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A B S T R A C T   

The COVID-19 pandemic has induced large-scale behavioral changes, presenting a unique opportunity to study 
how air pollution is affected by societal shifts. At 455 PM2.5 monitoring sites across the United States, we conduct 
a causal inference analysis to determine the impacts of COVID-19 lockdowns on PM2.5. Our approach allows for 
rigorous confounding adjustment with highly spatio-temporally resolved effect estimates. We find that, with the 
exception of the Southwest, most of the US experienced increases in PM2.5 compared to concentrations expected 
under business-as-usual. To investigate possible drivers of this phenomenon, we use a regression model to 
characterize the relationship of various factors with the observed impacts. Our findings have immense envi
ronmental policy relevance, suggesting that mobility reductions alone may be insufficient to substantially and 
uniformly reduce PM2.5.   

1. Introduction 

Acute widespread social, behavioral, and economic changes have 
occurred across the United States (US) in the wake of the COVID-19 
pandemic. Most notably, mobility levels decreased substantially (Badr 
et al., 2020; Jacobsen and Jacobsen, 2020; Lasry et al., 2020) nation
wide during the initial “lockdown period” in March and April 2020 as a 
result of changes in human behavior and other nonpharmaceutical in
terventions, such as government-imposed stay-at-home orders, in 
response to the rapid spread of the virus. The unprecedented actions 
taken to curb the spread of COVID-19 have created a unique “qua
si-experiment” that can be leveraged to study the effect of large-scale 
behavioral change on air quality. 

Exposure to fine particle matter, PM2.5, has been shown to have 
significant adverse health effects, including respiratory and cardiovas
cular morbidity and mortality (Dominici et al., 2006; Pope, 2000; Xing 
et al., 2016). To create effective policy to limit PM2.5 exposure, it is 
crucial to understand the impact of reductions in certain 
emission-generating human behaviors on ambient concentrations. 
Studies of other, smaller scale quasi-experiments have provided some of 
the strongest evidence for the health impacts of air pollution and 
effective reduction strategies, e.g., the ban of bituminous coal in Dublin 
(Clancy et al., 2002), restrictions on transportation and industrial 

activities during the 1996 Atlanta (Friedman, 2001) and 2008 Beijing 
Olympic Games (Hou et al., 2010; Li et al., 2010). 

A review of literature on the impacts of COVID-19 lockdowns on 
urban air pollution by Gkatzelis et al. (2021) identifies more than 200 
published papers on the topic; however, the overwhelming majority of 
these studies were not conducted in the US. Among those that are 
US-focused, most have studied lockdown effects on air quality using data 
from a single or a few monitors (Chen et al., 2020) or using nationwide 
and/or statewide averages of monitored values (Shakoor et al., 2020). 
However, due to the vast differences across space in source-specific 
contributions to PM2.5, the crudeness of these aggregated analyses 
limits their policy relevance. Several studies also utilize chemical 
transport models in their analyses (Barré et al., 2021; Menut et al., 2020; 
Putaud et al., 2021), though these approaches make a number of as
sumptions that may not hold in practice. In our study, we estimate the 
effects of the lockdown on observed PM2.5 concentrations at each of 455 
individual monitors in the Environmental Protection Agency (EPA) 
monitoring network located throughout the contiguous US. The high 
spatial resolution of our effect estimates, along with their basis in 
empirical data, provides more specific policy insights and enables 
deeper investigation into the factors influencing lockdown-related 
changes in PM2.5. 

While a monitor-level analysis of lockdown effects in the US has been 
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published (Archer et al., 2020), our study aims to produce more robust 
effect estimates by employing causal inference methods. Even in the 
context of quasi-experimental conditions, isolating the effects of 
COVID-19 interventions on air pollution in general cannot be achieved 
through simple before-and-after comparisons, nor comparison to con
centrations in the previous year(s), strategies that are used in much of 
the existing literature and oft-cited in news media. Numerous 
time-varying factors that influence air pollution levels, both observable 
and unobservable, are unaccounted for with such approaches, e.g., 
meteorology, year-to-year trends, and seasonality. For example, PM2.5 
levels have decreased 44% in the US since 2000 (U.S. Environmental 
Protection Agency, 2020c). In their review, Gkatzelis et al. (2021) note 
that much of the available literature on lockdowns and air quality does 
not account for year-to-year variability and other time-varying factors 
that have a significant effect on air pollution. In the only existing 
monitor-level analysis in the US, Archer et al. (2020) compare observed 
PM2.5 concentrations to 5-year monthly average reference concentra
tions. As a result, more rigorous approaches are needed to account for 
pollution trends and time-varying confounders as a means of truly 
characterizing the causal effects of pandemic-related behavioral 
changes. 

