivity in the DMN and a central executive network
[16]. A structure-function link is also found in a som-
atosensory network [14]. Findings from two recent
studies with adolescent samples contradict this link
however; Lotter et al. (2021) report global connectiv-
ity alterations that are unrelated to global GM volume
[51] and Seidel et al. (2019) report a weakened rela-
tionship between measures of local characteristics of
the BOLD signal and cortical thickness and volume
[17]. This discrepancy may be due to the different ap-
proaches to investigating functional connectivity. As
GM reduction and functional connectivity alterations
is not observed in all brain regions, and may not
overlap in several anatomical areas, investigating
whole  brain  measures may mask regional

relationships. Regional structure-function links may
exist, and future studies should aim to investigate
areas of decreased cortical volume or thickness and
functional connectivity in corresponding anatomical
areas.

Results from the present study show that AN pa-
tients have decreasing intra-connectivity in a hippo-
campus network and increasing intra-connectivity in
an amygdala network with increasing age compared
to HC. These results may suggest that AN disrupts
normal age-related development of network intra-
connectivity, expected to increase during adolescence
[13]. Two studies using graph theoretical metrics to
detect functional networks also found decreased con-
nectivity in adolescent AN patients in networks re-
sembling the two subcortical networks found in this
study [43, 44]. One of these studies tested the associ-
ation with age, with no significant findings, however
neither investigated the interaction effect of age and
group as done in the present study. Future RSN stud-
ies should investigate the effect of age in adolescent
AN patients, preferably with longitudinal sampling.
Development of functional networks have been linked
to pubertal status [45]. Delayed or disrupted pubertal
onset is commonly found in AN, and a possible delay
in network development may be due to this. A recent
review of fMRI-studies in adolescent AN suggest that
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puberty delay can affect brain maturation and lead to
impaired cognitive flexibility that in turn maintains
the disorder and makes it difficult to combat [46].
Pubertal status was not recorded in this study and fu-
ture research should include such measures to investi-
gate if delayed or disrupted puberty affects brain
maturations in AN.

In a previous study including the same sample [20],
we found that the hippocampus may be more vulner-
able to AN in terms of volume decrease compared to
brain as a whole. However, correlational analyses of
hippocampus volume and the hippocampus network
were not significant, indicating that the structural al-
terations in this region were not associated with the
functional alterations in RSNs. Analyses with eating
disorder symptoms as covariates did not produce sig-
nificant results and could thus not shed light on the
mechanisms behind the interrupted development of
these networks. Variables not included in this study
such as hormonal levels and a broader mapping of
eating disorder and comorbid symptoms could pos-
sibly explain these findings and future studies should
include such measures.

Previous RSN studies of adolescent AN patients have
found altered connectivity involving visuospatial net-
works [10], fronto-parietal networks and DMN’s [11,
47]. In the present study, we did not find altered func-
tional connectivity in such networks. The previous stud-
ies investigated a few selected networks and discrepant
findings may be due to the multi-network approach in
this study. Another possible explanation for the different
findings in the present study may be that patients had
higher BMI compared to the samples in previous stud-
ies. It is possible that functional changes in the brain
vary across the different stages of AN as structural alter-
ations do [48].

Strengths and limitations
There was no a-priori selection of cerebral regions to
examine and only two RSNs were excluded from ana-
lyses, leaving analyses largely data-driven. By contrast,
previous studies have mostly investigated a few se-
lected components, perhaps discarding several rele-
vant networks. On the other hand, it could be argued
that the auditory networks excluded in the present
study could have an effect on the analyses given the
findings in adult patients in Scaife et al. [15] even if
auditory dysfunction is not a core symptom in an-
orexia. Furthermore, we did not assess the effect of
the varying durations of treatment preceding the
resting-state scan which possibly could have an im-
pact on cerebral network functioning.

Generally, it is difficult to disentangle the effects of
starvation on cerebral functioning from the effects of
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acute AN because the physiological and psychological
responses are overlapping [49]. The present study was
not designed to answer whether the cerebral changes
observed was due to AN or starvation only, and the
results should be interpreted according to this. The
study sample was larger compared to previous studies
in the field, and with a narrow age range. The
analyses were conducted with up-to-date software and
methods, and we controlled for potential confounding
variables like scan site and drug use and multiple
comparisons. Patients were not likely to be in a
catabolic phase of their illness when included in the
study. All patients included were on meal plans and

their BMI had been increasing since admission,
reducing the confounding effects of extreme
malnourishment.

In a previous review, it has been recommended to con-
trol for the effects of pubertal stage, oral contraceptives
and duration of illness [50]. These types of data were
not available in the present study. The use of two differ-
ent MRI-scanners may confound results as the magnetic
fields differ between scanners. Although site effect for
AN-participants was not investigated, the non-
significant differences across sites among HC partici-
pants indicate that scan site did not affect main findings
in this study.

Conclusion

This study provides novel findings of age and
structure related alterations in functional networks in
adolescent AN. Investigating multiple RSNs in a
multivariate analysis increases the likelihood of
detecting the most affected functional networks in
AN, indicated by results from this study to be a
DMN (precuneus) network and two subcortical
networks (hippocampus and amygdala). These RSNs
have been implicated in previous studies in AN but

have not previously been linked to structural
alterations (precuneus) or age (hippocampus and
amygdala). Results from this study indicate that

reduced cortical thickness is associated with reduced
functional connectivity in the precuneus in our
adolescent sample. Furthermore results may indicate
that AN disrupts normal development of RSNs
involving the hippocampus and amygdala. A disrup-
tion of functional network development may
contribute to the maintenance of AN, often having a
prolonged course of illness and is difficult to treat.
Results from this study highlights the importance of
investigating multiple networks in relationship with
age, brain structure and endocrinological measures in
adolescent AN patients whose functional networks are
still evolving.
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