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Summary

Throughout development and aging, human cells accumulate mutations, resulting in genomic 

mosaicism and genetic diversity at the cellular level. Mosaic mutations present in the gonads can 

affect both the individualand the offspring and subsequent generations. Here we explore patterns 

and temporal stability of clonal mosaic mutations in male gonads by sequencing ejaculated sperm. 

Through 300× whole-genome sequencing of blood and sperm from healthy men, we find each 
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ejaculate carries on average 33.3 ± 12.1 (mean ± standard deviation) clonal mosaic variants, 

nearly all of which are detected in serial sampling, and with the majority absent from sampled 

somal tissues. Their temporal stability and mutational signature suggest origins during embryonic 

development from a largely immutable stem cell niche. Clonal mosaicism likely contributes a 

transmissible, predicted pathogenic exonic variant for 1 in 15 men, representing a life-long threat 

of transmission for these individuals, and a significant burden on human population health.
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Introduction

New DNA mutations in individual cells can arise during proliferation or metabolism 

(Alexandrov et al., 2015; Bae et al., 2018). If these mutations occur during embryogenesis 

they may spread widely across or within tissues at appreciable allelic fractions (AF; i.e. 

fraction of mutant DNA molecules). Mutations detectable within a tissue or collection of 

cells are commonly referred to as clonal, whereas those detected only from single cells are 

considered non-clonal (Machiela and Chanock, 2017), although the distinction can become 

blurred at the limits of detection. Clonal mosaicism often originates during embryogenesis 
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or follows from later mutations under selection, as observed in clonal hematopoiesis 

or cancer (Jaiswal and Ebert, 2019). Health consequences of clonal mosaicism have 

been described in tissues including esophagus, skin, lung, and uterus, with precancerous 

implications (Martincorena et al., 2018; Martincorena et al., 2015; Moore et al., 2020b; 

Yoshida et al., 2020).

Mammalian gonads represent a vulnerable tissue, as mutations can predispose both to germ 

cell tumors, as well as to congenital disease in subsequent generations. While female germ 

cells do not proliferate beyond embryogenesis, male germ cells are incredibly proliferative, 

generating around 1,000 new cells per second throughout most of post-adolescent life 

(Fayomi and Orwig, 2018). Sperm derive from spermatogonial stem cells (SSCs), which 

have their origin in primordial germ cells (PGCs) (De Felici, 2013). While still a matter 

of debate, infrequent cell division of Type A SSCs produces Type B SSCs that divide to 

yield meiotically-active spermatocytes (Fayomi and Orwig, 2018). It has been postulated 

that the externalization of the testes is an evolutionarily conserved mechanism to restrict 

mutagenesis (Short, 1997). While most new mutations are neutral or possibly deleterious 

to sperm, certain mutations seemingly yield selective growth advantage, yet can produce 

dire consequences in offspring, seen for instance in RAS-pathway mutations leading to 

achondroplasia (Goriely and Wilkie, 2012). As deleterious mutations are probably present 

in the testes of all older men, while they contribute to a diminishingly small percent of 

ejaculated sperm for each individual, they yield significant population-level risk due to their 

widespread occurrence.

Clonal sperm mosaicism is an important contributor to previously classified “de novo” 

mutation (DNM) risk in offspring. The number of DNMs in a child doubles for every 

additional ∼16 years of age of the father at conception, and ∼80% of DNMs in a child 

phase to the paternal haplotype (Jonsson et al., 2017; Kong et al., 2012; Sasani et al., 

2019), suggesting sperm as a major contributor. Sampling blood from parents can identify 

mosaicism also present in germ cells, and explain 3–8% of DNM monogenic risk (Campbell 

et al., 2014b; Dou et al., 2017; Krupp et al., 2017; Myers et al., 2018). However, these 

mutations likely reflect only a small fraction of total clonal sperm mosaicism, and most 

prior work on sperm mosaicism was limited to studying parental and offspring blood, not 

sperm directly (Campbell et al., 2014a; Freed et al., 2014; Rahbari et al., 2016). We and 

others recently showed that clonal sperm mosaicism can be detected for as many as 20% 

of disease-causing mutations in certain diseases such as autism spectrum disorder (ASD) or 

early infantile epilepsy due to SCN1A or PCDH19 mutations, (Breuss et al., 2020a; Liu et 

al., 2018; Yang et al., 2017), but more global clonal sperm mosaicism remains unexplored.

Here, we study the landscape of clonal sperm mosaicism to determine the developmental 

contribution, as well as time- and age-dependent effects. We recruited cohorts of young- 

and advanced-age men who underwent single or repeated sperm sampling, coupled with 

state-of-the-art >300× WGS. We found that clonal sperm mosaicism is remarkably stable 

over time, both within an individual and between individuals, and impacts disease risk in 

predictable ways.
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Results

Detectable mosaicism is more common within than across tissues

To determine a baseline for clonal mosaicism we recruited 12 males, aged 18–22 years 

(young age; YA, ID01–12), sampled for blood and sperm (Figure 1A, Figure S1A, Data 

S1). We further collected multiple (up to 3) sperm samples for 9 subjects at ∼6 months 

intervals for one year, a relevant timeframe for reproductive decision making. Additionally, 

for 9 of these subjects, we collected saliva as a third source, since cells derive mostly 

from buccal epithelia with a small leukocyte contribution (Theda et al., 2018). Finally, 

we assessed a cohort of 5 older males, aged 48–62 (advanced age; AA, ID13–17), each 

sampled at a singular timepoint. Together, these approaches revealed the inter-subject, intra

subject, and age-dependent variability of sperm-specific (Sperm), blood-specific (Blood), 

and tissue-shared (Shared) mosaicism, for both mosaic SNVs (mSNVs) and mosaic INDELs 

(mINDELs).

We employed a combination of state-of-the-art mosaic variant callers termed MSMF 

(derived from variant calls from Mutect2, Strelka2, and MosaicForecast, Figure S1, STAR 

Methods) (Breuss et al., 2020a; Dou et al., 2020; Wang et al., 2021). This approach 

demonstrated sensitivity to ∼1% AF and a validation rate of 97.6% on benchmarked data 

(Figure S1C-D).

We found that each YA male harbored between 9–38 Sperm (mean ± SD: 23.1 ± 9.0; 

total: 277), 1–16 Shared (10.3 ± 5.5; total: 123), and 23–54 Blood (39.4 ± 9.1; total: 

473) variants (Figure 1B, Figure S2A, Data S1, STAR Methods), for a total of 873 across 

all 12 YA males. Together, 10–50 (33.3 ± 12.1; total: 400) variants with an average AF 

of 4.8% were detected per sperm sample. Two-thirds of sperm-detected (i.e. Sperm and 

Shared) variants were not found in WGS from blood, and 80% of variants detected from 

blood were not identified in sperm, justifying separate samplings. The AFs of Shared 
were, in general, higher than Sperm or Blood variants (Figure 1C-E, Figure S2B-D) and 

correlated tightly in separate sperm and blood samples (Figure S2D), suggesting an origin 

prior to gonadal specification. Clonal mosaic variants were distributed evenly across the 

chromosomes and did not evidence mutational hotspots (Figure 1F-G). These results suggest 

an early developmental origin of Shared variants and a separate origin of sperm- and 

blood-specific variants after lineage separation, with higher AFs of Shared likely reflecting 

an earlier origin.

Sperm mosaicism remains stable across repeated sampling within an individual

For 9 YA individuals, we obtained repeated sperm samples (up to 3 over the course of 1 

year) to measure clonal sperm mosaicism stability (Figure 2A). First, to assess whether new 

mosaic variants appeared over time, we performed 300× WGS and MSMF on two additional 

sperm samples ∼6 months apart from each of ID04 and ID12 (Figure 2B). The AFs of 

variants that were mosaic in sperm at time point 1 correlated tightly across subsequent time 

points (Figure S2E). For a number of variants that were close to the detection limit of 

WGS, we observed some that were absent in one or two of the datasets, likely reflecting 
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a limitation of binomial sampling, but in general, new somatic variants did not appear or 

dropout, suggesting relative stability.

