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Abstract

Characterizing epistatic gene interactions is fundamental for understanding the genetic architecture of complex traits. However, due to the
large number of potential gene combinations, detecting epistatic gene interactions is computationally demanding. A simple, easy-to-per-
form method for sensitive detection of epistasis is required. Due to their homozygous nature, use of recombinant inbred lines excludes the
dominance effect of alleles and interactions involving heterozygous genotypes, thereby allowing detection of epistasis in a simple and
interpretable model. Here, we present an approach called RIL-StEp (recombinant inbred lines stepwise epistasis detection) to detect
epistasis using single-nucleotide polymorphisms in the genome. We applied the method to reveal epistasis affecting rice (Oryza sativa)
seed hull color and leaf chlorophyll content and successfully identified pairs of genomic regions that presumably control these phenotypes.
This method has the potential to improve our understanding of the genetic architecture of various traits of crops and other organisms.
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Introduction
Understanding the links between the genes and phenotypes of

organisms is a key objective in biology. Nonadditive gene interac-

tion is called epistasis (Fisher 1919; Phillips 2008) and is impor-

tant for crop improvement through cross-breeding (Cordell 2002;

Carlborg and Haley 2004; Xu and Crouch 2008; Heffner et al. 2009;

Wang et al. 2012).
Genome-wide association studies (GWAS) are widely

employed to elucidate genetic variations that affect complex

phenotypic traits, allowing the identification of candidate loci

controlling crop phenotypes (Huang et al. 2012; Sukumaran et al.

2015; Zhou et al. 2015). An organism’s phenotype is affected by bi-

ological pathways that involve interactions of multiple genes

(Mackay 2014). GWAS have conventionally been used to identify

major quantitative trait loci (QTLs) associated with a phenotype

of interest. In most cases, these QTLs were considered to contrib-

ute additive effects to the trait values, independent of the effects

of other loci. If there are strong phenotypic effects of gene–gene

interactions, however, GWAS potentially miss important loci that

control the trait in combination with other loci. In such cases, ad-

ditive QTLs may not explain all the phenotypic variation

(Carlborg and Haley 2004; Mackay and Moore 2014). Epistasis

should be taken into account to better understand the genetic

factors controlling phenotypic variations.

Identifying epistatic gene pairs is challenging, because the
large number of combinations of genotypes incurs a heavy
computational load and low statistical power due to multiple test
correction. Despite these difficulties, numerous methods have
been developed to identify epistatic gene pairs, including exhaus-
tive statistical, regularization, Bayesian, and machine learning
methods [for reviews, see Wei et al. (2014) and Niel et al. (2015)].

The exhaustive statistical approach is designed to test all
combinations of genetic variants, most commonly single-nucleo-
tide polymorphisms (SNPs) (Wan et al. 2010; Hemani et al. 2011; Li
2017). This method has a lower risk of failure in detecting epista-
sis but requires greater computational input and has lower statis-
tical power due to multiple tests resulting from studying a large
number of combinations of genetic variations (Wei et al. 2014).
Reduction of the search space is needed to mitigate the computa-
tional burden. Multifactor dimensionality reduction (MDR) is
commonly used for this purpose, and improvement of MDR has
been reported, including quantitative MDR (QMDR), unified
model based MDR (UM-MDR), and classification based MDR
(CMDR) (Ritchie et al. 2001; Yu et al. 2015, 2016; Yang et al. 2017).
Another way of reducing the search space is by incorporating ad-
ditional information on the candidate genes involved in the phe-
notypes based on metabolic pathways, gene ontology, and
protein–protein interactions (Ritchie 2011; Sun et al. 2014).
However, the candidate gene approach is prone to ignoring
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unknown, but important, genes affecting the phenotype.
Regularization methods such as logistic regression and group
lasso algorithm use penalized regression models that perform
variable selection by shrinking the number of coefficients (Park
and Hastie 2008; Stanislas et al. 2017). Results of these methods
are easy to interpret; however, regression models tend to have
the overfitting problem. Bayesian methods represented by bayes-
ian epistasis association mapping (BEAM) and its improved ver-
sions, BEAM3 and joint bayesian analysis of subphenotypes and
epistasis (JBASE), are also used to detect epistasis (Zhang and Liu
2007; Zhang 2012; Colak et al. 2016). However, these methods fo-
cus only on qualitative traits and tend to lead to complex models.
Machine learning algorithms such as support vector machine,
ant colony algorithm, and random forest attempt to make non-
parametric models to detect epistasis (Chen et al. 2008; Li et al.
2016; Yuan et al. 2017; Niel et al. 2018). Machine learning
approaches are useful in detecting higher-order epistatic rela-
tionships thanks to their low computational costs. However,
these approaches tend to generate highly complex models and
sometimes suffer from a local optimality problem (Wei et al.
2014; Tuo 2018). Especially in analyses with small sample sizes,
complexity of the models easily becomes too large compared to
the sample size, leading to overfitting of the model to the data
(Niel et al. 2015). Therefore, a nonexhaustive approach is not use-
ful in samples with small sizes.