The aims of our study are best represented as a two-stage approach: 
first, we estimate the lockdown-attributable daily changes in PM2.5 
concentrations at 455 monitoring sites using a causal inference 
approach that can adjust for both observed and unobserved time- 
varying contributors to PM2.5. Formally, at each monitor, we estimate 
the PM2.5 concentrations that would have been expected each day in the 
absence of the COVID-19 pandemic and subsequent interventions (the 
“counterfactual”) and compare these to the corresponding observed 
levels at the monitor during the lockdown. Second, we use these effect 
estimates to identify environmental, geographical, mobility, and socio
economic factors that are associated with changes in PM2.5 during the 
lockdown. We also quantify the impact of these short-term PM2.5 
changes on respiratory and cardiovascular disease hospitalizations using 
the EPA’s Core Particulate Matter Health Impact Functions. 

2. Materials and methods 

All data preparation and analyses are conducted in R statistical 
software version 4.0.2. 

For consistency, we define the “lockdown period” for each ground 
monitor site as beginning on the declared state of emergency for the 
corresponding contiguous US state (or District of Columbia) and ending 
on the earlier of either April 30, 2020 or on the day businesses began to 
reopen in that state (Raifman et al., 2020). The state-level lockdown 
period dates used throughout this study are given in Appendix 
Table A.1. Daily average PM2.5 concentrations between 2010 and 2019 
from 1,580 monitor sites in the continental US are obtained from the 
EPA Air Quality System (AQS) (U.S. Environmental Protection Agency, 
2020a). For 2020, daily average PM2.5 concentrations are obtained from 
the EPA AirNow system (U.S. Environmental Protection Agency, 2020a), 
where monitor data are made available prior to their integration into 
AQS, which occurs approximately twice per year. Daily meteorological 
factors (total precipitation, maximum temperature, maximum relative 
humidity, wind speed, and wind direction), day of the week, and season 
are obtained from Google Earth Engine (Gorelick et al., 2017), aggre
gated to the county level (for meteorology), and merged by county and 
day with the monitor-level PM2.5 data. Because some monitors have 
prohibitive amounts of missing PM2.5 measurements, we set inclusion 
criteria to select the monitors with sufficient data to establish the time 
trends needed for our analyses. Starting with 1,580 monitor sites with 
PM2.5 measurements between 2010–2020, we remove monitors (1) with 
no PM2.5 measurements during the defined lockdown period for their 
respective state, roughly mid-March to late-April of 2020 (918 moni
tors); (2) with less than 30 days of data during the lockdown period (23 
monitors); (3) with no data prior to 2016 (117 monitors); or (4) with 

data entirely missing for five or more total years 2010–2019 (67 mon
itors). After applying these exclusion criteria, 455 monitors remain to be 
used in our analyses. 

In our analysis, we rely solely on observed PM2.5 concentrations from 
ground monitors. Our goal is to estimate the daily PM2.5 concentrations 
that would have been expected at each monitoring site during the 
lockdown period under a business-as-usual scenario (i.e., without the 
lockdowns or the non-mandated personal behavioral changes that took 
place due to COVID-19 during the same period). Hereafter we refer to 
these as the “counterfactual PM2.5 concentrations”. As a result of long- 
term, seasonal and daily trends in PM2.5, complex meteorological vari
ability, and other potential unobserved confounding factors, PM2.5 
concentrations from a single previous year cannot be directly utilized to 
infer the counterfactual PM2.5 concentrations, nor can a simple average 
of PM2.5 concentrations over multiple years of historical data. We 
therefore use a causal inference approach often referred to as the 
“synthetic control method” (SCM) to estimate counterfactual PM2.5 
concentrations (Abadie et al., 2010; Athey et al., 2020; Xu, 2017). 