Second, we performed targeted amplicon sequencing (TAS), with an average read-depth of 

>5000× (see STAR Methods), to validate variants and more accurately assess AFs (Figure 

2C, Data S2). We examined blood, sperm, and saliva on all YA males at all timepoints, 

for ∼15% of all variants, focusing on representative variants detected in one tissue and at 

lower AFs. Mosaic variants and AFs in blood and saliva were tightly correlated, with a 

Spearman’s ρ=0.904 (P<2.20e-16; Figure S2F). All mutations observed in sperm through 

TAS were detectable and correlated tightly across all sperm samples within a subject (Figure 

2D). Absolute AF changes were typically under 2%, tending to fluctuate around a mean 

rather than drifting in a particular direction (Figure 2E). The variation across time points 

was imperfectly correlated with the initially observed AF, and fold-changes were higher for 

variants with AFs below 5% (Figure S2G-I). We found no evidence of significant positive 

or negative selection (Figure 2F), suggesting that progenitors contribute roughly equally to 

ejaculates over at least this time course.

Age-dependent changes in blood-specific but not sperm-specific variants

We next applied the same computational pipeline to the 5 AA males. Each AA male 

harbored between 15–34 Sperm (mean ± SD: 26.0 ± 6.9; total: 130), 8–15 Shared (11.0 

± 2.6; total: 55), and 63–454 Blood (217.4 ± 186.7; total: 1087) variants (Figure 3A-B, 

Figure S3A-G, Data S1). Notably, AA individuals did not harbor a greater burden of Sperm 
or Shared variants or show changes in AFs (Mann-Whitney U-test P=0.4866 for Sperm, 

and P=0.9764 for Shared, Figure 3C, Figure S3H-I). Instead, AA individuals harbored a 

greater burden of Blood variants compared to YA individuals (P=0.0003) as reported (Zink 

et al., 2017). In particular, ID14 and ID17 had a further 5-fold increase in Blood variants, 

consistent with age-dependent clonal hematopoiesis (CH, Figure 3B) (Catlin et al., 2011; 

Jaiswal et al., 2014). None of these variants overlapped with known leukemia or CH drivers 

(Bick et al., 2020), thus the observed clonality likely represents driver-independent CH 

(Zink et al., 2017) (Data S3, see STAR Methods). The sensitivity of our methods to detect 

CH suggests loss of clonal diversity in blood but not sperm progenitors with age.

Consistent with a positive selection for new somatic clones and variants in hematopoietic 

lineages, we found a shift of Blood AFs towards lower abundance with age, suggesting 

newly emerging clones during CH can dilute AFs of existing mosaicism in the blood (Figure 

3D-E). Unexpectedly, this was independent of whether the number of Blood variants was 

slightly (ID13, ID15, ID16) or greatly (ID14, ID17) increased, suggesting that changes in 

blood mosaicism diversity can precede CH, identified here with MSMF as early as the 5th or 

6th decade.

Mutational features of clonal mosaicism in sperm and blood

To increase the number of mosaic mutations available for aggregated analysis, given that 

deep (>200×) WGS datasets of sperm are rare, we added data from our previous sperm 

sequencing study of 8 men (REACH, F01-F08) (Brandler et al., 2018; Brandler et al., 2016; 

Breuss et al., 2020a) that were processed identically. We found similar numbers of mosaic 
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variants and AF distributions in each cohort, with some differences in sensitivity as expected 

from a lower read depth (Figure S4); we thus combined the two cohorts, yielding 522 Sperm 
and 251 Shared variants from 25 individuals. As CH-derived mosaic variants may differ in 

origins, we divided Blood mosaicism into 473 ‘Blood-Y’ (YA) and 1673 ‘Blood-A’ (AA, 

REACH) variants (Figure 4A). Of note, the latter class was heavily biased towards the three 

AA individuals displaying dramatic CH (i.e. ID14, ID17, and F02, Data S1). These four 

aggregated classes were then used for a combined analysis of mutational features.

First, we contrasted base substitution patterns of these four classes with matched 

permutations of variants from de novo mutations from WGS of the Simons Simplex 

Collection (Turner et al., 2017) and variants from gnomAD (Karczewski et al., 2020). We 

found that gonadal mosaic variants showed significantly distinct mutational patterns (Figure 

4B, Figure S5A-B, STAR Methods). For instance, C>G and T>C were depleted in all mosaic 

classes, whereas Shared variants additionally had higher levels of T>A and lower levels 

of C>T, thought to result from cytosine deamination (Tubbs and Nussenzweig, 2017). We 

observed a relative increase of T>G in Sperm, particularly at lower AFs (Figure 4C-D). 

Advanced age was associated with increased relative contribution of C>G and T>C in the 

blood, where T>G was depleted, an effect amplified by CH (Figure 4E). Collectively, these 

data suggest that T>C mutations are depleted during the early stages of male embryonic 

development, an effect supported by prior mutational profiling in trios (Jonsson et al., 2018). 

However, T>G mutations appear to be enriched during germ cell-specific development, a 

potentially novel signature for this process.

Next, we assessed mutation enrichment within genomic features (Figure 4F; Data S3; 

STAR Methods). Shared variants did not show a significant difference compared with 

permutations, other than an increase in late replication timing. Blood-A showed the most 

significant deviation across all genomic features, specifically depletions in age-related 

epigenetic marks, in early replication timing, and in gene-body regions (both intronic and 

exonic), as well as enrichment in high nucleosome occupancy. These Blood-A-specific 

genomic features, supported by previous literature in CH and leukemia (Adelman et al., 

2019; Bochkis et al., 2014; Du et al., 2019; Rivera-Mulia et al., 2019), demonstrated our 

ability to detect evidence of selection during CH and aging. Sperm variants, however, 

showed no evidence of selective pressure. They instead showed significant enrichment in 

transcription factor binding sites and depletion in areas bound by topoisomerases. Both 

Sperm and Blood-Y variants were increased in DNase I hypersensitive sites. These findings 

suggest a correlation in Sperm and Blood-Y between open chromatin and mutagenic stress 

as previously described (Makova and Hardison, 2015).

Rank plots of the AFs of more than 700 Sperm and Shared mosaic mSNV/mINDELs 

across the 25 individuals showed a long tail of low AF mutations that were predominantly 

sperm-specific (Figure 4G, Figure S5C). While mutations mainly accumulate as a function 

of the cell cycle, models have suggested that this process is accelerated in early post-zygotic 

phases (Huang et al., 2018; Ye et al., 2018), which would correlate with higher AFs. To 

assess this, we developed a quantitative metric termed ‘Mutation Factor’ (MF), defined by 

the rate of mutation accumulation during the exponential expansion of progenitor cells (i.e. 

Yang et al. Page 6

Cell. Author manuscript; available in PMC 2022 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



per cell cycle). We determined this metric by fitting a step-wise exponential regression with 

minimal loss to rank plots of mosaic variants (Figure S6A-F, STAR Methods).

We found almost identical MFs for Shared variants in blood and sperm, suggesting 

transmission to both tissues at stable fractions. Sperm and Blood-Y variants also had 

comparable MFs, supporting a similar accumulation of mutations that was more dependent 

on the developmental time rather than the fate of the progenitors. Shared variants have a 

higher MF than the MFs measured in Sperm or Blood-Y, suggesting a faster accumulation 

of mutations, as postulated to result from DNA damage repair differences in early 

development (Gao et al., 2019; Huang et al., 2018; Ye et al., 2018). Blood-A, however, 

had an even higher MF than the other classes, likely reflecting the dynamic changes in 

clonal proportions with aging. These observations, together with quantile analysis of AF 

distributions (Figure S6G), support the expected increase in mutational burden in early 

development and revealed similar mutational patterns for sperm and somatic progenitors.