Recombinant inbred lines (RILs) are generated by performing
an intercross of genetically distinct inbred parents to obtain F1
progeny. F1 plants are self-pollinated to obtain F2 plants, and
each of the F2 progeny is self-pollinated several times by single
seed descent (SSD) method to obtain further generations (Bailey
1971). Each self-pollination reduces heterozygosity by half, so
that after substantial number of generations (e.g., >F6), geno-
types of the RILs become random mosaics of parental genotypes
with the majority of genomic regions being homozygous. Using
RILs enables us to remove the effects of heterozygous genotypes,
which contributes to reducing the complexity of models used in
the detection of epistasis. Since the genotypes of RILs are random
mosaics of parental genotypes, there are combinations of genes
that did not exist in the parental lines, which may reveal gene–
gene interactions that have not been previously identified. In ad-
dition, RILs allow phenotyping of multiple individuals from the
same genotype, increasing the reliability of phenotype measure-
ments.

In this study, we report a new approach, named RIL-StEp (re-
combinant inbred line stepwise epistasis detection), to detect
epistasis in a pair of genetic variations of RILs based on the com-
parison of simple linear models. This model considers the addi-
tive effects of significant QTLs as well as epistatic effects
between two selected SNPs. Therefore, the model is simple and
easy to interpret. We applied the method to study epistatic rela-
tionships of loci that affect seed hull color and leaf chlorophyll
content of rice (Oryza sativa) and successfully identified genomic
regions that are epistatically interacting. Thus, RIL-StEp will be a
valuable tool to gain insight into the genetic architecture of phe-
notypes in important crops and other organisms.

Materials and methods
Materials
The japonica rice (O. sativa) cultivar Hitomebore and the aus rice
cultivar Kaluheenati from the National Agriculture and Food
Research Organization World Rice Core Collection (Kojima et al.

2005) were crossed, and RILs of F9 generations consisting of 235

lines were generated by the SSD method.

Methods
Genotyping of RILs by whole-genome resequencing
To obtain the genotypes of all RILs, we performed whole-genome

resequencing of the parents and 235 RILs using the Illumina plat-

form. We filtered and trimmed these sequences using prinseq

(Schmieder and Edwards 2011) and FaQCs (Lo and Chain 2014).

Then, the quality-trimmed short reads were aligned against the

reference genome using burrows-wheeler alignment tool (BWA)

(Li and Durbin 2009). We used the genome sequence of Os-

Nipponbare-Reference-IRGSP-1.0 as the reference (Kawahara

et al. 2013). After mapping, we sorted and prepared index files

from BAM files using samtools (Li et al. 2009). These BAM files

were subjected to variant calling with bcftools (Narasimhan et al.

2016). Finally, we imputed the variants based on Hitomebore and

Kaluheenati genotypes using LB-impute (Fragoso et al. 2016). For

biallelic SNPs in our RILs, there are three genotypic classes:

Hitomebore–Hitomebore, Hitomebore–Kaluheenati, and

Kaluheenati–Kaluheenati. These genotype classes were parame-

terized to f0, 1, 2g. We identified a total of 1,046,779 SNPs be-

tween the two rice parents. We assessed the linkage

disequilibrium (LD) statistics based on the LD decay plot as gener-

ated by PopLDdecay (Zhang et al. 2019). The LD decay plot showed

that the average LD between SNPs located 5 kb apart is suffi-

ciently high (r2 ¼ 0.997) (Supplementary Figure S1). SNPs located

within 5-kb distance mostly showed the identical genotypes in

our RIL population. Therefore, we used only one SNP per 5-kb in-

terval to reduce the calculation cost. We analyzed a total of

59,287 SNPs.

Phenotyping and quantification
We addressed two phenotypes: seed hull color and leaf chloro-

phyll content. Images of seeds of each line were scanned and

saved for phenotyping of seed hull color. The numerical soil and

plant analyzer development (SPAD) values (Uddling et al. 2007)

were measured using an SPAD-502 chlorophyll meter (Konica

Minolta, Tokyo, Japan) for phenotyping the relative chlorophyll

content in the sample leaf. Five plants were measured in each

RIL, and three SPAD readings per leaf were averaged as the mean

SPAD reading of the leaf.
In the RILs, seed hull color showed gradation between beige

and black (Figure 1A). Quantification of phenotypes tends to im-

prove statistical power and interpretability of relationships be-

tween genetic variants and phenotypes (Bush and Moore 2012).

Therefore, to convert seed hull color to quantitative values, we

measured the brightness of the seed hull color. First, we

extracted the seed image from the original scanned image and

constructed a matrix of RGB values of the image. Then, we ap-

plied principal component analysis to extract the RGB values to

detect representative color of all seeds in the image

(Supplementary Figure S2). We applied this process to each RIL

and obtained the representative RGB value of seed hull color for

each line. Then, we converted these representative RGB values to

CIE XYZ color space. The y-axis value showed the brightness in

CIE XYZ color space, which was used as quantitative phenotypes.

Larger y-axis values indicate brighter colors, whereas smaller y-

axis values correspond to darker colors (Figure 1A). Finally, we

applied inverse normal transformation to reach normally distrib-

uted phenotypic values (Supplementary Table S1).
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To quantify chlorophyll content, we used an SPAD meter

(Uddling et al. 2007). Larger SPAD values indicate a higher chloro-

phyll content in the leaf (Figure 1B, Supplementary Table S1).