SCM was created to analyze the effects of a policy or intervention on 
an outcome in the context of case studies. It leverages time series con
taining pre- and post-intervention outcome data from (1) a single unit 
that received an intervention (the “treated” unit) and (2) a set of control 
units that did not receive the intervention. Conceptually, using the pre- 
intervention data from both treated and control units, it creates a 
weighted average of the time series from the control units that best 
captures the pre-intervention trends in the time series for the treated 
unit. Then that same weighted average of the control units’ outcomes is 
used to estimate the outcome that would have been expected in the 
treated unit during the post-treatment period, in the absence of the 
intervention (the counterfactual outcome). This weighted average 
created by SCM is called a “synthetic control”. Formally, the optimal 
weights are identified by obtaining a latent factor representation of the 
multivariate time series data. SCM is flexible enough to account for both 
time-varying and time-invariant confounders of the intervention effect 
under mild assumptions. In addition, it accounts for any remaining pre- 
treatment missing data by imputation. Xu (2017) conducted a number of 
simulations demonstrating the superior performance of SCM over other 
commonly used estimators in quasi-experimental settings, such as the 
difference-in-differences estimator that is used in a number of studies of 
lockdown effects on air pollution (He et al., 2020; Liu et al., 2021). 

Adapting the SCM framework to our application, for a given monitor, 
we consider each year 2010–2020 to be a “unit”, and the time series of 
PM2.5 concentrations for each year (limited to months January-April) 
are the outcomes. 2020 is considered the treated unit and all other 
years are controls. Thus, SCM will create a weighted average of daily 
2010–2019 PM2.5 concentrations at that monitor, and use that weighted 
average to estimate the counterfactual daily PM2.5 concentrations dur
ing the lockdown period. The weights are selected to result in a synthetic 
2020 time series that provides the closest approximation of the 2020 
pre-lockdown observed time series of PM2.5 concentrations. 

To create a proper synthetic control, we must ensure that the time 
series from each year are aligned so that the day represented at a given 
position in the time series is comparable across years. Because PM2.5 
exhibits weekday and weekend trends that must be accounted for when 
creating the synthetic control, we align the time series based on day-of- 
week rather than day-of-year. In particular, we let the time series for 
each year start on the first Monday of the year, so that aligning entries in 
the time series represent the same day-of-week and only a few days 
difference in day-of-year. The values of the synthetic times series during 
the lockdown represent our best guess at what PM2.5 concentrations 
would have been under a “business-as-usual” scenario, simultaneously 
accounting for daily, seasonal, and long-term PM2.5 trends. 

We implement SCM separately on the data from each of the 455 
monitors using the gsynth package in R (Xu, 2017) with a matrix 
completion estimator (Athey et al., 2020). In addition to the default 
latent factor representation used by SCM, we include in the model fixed 
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effects for year and time series position and adjust for both weather 
(maximum temperature, maximum relative humidity, precipitation, 
wind speed, and wind direction) and seasonality (month of year) as 
time-varying covariates. At each monitor, we take the simple difference 
of the observed PM2.5 concentrations during the lockdown and the 
SCM-estimated counterfactual PM2.5 concentrations to obtain the 
lockdown-attributable changes in PM2.5 for each day. Cumulative esti
mates of lockdown-attributable changes in PM2.5 reported hereafter are 
averages of these daily effect estimates across all days in the lockdown 
period for the specified monitor. For consistency with the causal infer
ence literature, we refer to these estimates as “average treatment effects 
on the treated” (ATTs). 

Diagnostic plots are manually inspected for each monitor to assess 
SCM model fit. In addition, we conduct a formal evaluation of the ac
curacy of the SCM method relative to another commonly used approach 
for lockdown air quality effect estimation (Gkatzelis et al., 2021). First, 
we refit our SCM models for each monitor, removing all 2020 data and 
designating 2019 as a fabricated treated unit, and use SCM to predict 
PM2.5 concentrations in the 2019 post-treatment period (mid-March 
through the end of April to seasonally align with the 2020 lockdown 
period). As no major nationwide behavioral shifts occurred at this time 
in 2019, small differences between predicted and observed PM2.5 con
centrations indicate strong model performance. For comparison, for 
each monitor, we also created predictions of PM2.5 for the fabricated 
treated unit by taking a simple average of concentrations during the 
same period over the preceding 3 years (2016–2018), which is a 
commonly-used approach for performing these types of analyses. We 
compare both sets of predictions with the empirical PM2.5 concentra
tions observed in 2019, and we compute the root mean square error 
(RMSE) at each monitor. 