One in 15 men harbors a predicted pathogenic transmissible mutation in sperm

We next assessed the likelihood that sperm mosaic variants could contribute towards disease 

in offspring, most relevant for genes in which mutation of one copy is not compatible with 

healthy outcomes (i.e. haploinsufficient, HI; defined by pLI>0.9) (Samocha et al., 2014) 

(see STAR Methods). Across all 25 individuals, we found that men harbored an average 

total of 30.9 sperm mosaic variants (Sperm: 20.9, Shared: 10.0) (Figure 5A). Of these, 

1.6 (Sperm: 1.1, Shared: 0.5) were exonic (Figure 5B), and 0.3 (Sperm: 0.2, Shared: 0.1) 

were ‘high-impact, i.e. with a CADD score, a clinically relevant metric that summarizes 

deleteriousness of a mutation (Kircher et al., 2014), above 25 or predicted loss-of-function 

(C-LoF; Figure 5C, Data S3). Comparisons with alternative prediction tools yielded similar 

results (Data S3). As a consequence of harboring these high-impact mutations, across 100 

men, 28 (i.e. ∼1/3) are predicted to harbor a C-LoF variant in sperm at measurable AFs. 

Of these, 7.2 (i.e. ∼1/15) occurred in an HI gene (Figure 5D). Comparisons of HI genes 

with ‘disease gene lists’ can thus be used to determine the ‘transmissible burden’ for any 

given disorder. For instance, we found that 1.3 in 100 men are estimated to demonstrate a 

mutation that increases risk for monogenetic autism spectrum disorder (ASD, Figure 5D). 

Because most of these ASD-associated genes show high penetrance (Iossifov et al., 2012; 

Sanders et al., 2015), AFs likely would correlate closely with risk of disease. For genes and 

alleles with a lower penetrance, the odds ratio of the disease (i.e. risk of disease when the 

gene is mutated) needs to be also specified (Deciphering Developmental Disorders, 2017). 

Similarly, we estimate that 0.35 in 100 men carry risk mutations for congenital heart disease 

(STAR Methods) that can be detected as clonal sperm mosaicism.

Most variants in the combined cohort were at AFs between 1–26% (Figure 5E), with the 

majority of sperm AFs—and thus likely transmission risk—below 5% (Figure 5F). However, 

∼1 in 5 variants had higher AFs (i.e. AF > 5%), with the majority detectable in both blood 

and sperm. Adjusted for relative frequency and AF, Sperm and Shared variants represented 

a similar total transmissible burden (Figure 5C and F), the latter fewer in number but higher 

in AF. Assessment of sperm mosaicism directly when considering risk to offspring could 

be critical, because using blood as a surrogate can produce false-negatives due to sperm
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specific variants. This could also produce false-positives due to blood-specific variants, 

increasing substantially as a function of age due to CH (Figure 5G).

Discussion

Here we provide an overview of the landscape of clonal sperm mosaicism through 

assessment of sperm and blood using deep WGS across multiple men, multiple sample 

types, multiple time points, and multiple ages. We conclude that every man’s semen harbors 

clonal mosaic variants that likely originate in embryonic development. The mutations 

we identified were temporally stable across serial samples and age groups, supporting a 

distribution of early developmental clones across the gonads and relative temporal stability 

of the stem cell niche during aging. As a consequence, the subset of mutations that are 

predicted to impact a conceptus’s health represents a life-long threat of transmission.

Most de novo mutations in offspring are thought to have their origin in parental germ cells 

or the fertilized zygote (Jonsson et al., 2017; Kong et al., 2012). Our data suggest that some 

of these instead originate when the father was an embryo. Such mutations may occur prior 

or after to primordial germ cell specification, are clonal, and are stable throughout life. 

Consistent with this idea, we observed a depletion of T>C mutations, reported to correlate 

with gonadal aging (Jonsson et al., 2018; Jonsson et al., 2017). Thus, clonal mosaicism 

appears to differ from non-clonal mosaicism, the latter accumulating with age and having 

a low likelihood of recurring in two or more offspring. Distinguishing between clonal and 

non-clonal mosaicism at a finer scale will likely require single-cell sperm sequencing. This 

method currently suffers from poor detection accuracy for single nucleotide variants, but 

recent advances suggest non-clonal detectable karyotype defects in up to 3% of sperm (Bell 

et al., 2020).

When do clonal mutations arise during embryonic development? Mutations that were shared 

in both blood and sperm showed higher AFs than those only detected in a single tissue, 

likely representing earlier embryonic origins. Primordial germ cells separate from somatic 

progenitors before the third post-conception week in humans (De Felici, 2013) (Figure 6A), 

whereas hematopoietic progenitors arise later from mesoderm (Dzierzak and Speck, 2008). 

Due to this early separation, clonal mutations detected in sperm are less likely to be shared 

with other tissues, whereas those detected in blood were often also detected in saliva. In 

aged, however, clonal hematopoiesis may amplify blood-specific clonal mutations.

Spermatogonial stem cells, despite proliferating throughout reproductive life, unlike blood, 

do not appear to exhibit detectable clonal collapse or expansion, likely a reflection of 

the anatomical constraints of the testicular stem cell niche. Certain mutations appear 

to provide a proliferative growth advantage (known as ‘selfish sperm’ or ‘paternal age 

effect’), particularly those impacting RAS signaling (Goriely and Wilkie, 2012), but show no 

evidence of negatively impacting clonal diversity like in clonal hematopoiesis (Arends et al., 

2018). We also found some individuals of advanced age harbor an order of magnitude more 

blood-specific mutations, without similar findings of clonal collapse in sperm (Genovese 

et al., 2014). Together this supports that clonal hematopoiesis may represent a spectrum of 

clonality of the blood rather than a collection of discrete clonal events (Zink et al., 2017).
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While clonal mosaicism makes a substantial contribution to the total pool of sperm 

mutations potentially impacting the health of offspring, our data suggest that as men age, 

their relative contribution to disease risk actually declines. This may be attributable to 

the age-dependent accumulation of non-clonal mosaicism that accompanies the massive 

proliferation during spermatogenesis. Yet, clonal mosaicism contributes an absolute disease 

threat to offspring that remains stable throughout a man’s life (Figure 6B-D). These ideas 

are consistent with recurrence risk estimates from population analysis that factor in age 

(Campbell et al., 2014b; Jonsson et al., 2018). As early germ cell development is thought 

to be similar if not identical between men and women, female clonal mosaicism—unlike 

non-clonal mosaicism—will likely mirror that found in men (De Felici, 2013). This is 

supported by population and family studies on DNMs, which demonstrate that recurrent 

(i.e. sibling shared) mutations are as likely to be located on the maternal as the paternal 

haplotype (Jonsson et al., 2018; Rahbari et al., 2016). This is in contrast to the typically 

observed male dominance that considers the sum of all DNMs (Kong et al., 2012).

De novo mutations represent a major contributor to congenital human disease (Acuna

Hidalgo et al., 2016; Deciphering Developmental Disorders, 2017; Veltman and Brunner, 

2012). We provide the first estimate of the burden of clonal sperm mosaicism in healthy men 

contributing to this risk. Assuming that transmission of variants follows observed abundance 

in sperm, we predict that approximately 1 in 300 concepti (see STAR Methods) harbors 

one or more such variants that is predicted pathogenic, likely contributing to miscarriage 

or congenital disease. This is a direct result from our observation that 1 in 15 males 

carries such a mutation, and the observed average AF across all clonal sperm variants. 

Consequently, for the monogenetic component of a well-studied disorder like autism (∼4 in 

1000 children), we estimate that ∼15% could be attributed to clonal mosaicism; this would 

apply similarly to congenital heart disease or other severe de novo mutation-related disease 

(see STAR Methods). This relative estimated contribution varies with parental age, and it 

is higher in younger fathers and—to some degree—mothers. Future studies assessing the 

presence of DNMs in sperm could better clarify risks for particular diseases.

Limitations of the study

There are several limitations of our study. We restricted our study to clonal sperm 

mosaicism, and thus we did not attempt to identify non-clonal sperm-specific mosaicism. 