Recombinant inbred lines stepwise epistasis detection
To detect genomic regions of RILs that interact epistatically,

we developed a simple method named RIL-StEp. In RIL-StEp,

we generate linear models incorporating major QTLs as well as

two SNPs at a time that are sampled from the entire genome.

Two models, one with epistasis between the two SNPs and the

other without epistasis, are compared using the Bayes factor.

Specifically, we consider the following two linear models:

Model1 : y ¼ lþ
Xq

i¼1
Qiai þ S1b1 þ S2b2 þ e (1)

Model2 : y ¼ lþ
Xq

i¼1
Qiai þ S1b1 þ S2b2 þ E1b3 þ E2b4 þ E3b5 þ e (2)

e � Nð0; r2IÞ;

y is an n-vector of phenotypic values for n samples; l is an in-

tercept term; ai is the additive effect of each SNP detected by QTL

analysis; q is the number of QTLs; b1 is the effect of the first SNP

and b2 is the effect of the second SNP. b3�5 are the interaction

effects of the alleles from the two SNPs: b3, P1 (Parent 1) allele and

P2 (Parent 2) allele; b4, P2 allele and P1 allele, b5, P2 allele and P2 al-

lele, for the first and second SNPs, respectively. One combination of

alleles (P1–P1) is not included to escape multicollinearity

(Supplementary Table S2a). Qi; S1;2 are the n-dimensional genotype

vectors of 1 and 0 s for each QTL and the two selected SNPs. E1�3

are n-dimensional vectors with 1 s for samples with the specific

combination of alleles of selected SNPs and 0 s for the rest. e is an n-

vector of residual error and r2 is residual error variance.
Model1 only includes QTLs and two selected SNPs as the varia-

bles. In Model2, we also incorporated the variables of epistasis

effects between the two selected SNPs. We compared Model1 and

Model2 based on the Bayes factor. The Bayes factor is a ratio of the

marginal likelihoods of the two models of hypotheses. To mea-

sure the better fit of Model2 as compared to Model1, we use the

Bayes factor K given by:

K ¼ PrðyjModel2Þ
PrðyjModel1Þ

: (3)

PrðyjModelÞ is the probability that phenotypic data are produced
under the assumption of the Model. Bayes factor K > 1 means
Model2 (the model with epistasis) is more strongly supported by
the phenotype dataset than is Model1. We considered values of K
>100 as evidence of epistasis, following the interpretation table
(Jarosz and Wiley 2014).

We used the R package “BayesFactor” (Morey et al. 2018) to
compute Bayes factors by integrating the likelihood with respect
to the priors on parameters. We estimated Bayes factors based on
Monte Carlo sampling for the integration of parameters.
Equations ð1Þ and ð2Þ can be expressed as:

y ¼ lþ Xhþ e; e � N 0; r2I
� �

(4)

X is a n� r design matrix of genotypes for QTL or epistasis varia-
bles. h is a r� 1 vector of QTL and epistasis effects. r is the sum of
the number of QTLs and epistasis variables used in the model. In
Monte Carlo sampling, we specified the prior distribution of h fol-
lowing default settings of “BayesFactor” package and Liang et al.
(2008) as given by:

h � N 0; gr2ðXTX�1Þ
� �

; g � InverseGamma 1=2;
ffiffiffi
2
p

=8
� �

: (5)

The number of iterations to estimate the Bayes factor was
10,000. We applied these processes to a total of 17,573,556 combi-
nations of SNPs.

In our RIL population with 235 lines, the average frequency of
heterozygous genotypes at SNPs was around 4.6%. Therefore, the
number of RILs with combinations of SNPs with heterozygous
genotypes is very small, which makes it impractical to address
the importance of epistasis involving heterozygous SNPs.
Therefore, we focused on identifying interactions of homozygous
genotypes and did not consider RILs with heterozygous genotypes
at the selected SNPs.

However, the omission of samples with heterozygous geno-
types may limit the application of the method to only highly in-
bred RILs. In addition, heterozygous genotypes could cause
heterosis of certain traits. To account for these considerations,

Figure 1 Variation in seed hull color and chlorophyll content among the RILs and the distribution of phenotypic values. (A) Seed hull color: in the
histogram, the x-axis shows the range of phenotypic values (y-values in CIE XYZ color space). The top panel shows representative images of seeds in
each range of the phenotypic values. (B) Leaf chlorophyll content: in the histogram, the x-axis shows the range of phenotypic values (mean SPAD
values). In (A) and (B), the y-axis shows the number of RILs with phenotypic values in each range.
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we developed a more generalized method of epistasis detection
that can be applicable to heterozygous genotypes as well, which
is given in Supplementary information.

To identify the SNPs corresponding to major QTLs and include
them in our linear models, we used a GWAS approach based on
the mixed linear model (Yu et al. 2006). We used the R package
“GWASpoly” (Rosyara et al. 2016) to identify genomic regions that
show a significant association with the phenotypic effect. Then,
we selected an SNP with the largest values of –log10 (p) as the rep-
resentative SNP for the QTL. These selected SNPs were included
in Model1 and Model2 as the major QTLs.

We developed a program called “RIL-StEp” that performs the
GWAS process and calculates Bayes factors for SNP combina-
tions. The source code and detailed usage instructions of RIL-
StEp are freely available from GitHub (https://github.com/
slt666666/RILStEp) under MIT license.

Data availability
The genotype dataset, seed images of RILs, and supporting infor-
mation (Supplementary Figures, Tables, Information) were de-
posited in Zenodo (10.5281/zenodo.4686057). All other relevant
data are within the paper and the Supplementary files. RIL-StEp
package source codes and a user manual are freely available
through GitHub (https://github.com/slt666666/RILStEp) under
MIT license. The scripts used in the phenotyping process are also
deposited in GitHub (https://github.com/slt666666/Phenotyping_
RILStEp).

Results
Rice seed hull color is not controlled by a single
gene
To quantify rice seed hull color, we converted the color to nu-
meric values based on the CIE XYZ color space. We then mea-
sured color values of the F9 generation seeds of 235 RILs derived
from a cross between the rice cultivar Hitomebore (japonica type)
and Kaluheenati (aus type). Seed hull color of RILs showed a gra-
dation and was not categorized into the two discrete parental
phenotypes, beige and black for Hitomebore and Kaluheenati,
respectively (Figure 1, Supplementary Table S1). Frequency distri-
bution of seed hull color values of the 235 RILs was skewed
toward the higher phenotypic value (Figure 1); approximately
one-third of RILs had whitish brown seeds (the higher phenotypic
values) whereas the rest had darker brown seeds (the lower phe-
notypic values). From these data, we conclude that seed hull
color is not controlled by a single gene. However, the phenotype
was skewed toward higher values, and we hypothesized that
significant nonadditive gene effects such as epistasis may be
involved.

QTL analysis of seed hull color
We first carried out conventional QTL analysis to identify SNPs to
be included in the RIL-StEp models. Between the genomes of the
two parents Hitomebore and Kaluheenati, we identified a total of
1,046,779 SNPs. We selected one SNP per 5-kb interval and used
59,287 SNPs for subsequent QTL analysis and RIL-StEp. QTL
analysis was carried out using 235 RILs by an R package
“GWASpoly” (Rosyara et al. 2016) to detect SNPs associated with
seed hull color. We found three genomic regions showing statisti-
cal significance, i.e., �log10ðpÞ > 3 as well as FDR (false discovery
rate) <0.05, on chromosomes 4 and 9 (Figure 2, Supplementary
Table S3). Then, we selected three SNPs showing the highest
�log10ðpÞ values in each region. These SNPs were located on

chr04:23121877, chr04:33353823, and chr09:6953870. We incorpo-
rated these three SNP values into the RIL-StEp models as the QTL
variables.

To study the effect of these three loci, we examined the effects
of their genotype on the phenotype. When the SNP located on
chr04:23121877 had the Kaluheenati genotype, phenotype values
tended to be lower (Supplementary Figure S3A). The SNPs located
on chr04:33353823 and chr09:6953870 showed a similar tendency
(Supplementary Figure S3, B and C). Thus, Kaluheenati alleles of
the genes located in the three QTLs result in darker seed hull
color.

Application of RIL-StEp to rice seed hull color
We used RIL-StEp to detect SNP pairs showing significant genetic
interactions in rice seed hull color. In this analysis, we incorpo-
rated the three major QTLs on chromosomes 4 and 9 (Figure 2).
To detect epistatic loci, we first selected 1 of every 10 SNPs out of
59,287 SNPs across the genome, resulting in 5929 SNPs. We ap-
plied RIL-StEp to all pairs of the 5929 SNPs. After calculating the
Bayes factors for SNP pairs (Supplementary Table S4), we focused
on the genomic regions with SNP combinations showing Bayes
factor values >100. After establishing approximate positions of
the loci showing possible epistasis, we applied RIL-StEp again
to all combinations of SNPs in the two regions (Figure 3,
Supplementary Table S5). We identified two combinations of
two genomic regions, Combination 1 and Combination 2, as the
candidate regions showing epistatic interactions (Figure 3).
Two genomic regions of Combination 1 matched the positions
of the SNPs detected by QTL analysis (chr04:23121877 and
chr04:33353823) (Figure 2). SNP pairs between these regions
showed large Bayes factor values. The highest Bayes factor value
(K) was 77652 for Combination 1 and 281 for Combination 2
(Figure 3, Supplementary Table S5).