Such mutations may account for the paternal age-dependent increase in de novo mutations 

in offspring, but because they likely occur in individual SSCs or sperm cells, our bulk 

sperm sequencing approach was not designed for their identification. A different sampling 

method (laser capture of testicular stem cell niche) demonstrated an age-dependent mutation 

accumulation of mutations in SSCs (Moore et al., 2020a), but whether these appear in 

sperm is still an open question. Another limitation resulted from our use of WGS rather 

than targeted sequencing, which increased the number of detectable somatic variants but 

resulted in a trade-off due to the limited number of samples and the limited read depth we 

could achieve. Although 250–300× WGS is emerging as a standard for clonal mosaicism 

analysis from bulk (Bizzotto et al., 2021; Breuss et al., 2020b; Rodin et al., 2021; Wang et 

al., 2021), this nevertheless limits sensitivity to around 1% AF, as these methods typically 

require multiple supporting reads. Moreover, while we were able to determine the stability 
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of mosaicism found in sperm, the variability of genome-wide blood mosaicism rendered 

it challenging to accurately describe its changes with age. Future studies may incorporate 

larger cohort sizes or resampling timepoints, to yield a clearer definition of the phenomenon 

of CH on a genome-wide level. Finally, while our results allow speculation on the biological 

basis of the observed difference between sperm and blood progenitors during aging, our 

approach is unable to provide direct mechanistic insights into this problem. More specialized 

models or targeted post-mortem sampling will be necessary to elucidate this problem in 

more detail.

STAR+METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for samples and data should be directed 

to and will be fulfilled by the lead author, Joseph G. Gleeson (jogleeson@health.ucsd.edu).

Materials Availability—This study did not generate new unique materials. All reagents 

and kits used in this study are described in STAR Methods.

Data and Code Availability—Raw whole genome sequencing and targeted amplicon 

sequencing BAM files used in this study are available on SRA (accession number: 

PRJNA660493 and PRJNA588332). Summary tables of the data are included as 

supplementary tables. Codes for data analysis pipelines as well as codes to 

generate the figures are freely available on GitHub at https://github.com/shishenyxx/

Sperm_control_cohort_mosaicism. Other materials or software are detailed in STAR 

Methods.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subject recruitment—17 healthy ethnically diverse males (Figure S1A) were enrolled 

according to approved human subjects protocols from the Institutional Review Board (IRB) 

of the University of California for blood, saliva, and semen sampling (140028, 161115). All 

participants signed informed consents according to the IRB requirement, and the study was 

performed in accordance with Health Insurance Portability and Accountability Act (HIPAA) 

Privacy Rules. None of the participants reported severe psychological conditions or showed 

significant signs of neurological disorders, infectious diseases, or cancer. Semen and blood 

samples were collected for all subjects (ID01–17). ID01–08 and ID11 further provided 

saliva samples. ID05 further provided a second semen sample approximately half a year 

after the first collection; ID02–04, ID06-S08, ID11, and ID12 provided a total of 3 samples 

within ∼12 months. Ages for all individuals are included in Data S1.

METHOD DETAILS

DNA extraction for blood and saliva—Genomic DNA was extracted from peripheral 

blood and saliva samples containing buccal cells using the Puregene kit (Qiagen, 158389) 

following the manufacturers’ recommendations.
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Sperm extraction—Extraction of sperm cell DNA from fresh ejaculates was performed 

as described (Breuss et al., 2020a; Wu et al., 2015). In short, sperm cells were isolated by 

centrifugation of the fresh (up to 2 days) ejaculate over an isotonic solution (90%) (Sage/

Origio, ART-2100; Sage/Origio, ART-1006) using up to 2 mL of the sample. Following 

a washing step, quantity and quality were assessed using a cell counting chamber (Sigma

Aldrich, BR717805–1EA). Cells were pelleted and lysis was performed by addition of 

RLT lysis buffer (Qiagen, 79216), Bond-Breaker TCEP solution (Thermo Scientific, 77720), 

and 0.2 mm stainless steel beads (Next Advance, SSB02) on a Disruptor Genie (Scientific 

Industries, SI-238I). The lysate was processed using reagents and columns from an AllPrep 

DNA/RNA Mini Kit (Qiagen, 80204). Concentration of the final eluate was assessed 

employing standard methods. Concentrations ranged from ∼0.5–300 ng/μl.

WGS of sperm and blood samples—WGS sequencing was performed as described 

(Breuss et al., 2020a). A total of 1.0 μg of extracted DNA was used as the starting material 

for PCR-free library construction (KAPA HyperPrep PCR-Free Library Prep kit; Roche, 

KK8505); libraries were then mechanically sheared (Covaris microtube system; Covaris, 

SKU 520053) to obtain ∼400 base pairs (bp) fragments. Then Illumina dual index adapters 

were ligated to these DNA fragments. Following beads-based double size selection (300–

600 bp), the concentration of ligated fragments in each library was quantified (KAPA 

Library Quantification Kits for Illumina platforms; Roche/KAPA Biosystems, KK4824). 

Libraries with concentrations of more than 3 nM and fragments with peak size 400 bp were 

sequenced on an Illumina NovaSeq 6000 S4 and/or S2 Flow Cell (FC), in 6–8 independent 

pools. The target for WGS with high quality sequencing raw data was 120 GB or greater 

with a Q30 >90% per library per sequencing run. In case the first sequencing runs generated 

insufficient reads, additional sequencing was performed by sequencing the same library. 

Raw data was processed through an Illumina FPGA-based platform to generate BAM files.

WGS data processing and germline variant calling—Raw data were aligned 

to the GRCh37d5 reference genome, sorted, and PCR duplicates were removed 

by an Illumina FPGA-based platform. Reads aligned to the INDEL regions were 

realigned with GATK’s (v3.8.1) RealignerTargetCreator and IndelRealigner following 

the GATK best practice. Base quality scores were recalibrated using GATK’s (v3.8.1) 

BaseRecalibrator and PrintReads. Read groups were renamed by Picard’s (v2.20.7) 

AddOrReplaceReadGroups command. Germline SNVs and INDELs were detected by 

GATK’s (v3.8.1) HaplotypeCaller. The distribution of library DNA insertions was assessed 

by Picards’ (v2.20.7) CollectInsertSizeMetrics. The depth of coverage was analyzed by 

GATK’s (v3.8.1) DepthOfCoverage command.

Principal component analysis (PCA) of genetic origins of the assessed 
individuals—In order to determine the origins of the included individuals, heterozygous 

variants generated by GATK’s (v3.8.1) HaplotypeCaller, genomic VCF format were used as 

output and genotyped across all samples by using the GATK’s (v3.8.1)’s GenotypeGVCFs 

and CombineGVCFs; in addition, all variants from dbSNP (v137) were added. The VCF file 

was reformatted by BCFtools (v1.10.32) and converted to bfiles by PLINK (v1.90b6.16). 

Single nucleotide polymorphisms (SNPs) were extracted from both the samples in this study 
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and samples from the 1000 Genomes phase 3 (Genomes Project et al., 2015) and merged. 

SNPs overlapping with the repeat mask region were removed. PCA was carried out by 

PLINK (v1.90b6.16) and the results were plotted in R (v3.5.1).

Mosaic SNV/INDEL detection pipeline in WGS data (MSMF)—Mosaic single 

nucleotide variants/mosaic small (typically below 20 bp) INDELs were called by using 

a combination of four different computational methods based on previous published and 

adapted pipelines (Breuss et al., 2020a; Breuss et al., 2020b): the intersection of variants 

from the paired-mode of GATK’s (v4.0.4) Mutect2 (Cibulskis et al., 2013) (paired mode) 

and Strelka2 (Kim et al., 2018) (v 2.9.2) (set on ‘pass’ for all variant filter criteria) for 

sample-specific variants; or single-mode of Mutect2 (with an in-house panel of normal) 

followed by MosaicForecast (v 8–13-2019) for sample-specific or tissue-shared variants. 