We hypothesized that the genes located in these two regions
are interacting with each other. To test this hypothesis, we se-
lected SNP pairs with the highest Bayes factors and plotted the
phenotype values for the combination of genotypes for the SNP
pair considering the genotypes at the significant QTL located on
chr09:6953870 as detected by QTL analysis. Combination 1
showed a clear epistasis effect (Figure 4). When the genotypes at
SNPs located on chr04:23034736 and chr04:32487760 are both

Figure 2 Quantitative trait locus analysis of rice seed hull color.
Manhattan plot showing the significant association of SNPs with seed
hull color phenotype as calculated by GWASpoly (Rosyara et al. 2016).
The y-axis shows the –log10 (p) value of each SNP. The x-axis shows the
genomic position. The blue dashed line indicates the significance, i.e., –
log10 (p) > 3. The value corresponding to FDR <0.05 is given in gray
dashed line. Only SNPs located near chr04:23121877, chr04:33353823,
and chr09:6953870 exceeded the threshold P< 0.001 and FDR <0.05.
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Kaluheenati types, the phenotype values tend to be low. On the

other hand, if the genotypes are in other combinations, the color

values were higher and similar to each other (Figure 4). This

result suggested that both these regions would need to be

Kaluheenati types to make seed hull color black. We assumed

that two genes located close to these SNPs function together to

determine the seed hull color. In Combination 2, when the

genotype combinations of chr01:30449415 and chr03:2749620 are

Kaluheenati–Hitomebore or Hitomebore–Kaluheenati types, the

phenotypic values tend to be higher than the parental

combinations (Supplementary Figure S4). However, the epistatic

relationship was not clear because the number of RILs showing

the Kaluheenati type at SNPs on chr01:30449415 was small.

Therefore, we focused on Combination 1 for further analysis.

Identifying candidate genes involved in seed hull
color epistasis
We surveyed genes located in the two regions as detected by

RIL-StEp and tried to identify genes that may affect seed hull color.

The region chr04:22212075–26590045 contained Black Hull 4 (BH4:

Figure 3 Heatmap showing Bayes factors for combinations of SNPs as revealed by RIL-StEp for rice hull color. The left heatmap shows the Bayes factors
of SNP combinations over the whole genome. In Combination 1 (chr04:22212075–26590045 � chr04:30718147–34310190) and Combination 2
(chr01:30334348–31519089 � chr03:2401129–3212328), Bayes factors of combinations of SNPs located between two regions were >100. Positions of
major QTLs are indicated by green triangles. The right heatmap magnifies genomic regions that potentially include epistatic genes. Names of candidate
genes possibly involved in the epistasis are indicated by red color.

Figure 4 Relationships between rice seed hull color phenotypes and genotypes of the three loci. A boxplot showing the phenotypic values of RILs with
different combinations of genotypes at SNPs on chr04:23034736, chr04:32487760, and chr09:6953870. The horizontal line inside each box represents
median value. Box range is the first and third quantile. The whisker extends to last datum less than the third quantile þ 1.5*interquartile range (IQR)
and the first datum greater than the first quantile—1.5*IQR. The x-axis shows the combinations of genotypes. The y-axis shows phenotypic values.
When SNPs on chr04:23034736 and chr04:32487760 both have Kaluheenati genotypes, phenotypic values tended to be low (indicated by red circles and
red characters), whereas in other combinations, the values were higher and similar.

T. Sakai et al. | 5



chr04:22969845–22971859). In the region chr04:30718147–34310190,
we identified Phenol reaction 1 (Phr1: chr04:31749141–31751604). Loss
of function of Bh4 changed the black hull phenotype of wild rice spe-
cies to white hull of cultivated rice (Zhu et al. 2011). Phr1 is associ-
ated with the phenol reaction (Yu et al. 2008). Brown hull color of
indica rice is caused by the presence of Phr1 (Yu et al. 2008). RIL-StEp
identified a pair of SNPs with a high Bayes factor (Figure 3), and two
genes located close to the SNPs control seed hull color. Therefore,
we hypothesized that these genes are the major factors epistatically
affecting seed hull color in our RILs.

We compared the nucleotide sequences of BH4 and Phr1 from
the parental cultivars Hitomebore and Kaluheenati used for gen-
erating the RILs. Kaluheenati had intact BH4 and Phr1 genes,
whereas Hitomebore had a 22-bp deletion in BH4 and an 18-bp
deletion in Phr1 (Supplementary Figure S5). These deletions are
identical to those reported in other japonica-type cultivars
(Fukuda et al. 2012) and were reported to cause loss of function in
the respective genes (Yu et al. 2008; Zhu et al. 2011). Thus, we con-
clude that BH4 and Phr1 function is maintained in Kaluheenati
but lost in Hitomebore.

Using a line crossed between the indica-type cultivar Habataki
and the japonica-type cultivar Arroz da Terra, Fukuda et al. (2012)
reported that both BH4 and Phr1 are necessary for maintaining
black hull phenotype. BH4 encodes a tyrosine transporter and
Phr1 encodes a polyphenol oxidase of the tyrosinase family (Yu
et al. 2008; Zhu et al. 2011). Tyrosine is converted by the tyrosinase
to melanin, the main black pigment (Riley 1997). We assumed
that BH4 is required for transportation of tyrosine and Phr1 for
melanin biosynthesis (Figure 5) and that the melanin biosynthe-
sis pathway does not operate if either of these genes does not
function. This line of thinking is consistent with the result that
seed hull color tends to be lighter when one of the two SNPs has
the Hitomebore genotype (Figure 4).

In addition, we surveyed genes located near the SNP
chr09:6953870 as identified by the QTL analysis to address its
contribution to seed hull color in combination with BH4 and Phr1.
We identified Inhibitor for brown furrows1 (IBF1) on chr09:6873236–
6874612. A previous study showed that ibf1 mutants of japonica-
and indica-type cultivars accumulate brown pigments during
seed maturation. Thus, IBF1 is a suppressor of brown pigment de-
position in rice hull furrows (Shao et al. 2012). We compared the
sequences of IBF1 in the two parental cultivars. Kaluheenati had
a 19-bp deletion in IBF1, whereas Hitomebore had an intact pro-
tein-coding region (Supplementary Figure S5). This result sug-
gests that the 19-bp deletion in Kaluheenati caused loss of
function of IBF1, preventing it from suppressing the accumula-
tion of brown pigmentation in rice hull furrows. This is in line
with the lower phenotypic value (brown color) of RILs with
Kaluheenati-type genotype around the IBF1 gene (Figure 4). IBF1
is involved in flavonoid biosynthesis (Shao et al. 2012).

The relationship between seed hull color and genotypes of the
three SNPs located near BH4, Phr1, and IBF1 showed that the ef-
fect of IBF1 is independent of that of BH4 and Phr1 (Figure 4).
Thus, the pathway involving BH4 and Phr1 and that of IBF1 proba-
bly function independently (Figure 5).

Phenotype variation of chlorophyll content in rice
RILs
We used the mean SPAD values to quantify leaf chlorophyll con-
tent. The phenotype values are distributed normally (Figure 1B).
Therefore, the chlorophyll content is likely controlled by multiple
genes.

QTL analysis of chlorophyll content
We carried out QTL analysis to identify SNPs to include in the
models of RIL-StEp and identified three genomic regions on chro-
mosomes 1, 3, and 7 that showed statistical significance, i.e., –
log10(p) >3 (Figure 6, Supplementary Table S6). Among them, only
the genomic region on chromosome 3 showed FDR <0.05.
However, in order to include all potential QTLs in consideration,
we selected the three SNPs showing the highest �log10ðpÞ values
in each region. These SNPs were located on chr01:5692791,
chr03:1376034, and chr07:25128206. We incorporated these three
SNP values into RIL-StEp models as the QTL variables. To study
the effect of these three loci, we examined the effects of their ge-
notype on the phenotype. When the SNP located on
chr01:5692791 has the Kaluheenati genotype, phenotype values
tended to be higher (Supplementary Figure S6A). The SNP located
on chr03:1376034 showed a similar tendency (Supplementary
Figure S6B), whereas the SNP located on chr07:25128206 showed
an opposite tendency (Supplementary Figure S6C).

Application of RIL-StEp to chlorophyll content
trait
We used RIL-StEp to detect SNP pairs showing significant genetic
interactions in leaf chlorophyll content. We incorporated three
potential QTLs on chromosomes 1, 3, and 7 (Figure 6). As with the
grain color, we first identified combinations of genomic regions
showing Bayes factor values >100 after considering 1 SNP every
10 SNPs (Supplementary Table S7). Subsequently, we applied RIL-
StEp again to the combinations of all SNPs in the identified
regions (Figure 7, Supplementary Table S5). We identified five
combinations of genomic regions as candidate epistatic interac-
tions (Figure 7, Supplementary Table S5). The highest Bayes fac-
tor (K) value was 9226 for Combination 1, followed by 857 for
Combination 2, 299 for Combination 3, 190 for Combination 4,
and 186 for Combination 5 (Figure 7, Supplementary Table S5).
One of the genomic regions of Combination 5 matched the posi-
tion of the SNP detected by QTL analysis (chr01:5692791)
(Figure 7). The other regions detected by RIL-StEp did not corre-
spond to the major QTLs. Thus, we hypothesized that genes lo-
cated in the respective regions interact with each other. To test
this hypothesis, we selected SNP pairs with the highest Bayes fac-
tors and plotted the phenotype values for the combination of
genotypes for the SNP pair taking QTL genotypes in consider-
ation. All combinations showed clear epistasis effect (Figure 8,
Supplementary Figure S7).

When the genotype at SNPs located on chr06:24463185 is
Kaluheenati type and that of chr09:18306488 is Hitomebore type
(Combination 1), the phenotype values tend to be high (Figure 8).
This tendency is pronounced when the genotypes of the QTLs (on
chromosomes 1 and 3) are Kaluheenati type (Figure 8,
Supplementary Figure S7A). This result suggested that the combi-
nation of Kaluheenati (chr06)-Hitomebore (chr09) genotypes of
the two epistatic regions (Combination 1) with Kaluheenati-type
alleles of the two QTLs on chromosomes 1 and 3 produces greater
leaf chlorophyll content. The phenotypes of other combinations
(Combinations 2–5) are summarized in Supplementary Figure S7
and Table S8A. We hypothesize that the genes located close to
the SNP pair of each combination may function together to influ-
ence leaf chlorophyll content.