For the YA cohort, the panel of normal is generated using a “leave one out” strategy, 

by excluding samples from each individual; for the AA and REACH cohort, all samples 

from the YA were used to generate the panel of normal. Variants were excluded if they 

1] resided in segmental duplication regions as annotated in the UCSC genome browser 

(UCSC SegDup) or RepeatMasker regions, 2] resided within a homopolymer or dinucleotide 

repeat with more than 3 units, 3] overlapped with annotated germline INDELs, 4] did not 

show a minimum of 3 alternative reads, or 5] were detected more than once across multiple 

individuals. We further removed variants with an overall population allele frequency >0.001 

in gnomAD (Karczewski et al., 2020) (v 2.1.1) or >0 for variants only detected by 

MosaicForecast (Dou et al., 2020) to exclude false positive calls from population-level 

polymorphisms. To avoid binomial sampling bias and false positive signal from copy 

number/structural variations or non-annotated repetitive regions, we randomly chose 1600 

single nucleotide polymorphism from dbSNP (v137), estimated the 95% confidence interval 

of all those variants in each sample respectively, and excluded variants whose coverage is 

not within this CI. Finally, variants with an AF>0.35 in both sperm and blood (or >0.7 for 

sex chromosomes) were considered likely germline variants and removed. Variants with a 

lower CI of AF<0.001 were also removed. Fractions of mutant alleles for variants called in 

one sample were calculated in the other sample with the exact binomial confidence intervals 

using scripts described below. If a variant was only detected in one tissue, mosaicism in 

the second tissue was confirmed if a minimum of 3 alternative reads were present. Scripts 

for variant filtering and annotations are provided on GitHub (https://github.com/shishenyxx/

Sperm_control_cohort_mosaicism).

Simulation analysis to determine the sensitivity of MSMF—To determine the 

sensitivity for detecting mosaic variants, we created simulated datasets that contained known 

mosaic variants at low frequencies. We first randomly generated 10,000 variants from 

chromosome 22 based on GRCh37d5 as our set of mosaic variants. We then used Pysim(Xia 

et al., 2017) to simulate Illumina paired-end sequencing reads with a NovaSeq 6000 error 

model from the GRCh37d5 reference chromosome 22 and a version of chromosome 22 

that contained the alternate alleles from our 10,000 mosaic variants. These two sets of 

reads were then combined to create a series of datasets with mosaic variants at 1, 2, 3, 4, 

5, 10, 15, 20, 25, and 50% AF, at coverages at 50×, 100×, 200×, 300×, 400×, and 500× 

depth. Reads were mapped to GRCh37d5 using BWA (v0.7.8) mem, processed with Picard’s 
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(v2.20.7) MarkDuplicates, and INDELs were realigned and base quality scores recalibrated 

as described above. We applied our somatic variant calling pipelines containing GATK’s 

(v4.0.4) Mutect2 (single mode and paired mode), Strelka2 (v 2.9.2), and MosaicForecast (v 

8–13-2019) to detect mosaic variants at each AF and each depth. We further applied the 

same filters we used for the genomic regions; as we excluded the repetitive and segmental 

duplication regions, only ∼75% of the genomic region remained valid. The sensitivity and 

recovery rate of the pipeline was then determined through these data.

Visualization of genomic distribution of mosaic variants—The genomic 

distribution pattern of mosaic variants and the allelic fractions of different variants across the 

genome was presented using Circos (Krzywinski et al., 2009) (v0.69–6).

Targeted amplicon sequencing (TAS) and experimental benchmark of the 
SNV/INDEL calling pipeline—TAS analysis was first applied to 82 variants from the 

previously published 200× WGS sequencing results (Breuss et al., 2020a), to experimentally 

confirm the validation rate of the new pipeline. PCR products for sequencing were designed 

with a target length of 160–190 bp with primers being at least 60 bp away from the base 

of interest. Primers were designed using the command-line tool of Primer3 (Untergasser et 

al., 2012; Untergasser et al., 2007) with a Python (v3.7.3) wrapper (Breuss et al., 2020a). 

PCR was performed according to standard procedures using GoTaq Colorless Master Mix 

(Promega, M7832) on sperm, blood, and an unrelated control (>20 ng input per reaction; 

>6000 sperm genome equivalents). Amplicons were enzymatically cleaned with ExoI (NEB, 

M0293S) and SAP (NEB, M0371S) treatment. Following normalization with the Qubit HS 

Kit (ThermFisher Scientific, Q33231), amplification products were processed according to 

the manufacturer’s protocol with AMPure XP beads (Beckman Coulter, A63882) at a ratio 

of 1.2x. Library preparation was performed according to the manufacturer’s protocol using a 

Kapa Hyper Prep Kit (Kapa Biosystems, KK8501) and barcoded independently with unique 

dual indexes (IDT for Illumina, 20022370). The libraries were sequenced on an Illumina 

HiSeq 4000 platform with 100 bp paired-end reads. After determining the validation rate of 

the new pipeline, TAS was further performed for a subset of called variants on the different 

sperm time points, blood, saliva, and unrelated control sample to quantify the AFs and to 

extend analysis to tissues that were not subjected to WGS.

Data analysis for TAS—Reads from TAS were mapped to the GRCH37d5 reference 

genome by BWA mem and processed according to GATK (v3.8.2) best practices without 

removing PCR duplicates. Putative mosaic sites were retrieved using SAMtools (v1.9) 

mpileup and pileup filtering scripts described in previous TAS pipelines (Breuss et al., 

2020a). Variants were considered mosaic if 1] their lower 95% exact binomial CI boundary 

was above the upper 95% CI boundary of the control; 2] their AF was >0.5%. For 

the validation of the mosaic variant calling pipeline, 82 variants from the benchmark 

data (REACH) detected by the MSMF pipeline were subjected to TAS. Candidates were 

randomly selected from all detected variants, and 80 (97.6%) of them were considered 

mosaic based on the above criteria. Sperm samples from the YA cohort were labeled as time 

point 1 (t1), t2, and t3, based on the data of sample collection. t1 was used as an anchor 
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to determine absolute and relative (i.e. fold change) AF differences of the same variant 

measured across samples.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mutational signature analysis—Mutational signatures were determined for each variant 

by retrieving the tri-nucleotide sequence context using Python (v3.5.4) with pysam (v 

0.11.2.2) and plotting the transversion or transition based on the pyrimidine base of the 

original pair similar to previous studies (Alexandrov et al., 2013). Mutational signatures 

from de novo mutations in the Simons Simplex Consortium cohort (from healthy siblings) 

and mutations from gnomAD were obtained by retrieving SNVs present in their respective, 

publicly available VCFs. In order to obtain a 95% band of expectation, an equivalent number 

of variants was randomly chosen from the Simons Simplex Consortium or gnomAD VCF. 

This process was performed for a total of 10,000 times to obtain a distribution and the 2.5th 

and 97.5th percentile of the simulated mutational signatures. Significance was reported if a 

mutational signature was outside the permuted 95% bands.

Step-wise exponential regression model for the burden of variants—In order 

to model the exponential decay of the variants, a step-wise exponential regression model 

was made based on the following assumptions: 1] variants happening at roughly the same 

cell division during early embryonic development have similar allelic fractions in different 

individuals; 2] during early embryonic development the number of cells are growing 

exponentially but at different rates across tissues due to varying growth rates and cell death; 

3] the spontaneous mutation rate is stable within each category; 4] the number of mosaic 

variants occurring in each cell generation is in proportion with the number of cells in that 

generation. For each group of ranked variants from an already developed tissue (sperm 

or blood), during the tth cell division, we assume that all variants came from a starting 

population of 1
AFt

 variants, and AF0 is estimated from the exact binomial CI of the highest 

AFs found in each group. Based on assumption 2 the mutation is accumulated at a speed of 

θ (θ ≥ 1 and θ ≤ 2). For the tth cell division, the average AFt = AF0 ⋅ 1
θt , and the number of 

expected variants with this Nt = 1
AFt

, we rank the AFt to get an estimated rank vector

ET = AF0 AF1 AF1 ⋯ AFt AFt
Nt elements

…
AFt AFt ,

to get the best estimation of ET towards the observed ranked AF vector 0T, we defined the 

loss L = ∑ ET − OT .

By minimizing L, we obtained the best estimation of the ranked AF curve. We finally 

defined a Mutation Factor (MF ) = 1
θ − 1  which ranges from 1 to +∞ and is a measure of 

mutational accumulation speed relative to cellular proliferation. Thus, lower MFs are found 

if the rank plot is more concave, i.e. the mutation rate is relatively lower (e.g. Sperm); 

and higher MFs are found if the rank plot is less concave or shallow, i.e. the mutation 
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rate is relatively higher (e.g. Shared). Note that MF includes both mutations derived from 

the proliferation itself and those acquired during homeostasis, which potentially uncouples 

mutational accumulation from proliferation.