We surveyed genes located in the five combinations of geno-
mic regions showing epistasis as detected by RIL-StEp and tried
to identify candidate genes that may affect leaf chlorophyll con-
tent. Results are summarized in Supplementary Figure S8 and
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Table S8B. In most cases, the candidate genes differed between
the parents Hitomebore and Kaluheenati by indels in the 30 or 50

untranslated region or by base substitutions in the coding
regions, so that their effects were not obvious. In Combination 4,
we found a gene encoding leaf-type FNRs (OsLFNR2:
chr06:479261–481572) in the region chr06:400132–495498
(Supplementary Figure S8E). Overexpression of OsLFNR2 in
Arabidopsis led to low chlorophyll content caused by impairment
of photosynthetic electron transport around photosystem I
(Higuchi-Takeuchi et al. 2011). Sequence comparison of OsLFNR2
genes showed Hitomebore had an intact OsLFNR2, whereas

Kaluheenati had a 10-bp deletion in the exon region
(Supplementary Figure S8E), which may lead to loss of function.
We hypothesize that there is a previously unreported gene lo-
cated on chr11:16691276–17670071 that interacts with OsLFNR2
to control chlorophyll content. Future study will reveal the genes
involved in the observed epistasis.

Discussion
In this study, we describe a new approach called RIL-StEp for
detecting epistatic relationships of genes. This approach is

Figure 5 Simplified scheme of the pathways related to rice seed hull color as hypothesized in the present study. This figure summarizes the biological
functions of BH4, Phr1, and IBF1 in rice seed hull color. BH4 encodes a tyrosine transporter (Zhu et al. 2011) and Phr1 encodes a polyphenol oxidase (Yu
et al. 2008). These genes are related to melanin biosynthesis pathway. IBF1 inhibits flavonoid biosynthesis as a suppressor (Shao et al. 2012). Thick black
arrows indicate biosynthesis pathways of pigments and thin black arrows indicate genes and proteins involved in their synthesis.
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specialized to RIL populations and based on Bayes factors for
comparison of simple linear models. Using RIL-StEp, we success-
fully detected pairs of genomic regions showing epistasis that
affect seed hull color and leaf chlorophyll content.

We identified a combination of genomic regions that showed
an epistatic effect on seed hull color and a QTL region that
showed an independent effect. The difference in seed hull color
between the two parental lines is most likely controlled by the
genes linked to the three identified regions. Among the three
regions, two seem to interact with each other as revealed by
RIL-StEp. Seed hull color exhibited a gradual change and the

distribution of color values was skewed to the higher end depend-
ing on the genotypes of these genes (Figures 1A and 4). This result
suggested that RIL-StEp succeeded in identifying epistatic gene
loci. However, these three loci were detected by GWAS even with-
out considering epistasis (Figure 2). Therefore, when addressing
traits that are controlled by a small number of loci (e.g., two or
three loci), it may be sufficient to evaluate the presence of epista-
sis only among the QTLs identified by GWAS (Laurie et al. 2014).

As another example, RIL-StEp identified five combinations of
genomic regions that showed epistasis on the chlorophyll con-
tent. These regions did not overlap the QTL as detected by GWAS,
except for in one region. This result suggests RIL-StEp has the po-
tential to identify genomic regions involved in epistasis that were
not detected by GWAS. SPAD values reflecting chlorophyll con-
tent were distributed normally (Figure 1B), indicating that the
trait is controlled by multiple genes. Thus, RIL-StEp has the
potential to elucidate the epistatic genetic architecture of traits
that are controlled by multiple genes.

An advantage of RIL-StEp is its high interpretability as com-
pared to other approaches that consider many variables at once.
Our model includes as variables only significant QTLs and the
effects of two SNPs and their epistasis at a time. Thus, the results
of our model can be easily validated by plotting a graph of effects
of epistasis of two SNPs, taking into account the major QTL effect
(Figures 4 and 8, Supplementary Figure S7). In addition, our
model has low complexity, circumventing problems of overfitting
that are inherent in the complex model. Thus, our model avoids
the failure in detecting epistasis due to the local optimality prob-
lem. Therefore, RIL-StEp is a suitable option for detecting epista-
sis in any traits when RILs are used. Our approach adopted Bayes
factors, which can incorporate prior assumption on the effect of
each genetic variant (Wakefield 2009; Runcie and Crawford 2019).
Although we specified prior distribution according to a previous
report (Liang et al. 2008), our approach is capable of incorporating

Figure 6 Quantitative trait locus analysis of leaf chlorophyll content. A
Manhattan plot showing the significant association of SNPs with leaf
chlorophyll content as calculated by GWASpoly (Rosyara et al. 2016). The
y-axis shows the –log10(p) value of each SNP. The x-axis shows the
genomic position. Blue dashed line indicates the significance, i.e., –
log10(p) >3. The value corresponding to FDR <0.05 is given in gray dashed
line. SNPs located near chr01:5692791, chr03:1376034, and
chr07:25128206 exceeded the threshold (P< 0.001) and only SNPs close to
chr03:1376034 exceeded FDR <0.05.

Figure 7 Heatmap showing Bayes factors for combinations of SNPs as revealed by RIL-StEp for mean SPAD value. The left heatmap shows the Bayes
factors of SNP combinations over the whole genome. In Combination 1 (chr06:24053623–26700388 � chr09:16870158–20228711), Combination 2
(chr03:6283299–10572916 � chr06:2563469–3937767), Combination 3 (chr09:10799441–12292861� chr10:2896894–10329230), Combination 4
(chr06:400132–495498 � chr11:16691276–17670071), and Combination 5 (chr01:5005036–5346178 � chr03:3956604–4008211), Bayes factors of
combinations of SNPs located between two regions were >100 (indicated by red squares). Positions of major QTLs are indicated by green triangles. The
right heatmap magnifies genomic regions with a candidate gene OsLFNR2 potentially involved in the epistasis of Combination 4.
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any prior assumptions such as spike and slab prior and MIXTURE
model (Ishwaran and Rao 2005; Luan et al. 2009).

A disadvantage of our approach is the difficulty in detecting
higher-order (e.g., more than three loci) epistatic relationships.
Detecting high-order relationships using our exhaustive ap-
proach increases computational cost explosively and decreases
the interpretability of the models (Taylor and Ehrenreich 2015).
Therefore, the nonexhaustive approach may be more appropriate
to identify high-order epistasis. Our approach attempted to iden-
tify interacting SNP pairs based on the comparison of two models
with and without an epistasis effect, and it may reveal false posi-
tives, but we prioritized avoiding false negatives caused by local
optimality. In addition, the simplicity of our model possibly leads

to an underfitting problem such that the model is not able to fully
explain the relationship between phenotype and genotype.
Therefore, our model is not appropriate for the purpose of precise
genomic prediction. For genomic prediction, more complex mod-
els or nonexhaustive approaches that consider whole genotypic
information would be better options (Azodi et al. 2019).

We succeeded in identifying genomic regions that show epis-
tasis. We used K> 100 as the threshold of candidate epistatic
regions, following the interpretation table (Jarosz and Wiley
2014). In our study, we identified seven combinations of genomic
regions that had high Bayes factor values (K¼ 186–77652). Six of
them showed epistasis effects (Figures 4 and 8, Supplementary
Figure S7). It was difficult to interpret the epistatic relationship in

Figure 8 Relationships between leaf chlorophyll content phenotypes and genotypes of the epistatic loci of Combination 1. Top boxplot shows the
phenotypic values of RILs with different combinations of genotypes at SNPs on chr06:24463185 and chr09:18306488. The horizontal line inside each box
represents median value. Box range is the first and third quantile. The whisker extends to last datum less than the third quantile þ 1.5*interquartile
range (IQR) and the first datum greater than the first quantile—1.5*IQR. The x-axis shows the combinations of genotypes. The y-axis shows phenotypic
values. Bottom boxplots show the phenotypic values of RILs with different combinations of genotypes of epistatic loci and QTLs. When the genotype at
the SNPs on chr06:24463185 is Kaluheenati and on chr09:18306488 is Hitomebore, phenotypic values tended to be high (indicated by red circles and red
characters).
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one combination (Combination 2 of seed hull color trait: K¼ 281)

due to the biased distribution of genotypes of this combination

(Supplementary Figure S4). Therefore, we believe the threshold of

K> 100 may be appropriate to detect candidate epistatic genomic

regions in most cases. However, spurious epistasis may be possi-

bly identified due to the bias of genotypes in a population, and

careful validation is needed to conclude the epistatic effect of

candidate loci. The identified regions may contain multiple

genes, and we could not specify the responsible genes by genetic

analysis alone. A challenge of GWAS is to bridge the gap between

the identification of the genomic regions and of the causative

genes responsible for the phenotype (Gallagher and Chen-Plotkin

2018). Using more RILs and applying a stricter threshold in the

epistasis analysis should make it possible to pin down a much

smaller genomic region. However, applying a stricter threshold

has a risk of missing true positives. Indeed, the genomic regions

of the interacting gene pair BH4 and Phr1 were not in the regions

that showed the highest Bayes factor values (Figure 3). It is chal-

lenging to strike the appropriate balance between controlling for

type I and type II errors (Todorov and Rao 1997). Identifying genes

using only statistical significance thresholds is usually not possi-

ble and not appropriate.
Here, we successfully specified strong candidate genes presum-

ably controlling the seed hull phenotype using knowledge about

the candidate genes and the sequence analysis. However, this ap-

proach may not be applicable in every case. There may be several

approaches to validate the epistatic relationship between the

genes, such as co-expression analysis to explore genes in the same

biological processes (Aoki et al. 2007; Mao and Chen 2012; van Dam

et al. 2018) or eQTL analysis to identify genetic variants regulated

by specific genes (Gilad et al. 2008; Feltus 2014). Combining infor-

mation from other sources of evidence with RIL-StEp results may

enhance our capability to identify interacting genes.
To summarize, we propose a novel approach based on simple

linear models to detect epistatic interactions underlying quanti-

tative traits in the RIL population. By applying RIL-StEp, we suc-

ceeded in identifying genomic regions related to rice seed hull

color and chlorophyll content. Incorporating additional informa-

tion allowed us to identify candidate genes involved in seed hull

color. Thus, our approach has the potential to identify epistasis

in various biological traits.
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