Assessment of mosaic variants overlap with genomic features—In order to 

assess the distribution of mosaic variants and their overlap with genomic features, an equal 

number of variants (mSNV/INDELs that were Sperm, Shared, Blood-Y, and Blood-A) 

was randomly generated with the BEDTools (v2.27.1) shuffle command within the region 

from Strelka 2 without the subtracted regions (e.g. repeat regions). This process was 

repeated 10,000 times to generate a distribution and their 95% CI. Observed and randomly 

subsampled variants were annotated with whole-genome histone modifications data for 

H3k27ac, H3k27me3, H3k4me1, and H3k4me3 from ENCODE v3 downloaded from 

the UCSC genome browser (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/)—

specifically for the overlap with peaks called from the H1 human embryonic cell line (H1), 

as well as peaks merged from 9 different cell lines (Mrg; Gm12878, H1, Hmec, Hsmm, 

Huvec, K562, Nha, Nhek, and Nhlf). Gene region, intronic, and exonic regions from NCBI 

RefSeqGene (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refGene.txt.gz); 10 

Topoisomerase 2A/2B (Top2a/b) sensitive regions from ChIP-seq data (Canela et al., 2017) 

(Samples: GSM2635602, GSM2635603, GSM2635606, and GSM2635607); CpG islands: 

data from the UCSC genome browser (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/

database/); genomic regions with annotated early and late replication timing (Hansen et 

al., 2010); nucleosome occupancy tendency (high/>0.7 or low/0.0–0.7 as defined in the 

source) from GM12878, for which all non-zero values were extracted and merged (Valouev 

et al., 2011); enhancer genomic regions from the VISTA Enhancer Browser (https://

enhancer.lbl.gov/); and DNase I hypersensitive regions and transcription factor binding sites 

from Encode v3 tracks from the UCSC genome browser (wgEncodeRegDnaseClusteredV3 

and wgEncodeRegTfbsClusteredV3, respectively). 74 Leukemogenic driver mutations, 4938 

clonal hematopoiesis of indeterminate potential (CHIP) mutations identified in TOPMed 

participants, 28,594 SNV/INDELs associated with CHIP, 619 rare loss of function regions 

associating with CHIP, 27 rare enhancer regions associating with CHIP, as well as 476 

common variants associating with CHIP identified from 97,691 individuals (Bick et al., 

2020) were extracted and annotated with bedtools annotate to find the co-occurance of CH 

identified in this study and CH identified from large-scale population study.

Annotation of variant function—A variant was annotated as loss-of-function if it was 

annotated as frameshift, nonsense, canonical splice site, or start loss with a gnomAD allele 

frequency <0.0001. For genomic features, dbSNP annotations were carried out with version 

150 (Sherry et al., 1999). All variants were further annotated with a CADD score, and values 

>25 were considered likely pathogenic for our classification (Kircher et al., 2014). The 

following genome-wide metrics were used to determine deleteriousness for additional tools 

to compare to our CADD annotation: Eigen score >1.7 (Ionita-Laza et al., 2016); FATHMM 

score >0.98 (Shihab et al., 2013); DeFine predicted pathogenic probability >0.95 (Wang et 

al., 2018); raw phastCons 100 way score for vertebrates >0.7 (Siepel et al., 2005); or raw 

phyloP 100 way score for all organisms >1.9 (Pollard et al., 2010). For coding mutations 

only we used the following: SIFT predicted ‘D’, LRT score predicted ‘D’ or ‘U’ (Liu et al., 
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2016); MutationTaster predicted ‘H’ or ‘M’ (Reva et al., 2007); PROVEAN predicted ‘D’ 

(Choi and Chan, 2015); iFish predicted ‘deleterious’ (Wang and Wei, 2016); or GERP_RS 

score >2 (Davydov et al., 2010).

Burden estimation—Using the observed fraction of variants that are classified as C-LoF, 

we calculated a 95% estimation interval of the true fraction using SciPy (v1.3.1) stats’s 

t-interval and multiplied by the chosen number of men (n=100). This fraction was further 

modified by taking into account the subset of genic regions that are annotated to belong to 

a haploinsufficient gene (HI) with pLI higher than 0.9, or that belong to an HI gene which 

is annotated as a likely autism spectrum disorder gene by SFARI (Level 1, 2, 3, and S, 

with pLI higher than 0.9). A gene list of likely disease-causing candidates for congenital 

heart disease was obtained by merging the candidate gene list from four recent large scale 

studies (Alankarage et al., 2019; Ellesoe et al., 2018; Jin et al., 2017; Li et al., 2017); genes 

reported by at least two studies were further filtered by their pLI (>0.9). Genomic regions 

of those genes were extracted from http://www.openbioinformatics.org/annovar/download/

hg19_refGene.txt.gz.

Estimation of disease impact conveyed by clonal mosaicism—For transmission 

risk we assume that 1] expression of the disrupted gene does not impact a sperm cell’s 

fertility; 2] AFs estimated in purified sperm directly reflect the percentage of sperm cells 

carrying the mutation and determine the average transmission risk θ. For any disease with 

incident rate I and a fraction P, which are caused by de novo HI-C-LoF SNV/INDELs 

within a set of genes HI – C – LoF ∩ Disease gene set (monogenetic, autosomal dominant 

contribution), we can calculate the percentage of the relevant genome by comparing 
genome lengtℎHI−C−LoF ∩ Disease gene set

genome lengtℎall genes
. Taking μ into account, which is the fraction of men 

predicted to carry a C-LoF mutation, we can estimate the explained risk for a specific 

disease/phenotype with

E =
θ ⋅ μ ⋅

genome lengtℎHI − C − LoF ∩ Disease gene set
genome lengtℎall genes

I ⋅ P

Taking ASD as an example, exonic de novo C-LoF SNV/INDELs contribute to P = 21% 

of ASD diagnoses (Iossifov et al., 2014). According to the CDC, in 2020, approximately 

I = 1/54 children in the US is diagnosed with ASD (https://www.cdc.gov/ncbddd/autism/

data.html). Roughly I ∙ P = 3.89/1000 children are born with ASD caused by de novo 
C-LoF SNV/INDELs. Our data determines an average θ = 0.047 and a μ = 0.27, and thus 

θ ⋅ μ ⋅
genome lengtℎHI − CLoF ∩ Disease gene set

genome lengtℎall genes
= 0.61/1000, assuming that ASD HI-C-LoF 

mutations do not increase miscarriage rates. Therefore, clonal mosaicism described in this 

manuscript contributes an estimated E ≈ 1/6 of de novo SNV/INDELs underlying ASD 

diagnosis. As those mutations are of early embryonic origin, prior to sex divergence, this 

contribution should be similar in both parents (Dou et al., 2017), suggesting that overall, 

parental gonadal mosaicism contributes 1/3 of de novo ASD SNV/INDELs. This approach 

can be extended to other diseases or phenotypes with known monogenetic architecture, 
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such as epilepsy, intellectual disabilities, or congenital heart disease (Homsy et al., 2015; 

Yang et al., 2017). Similarly, for congenital heart disease, P = 8% were caused by de novo 
deleterious mutations (Alankarage et al., 2019; Jin et al., 2017). According to the CDC 

and previously studies, approximately I ≈ 1/100 (https://www.cdc.gov/ncbddd/heartdefects/

data.html), roughly I ∙ P ≈ 0.8/1000. According to the candidate gene list we determined, we 

calculated E ≈ 0.12/1000 for de novo SNV/INDELs underlying congenital heart disorder, 

suggesting that overall, paternal clonal mosaicism could explain 15% of congenital heart 

disease diagnoses. Note that the HI-C-LoF themselves, based on the data and considerations 

outlined above, will be transmitted to ∼1 in 300 concepti, likely leading to a miscarriage or 

congenital disease.

Data processing—Data analysis and plotting were performed using R (v 3.5.1) with 

ggplot2 (v 3.3.1) and Rcpp (v 1.0.3) packages; or with Python (v3.6.8) with pandas 

(v 0.24.2), matplotlib (v 3.1.1), NumPy (v1.16.2) SciPy (v 1.3.1) and seaborn (v 0.9.0) 

packages.

Statistical analyses—Statistical analyses were performed with R (Spearman, exact 

binomial confidence intervals, quantile analysis, and Kolmogorov-Smirnov test), GraphPad 

Prism (Mann-Whitney Test), and Python with pandas (95% confidence interval 

determination). The distribution of number of variants in Sperm, Shared and Blood did 

not differ significantly from a normal distribution using the Kolmogorov-Smirnov tests of 

normality.

ADDITIONAL RESOURCES

There are not additional resources used for this manuscript.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mosaic variants are stably present across serial ejaculates.

• In sperm, unlike in blood, clonal mosaicism does not change with age.

• Mutational origins and temporal stability suggest an embryonic origin.

• Clonal sperm mosaicism is predicted to cause adverse outcomes in 1:300 

concepti

Sequencing of sperm from healthy men identifies clonal mosaic mutations that are likely 

embryonic in origin and unlike blood, stable over age. Further, clonal mosaic mutations 

likely contribute to transmissible pathogenic mutations in 1 of 15 men.
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Figure 1. Analysis in 12 young aged men uncovers the landscape of sperm clonal mosaicism
(A) Sampling strategy: 12 healthy males of young age (YA, 18–22 years, blood and up to 

3 sperm samples) and 5 healthy males of advanced age (AA, >48 years, blood and 1 sperm 

sample). Samples subjected to 300× whole-genome sequencing (WGS), then the MSMF 

computational workflow (see STAR Methods).

(B) Bar charts: number of clonal mosaic variants per individual from each class 

(sperm-specific: ‘Sperm’, blood-specific: ‘Blood’, tissue-shared: ‘Shared’); Blood typically 

outnumber Shared or Sperm.

Yang et al. Page 24

Cell. Author manuscript; available in PMC 2022 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(C) AF distribution (square root-transformed; sqrt-t) of Sperm, Shared, and Blood variants 

in YA cohort. Shared variants showed higher peak and overall AF compared to Sperm and 

Blood. sqrt-t: square-root transformed.

(D-E) Rank plot of estimated sperm and blood AFs with 95% exact binomial confidence 

intervals (CIs) from the YA cohort, grouped by class. Sperm (D) showed steeper initial 

decay curves, suggesting a relatively lower mutation or higher expansion rate than Shared 
(E), showing a shallower decay. Norm Sperm AF: sex-chromosome normalized allelic 

fraction.

(F) Circos histograms for the number of mSNV/INDELs detected from the YA cohort. 

Variants were evenly distributed across the genome. Colors distinguish classes of variants.

(G) Mosaic SNV/INDELs and the corresponding allelic fractions (AFs) detected from the 

YA cohort, colors are the same as B. Inner circle: AFs in the blood; outer circle: AFs in 

the sperm. Colors distinguish classes of variants. Note that Shared variants in brown will be 

represented in both circles as they are—by definition—detected within both tissues.

See also Figure S1, S2, and Data S1.
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Figure 2. Sperm clonal mosaicism shows temporal stability within an individual
(A) Available blood, sperm, and saliva samples for ID01–12 and their WGS status. ID04 

and ID12 (underlined) had three samples subjected to WGS to assess whether new mutations 

appear over time.

(B) Analysis strategy for ID04 and ID12. 300× WGS was used on 3 independent sperm 

sample time points (t1, 2, 3).

(C) WGS-discovery of sperm mosaicism variants in each male at one time point, followed 

by >5000× read depth targeted amplicon sequencing (TAS) in all available samples for all 

individuals, allowing for accurate assessment of AFs at each time point.

(D) Scatter plot showing pair-wise AF comparison across the YA cohort by TAS. All 

validated variants were detected in all available sperm samples (i.e. new variants did not 

appear, nor did existing variants disappear). Number of variants per plot: upper left: 84, 

upper right and lower left: 71, lower right: 103, with Spearman’s ρ and P-values.

(E) Modified scatter plot showing absolute sperm AF changes for each variant tested across 

the three time points was typically below 0.02 (i.e. 2%) AF. Violin plot: maximal, absolute 

change for each variant.
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(F) Heatmap of AF variation relative to t1 for variants with three available samples did not 

show a clear linear increase or decrease.

See also Figure S2 and Data S2.
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Figure 3. Blood but not Sperm clonal mosaic mutations increase with advanced age (AA)
(A) Both blood and sperm in 5 AA men were subjected to 300× WGS.

(B) Number of clonal mosaic variants detected in the 5 AA men, with Sperm and Shared 
clonal variants comparable to the YA cohort, whereas Blood variants showed dramatic 

accumulation especially in ID14 and ID17.

(C) Scatter plot, regression lines, and 95% prediction intervals showing the number of 

mosaic variants from YA (n=12) and AA (n=5) cohort. Left: stability of the number 

of Sperm and Shared variants, but a dramatic age-dependent accumulation of Blood 
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variants (orange). Right: combined boxplot of all data points (black: median, box: quartiles, 

whiskers: total data extent). Mann-Whitney U: Sperm 23, Shared 29.5, Blood 0; Two-tailed 

P-value: Sperm 0.4866, Shared 0.9764, Blood 0.0003).

(D-E) Histogram of the AF distribution of individuals without (D; ID13, ID15, and ID16) or 

with (E; ID14 and ID17) clonal hematopoiesis compared to YA (ID01–12) individuals. Both 

subgroups of the AA cohort exhibited similar differences compared to the YA cohort despite 

their difference in Blood variant numbers.

See also Figure S3 and Data S1.
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Figure 4. Distinct early developmental signatures distinguish Shared and tissue-specific clonal 
mosaicism
(A) Combination of the YA (n=12), AA (n=5), and REACH (n=8) cohorts. Blood-Y 
from YA, Blood-A from AA and REACH (n=13) were analyzed separately for SNVs and 

INDELs. Sperm and Shared variants were combined across all cohorts (n=25).

(B) Bar charts show the base substitution profiles of variant classes from panel A. All 

mosaic classes showed depletion of the aging T>C substitution supporting their origin 

during embryogenesis. Grey: 95% CI from 10,000 permutations of Simons Simplex Cohort 
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Control de novo mutations (Simons DNMs). Asterisks: data points outside of the 95% 

permutation CI.

(C-E) Relative contribution of 6-category variant base substitution profiles. (C) C>T 

predominance and an additional T>G enrichment only in sperm samples with AF < 5%. 

(D) After distinguishing the cohorts into different sequencing groups, the higher read depths 

used in ID01–17 (i.e. 300×) likely accounted for the greater sensitivity to detect this T>G 

signature. (YA: ID01–12, AA: ID13–17, REACH: F01–08). (E) After distinguishing cohorts 

into those with and without evidence of clonal hematopoiesis, C>T relative contribution 

correlated with stronger clonal collapse in blood. nCH, non-clonal hematopoiesis (ID13, 

ID15, and ID16), CH, clonal hematopoiesis (ID14 and ID17).

(F) Scatter plot showing the fraction of variants located across genomic regions for the six 

categories based on tissue distribution. H3k27ac/H3k27me3/H3K4me1 (H1/Mrg): H3k27ac/

H3k27me3/H3K4me1 acetylation peak regions measured in human H1esc or merged from 9 

different cell lines; Top2a/b: topoisomerase binding regions; Early and Late replication: 

measured DNA replication timing; Nucleosome (high/low): nucleosome occupancy 

tendency; Enhancers: annotated enhancer regions; DNase I: DNase I hypersensitive regions; 

TF Binding: Transcription factor binding sites. 95% permutation CIs were calculated from 

10,000 random permutations of the same number of variants of Simons Simplex Consortium 

de novo mutations (if a data point is outside of the permutation interval it is colored red). 

Blood-A showed the most deviations from expectations.

(G) Rank plot of estimated sperm and blood AF with 95% confidence intervals for all 773 

gonadal mosaic variants detected as mosaic in sperm (Sperm and Shared). Lower plot shows 

the log10 transformed ratio of sperm and blood AFs (0 replaced by 1e-8) and the rolling 

average of over 20 data points to display the local trend. Sperm variants reached maximal 

AF of 15% and showed a relatively lower average AF.

See also Figure S4, S5, S6, and Data S3.
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Figure 5. Clonal sperm mosaicism represents a life-long transmission risk with 1 in 15 males 
carrying a predicted high-impact pathogenic mutation
(A) Number of detectable mosaic variants in each category from 2909 total variants; shown 

are numbers of variants from each individual and the population mean with the 95% CI.

(B) Number of detectable mosaic variants in each category for exonic variants. Shown are 

individual data points and mean with a 95% confidence interval.

(C) Number of Sperm and Shared variants with a CADD score >25 or a loss-of-function 

prediction (C-LoF); shown are numbers of variants from each individual and the population 

mean with the 95% CI.

(D) Estimated number of males per 100 (with 95% CI) with a detectable C-LoF variant 

in any gene (All), a haploinsufficient (HI) gene, or in a HI gene in the SFARI gene list 

(SFARI/HI).

(E) Kernel density estimation of the AF distribution of all sperm mosaic variants. The 95% 

prediction interval for AF is 1–26%.

(F) Stacked bar charts show the relative frequency of AF categories, binned at 5% 

increments or above 25% for Sperm and Shared variants. The majority of mutations were 

<5% AF, and most of these were not shared with blood.

(G) Scatter plot and regression lines show the inaccuracy of transmissible mosaicism 

detection from blood increases with age (YA and AA cohort). Based on the number of blood 

detectable mosaic variants and their presence in sperm, blood-only detection produces a high 
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false-positive rate that further increases with age due to CH (blue). Blood-only detection 

produces a consistent 66% false-negative rate (red) for the prediction of transmission across 

different age groups.

See also Data S3.
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Figure 6. Developmental origin and transmission of clonal and non-clonal mosaicism in sperm
(A) Mosaic variants occur throughout development and are typically Shared if they occur 

prior to germ cell specification. For instance mutation a (resulting in genotype A/a) occurs 

during the 4 cell stage, is present in ∼25% of cells (i.e. ∼12.5% AF), and is shared across 

blood and sperm. B/b, which occurs later, is also shared in sperm and blood and are clonal. 

C/c and D/d occur in specific tissues and are present as clonal mosaicism, whereas E/e, and 

F/f occur later and are non-clonal at young age (i.e. not detectable from bulk sequencing). 
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This schematic shows male development; however, due to the similarity of early germ cell 

development between sexes, female mosaicism likely exhibits similar patterns.

(B) Relative contributions of variants to cellular diversity detected in blood and sperm, and 

changes with age. Variants occurring during early embryogeneis (a and b) are shared in 

young and aged in both sperm and blood. A group of sperm specific (c) or blood specific (d) 

variants arise during embryogenesis and are stable during aging. A group of blood specific 

variants (f) arise to the level of clonal during aging. Gray: unmarked clones.

(C) Sperm mosaicism subtypes. Clonal mosaicism is present in primordial germ cells (green 

bolt); non-clonal mutations arise in spermatogonial stem cells (gray bolt) and sperm (white 

bolt). Note that the mutations accumulate within sperm, and ultimately the fetus which 

harbors all as de novo mutations.

(D) Absolute contribution of clonal sperm mosaicism (green) is stable as men age whereas 

non-clonal sperm mosaicism increases with age (gray). As a result, the relative contribution 

of clonal mosaic SNVs or INDELs to the number of de novo mutations in an offspring 

decreases with age (red line).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Human sperm, blood, and saliva samples See Experimental Model and Subject 
Details

ID01-ID17

Chemicals, peptides, and recombinant proteins

AMPure XP Beads Beckman Coulter A63882

PureCeption™ 100% Isotonic Solution Sage/Origio ART-2100

QUINN’S™ Sperm Washing Medium Sage/Origio ART-1006

RLT lysis buffer Qiagen 40724

Bond-Breaker TCEP solution Thermo Scientific 77720

stainless steel beads with 0.2 mm diameter Next Advance SSB02

GoTaq Colorless Master Mix Promega M7832

Exonuclease I New England Biolabs M0293S

Shrimp Alkaline Phosphatase New England Biolabs M0371S

Critical Commercial Assays

AllPrep DNA/RNA Mini Kit Qiagen 80204

KAPA HyperPrep PCR-Free Library Prep kit Roche KK8505

KAPA Library Quantification Kits for 
Illumina platforms

Roche/KAPA Biosystems KK4824

Illumina SBS kits Illumin 20012866

Qubit dsDNA High Sensitivity kit Thermo Fisher Scientific Q33231

Deposited Data

200× WGS and TAS data Sequence Read Archive (SRA) PRJNA588332

300× WGS and TAS data Sequence Read Archive (SRA) PRJNA660493

Software and Algorithms

Picard v 2.20.7 “Picard Toolkit.” 2019. Broad Institute, 
GitHub Repository.

https://broadinstitute.github.io/picard/

BWA v 0.7.8 (Li and Durbin, 2009) http://bio-bwa.sourceforge.net/

Circos v0.69–6 (Krzywinski et al., 2009) http://circos.ca/

SAMtools v 1.7 (Li et al., 2009) http://samtools.sourceforge.net/

GATK v 3.8–1, v4.0.4 (McKenna et al., 2010) https://gatk.broadinstitute.org/hc/en-us

BCFtools v 1.10.32 (Li et al., 2009) http://samtools.github.io/bcftools/

BEDTools v 2.27.1 (Quinlan and Hall, 2010) https://bedtools.readthedocs.io/en/latest/

MosaicForecast v 8–13-2019 (Dou et al., 2020) https://github.com/parklab/MosaicForecast

Mutect2 v4.0.2 (Benjamin et al., 2019) https://gatk.broadinstitute.org/hc/en-us/
articles/360037593851-Mutect2

Strelka2 v 2.9.2 (Kim et al., 2018) https://github.com/Illumina/strelka

Pysam v 0.11.2.2 (Li et al., 2009) https://github.com/pysam-developers/pysam

Pysim (Xia et al., 2017) https://github.com/aldebjer/pysim

PLINK v 1.90b6.16 (Purcell et al., 2007) http://zzz.bwh.harvard.edu/plink/
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REAGENT or RESOURCE SOURCE IDENTIFIER

gnomAD v 2.1.1 (Karczewski et al., 2020) https://gnomad.broadinstitute.org/

Python v 3.6.8 and v 3.7.3 Python Software Foundation https://www.python.org/downloads/

SciPy v 1.3.1 Community library project https://www.scipy.org/

sklearn v 0.20.1 scikit-learn project https://scikit-learn.org/stable/

R v 3.5.1 R Core Team https://www.r-project.org/

FSA v 0.8.30 http://derekogle.com/FSA/authors.html https://cran.r-project.org/web/packages/FSA/
index.html

pingouin v 0.3.5 https://pingouin-stats.org/

pandas v 0.24.2 the pandas development team https://pandas.pydata.org/

seaborn v 0.9.0 Michael Waskom https://seaborn.pydata.org/

NumPy v 1.16.2 the NumPy project http://numpy.org/

matplotlib v 3.1.1 https://ieeexplore.ieee.org/document/
4160265

https://maplotlib.org/

Primer 3 (Untergasser et al., 2012; Untergasser et al., 
2007)

http://primer3.org/manual.html

Other

Cell counting chamber Sigma-Aldrich BR717805-1EA

Disruptor Genie Scientific Industries SI-238I

1.5 ml microcentrifuge tube USA Scientific 1615-5500

Covaris microtube system Covaris SKU 520053

Bio-IT platform Illumina DRAGEN

Next generation sequencer Illumina NovaSeq 6000

Next generation sequencer Illumina HiSeq 4000

focused-ultrasonicator Covaris E220

Plate reader Eppendorf PlateReader AF2200

Qubit 3 Fluorometers Thermo Fisher Q33216

Deposited Data

Raw and analyzed data This paper SRA: PRJNA660493

Raw and analyzed data (Breuss et al., 2020a) SRA: PRJNA588332
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