In the second stage of modeling, we use a linear regression model to 
identify features associated with the estimated lockdown-attributable 
changes in PM2.5. The effect of meteorological variables adjusted for 
in the first stage of modeling is first subtracted from the treatment effect 
estimates, to remove any influence of unusual meteorology on changes 
in PM2.5 during lockdown. Each monitor is then linked to a large set of 
features of the county it resides in. The units of analysis in this model are 
monitors, and the outcome in the regression model is the monitor-level 
estimated lockdown-attributable change in PM2.5. Features included as 
predictors in the model are: residential emissions, industrial processes 
emissions, industrial boiler emissions, dust emissions, agriculture 
emissions, mobile emissions, mobility change relative to baseline, so
cioeconomic and demographic variables (proportion of population age 
65+, racial composition, poverty rate, population density), urbanization 
level (classified into large central metro, large fringe metro, medium 
metro, and other), and US census-defined regions (Midwest, Northwest, 
South, and West). All features are obtained at the county-level and each 
monitor is assigned the features of the county in which it lies. De
scriptions of each variable and data sources are provided in Appendix 
Table A.2. 

Mobility change was measured relative to a February 2020 baseline 
and defined by quantifying the number of Bing tiles Facebook users are 
seen in during a day (Herdaǧdelen et al., 2020). Socioeconomic and 
demographic variables were taken from the 2018 5-year American 
Community Survey (U.S. Census Bureau, 2019). Data on sources of 
emissions were obtained from the EPA 2017 National Emissions In
ventory reports (U.S. Environmental Protection Agency, 2014; 2017). 
Urban-rural classifications are obtained from 2013 National Center for 
Health Statistics Urban-Rural Classification Scheme for Counties 
(Ingram and Franco, 2012) and large central metro is used as the 
reference variable in the model. Areas classified as smaller than “me
dium metro” are grouped into a variable called “other”. The Midwest 
Region is the reference variable in the model for region indicators. Co
efficient estimates and 95% confidence intervals are reported. 

We use exposure-response functions from the EPA’s Core Health 
Impact Functions for Particulate Matter and Hospital Admissions (U.S. 

Environmental Protection Agency, 2020b) to characterize associations 
between short-term PM2.5 exposure and (1) respiratory disease hospi
talization risk and (2) cardiovascular disease hospitalization risk (Bell, 
2012; Kloog et al., 2012). To estimate the health impacts of 
lockdown-attributable PM2.5 changes across the entire continental US, 
we first interpolate the estimated monitor-level PM2.5 changes to obtain 
an estimate for each county (including those without an included 
monitor). Inverse distance weighting is used to interpolate the estimated 
effects at the monitor sites to each county’s centroid, and the resulting 
interpolated values are treated as each county’s lockdown-attributable 
change in PM2.5. We insert each county’s PM2.5 changes into the 
pre-existing short-term exposure-response functions for each hospitali
zation type for individuals 65+ (a log-linear model with parameter es
timates taken from Kloog et al. (2012) and Bell (2012)) to obtain an 
estimate of its change in hospitalization incidence rate. Baseline inci
dence rates are calculated using a weighted average of hospitalization 
incidence rates for people age 65+ (3.352 respiratory hospitaliza
tions/100 people per year; 5.385 cardiovascular hospitalizations/100 
people per year). The change in incidence rate is then used to obtain the 
county’s absolute change in hospitalizations for each of the two health 
outcomes in people age 65+. These values are summed across each US 
census region and scaled to account for the number of days in the state’s 
lockdown period, i.e., the number of days of the specified change in 
PM2.5 exposure. We also estimate the changes in hospitalization inci
dence that would have occurred if these PM2.5 changes had been sus
tained for an entire year. 

3. Results and discussion 

For each ground monitor, we use SCM to estimate the “counterfac
tual PM2.5 concentrations” during the corresponding defined lockdown 
period, i.e., the daily concentrations that would have been expected 
during the 2020 lockdown period in the absence of the lockdown or any 
non-mandated personal behavioral changes that took place due to 
COVID-19 during same period. The counterfactual concentrations are 
then used to obtain the estimated lockdown-attributable changes in 
PM2.5 concentrations (ATTs) at each monitor. Fig. 1 maps the ATTs at 
each monitoring site as well as showing a smoothed map of these esti
mates, interpolated using inverse distance weighting. Negative ATT 
values, depicted in green, indicate that the location experienced a 
lockdown-attributable decrease in PM2.5 concentrations, while positive 
(orange/red) values represent lockdown-attributable increases. 

We find that, during the COVID-19 lockdowns, PM2.5 increased 
across most of the US compared to what would have been expected 
under a business-as-usual scenario. We henceforth refer to smaller 
lockdown-attributable increases or larger lockdown-attributable de
creases as “smaller increases”, and larger lockdown-attributable in
creases or smaller lockdown-attributable decreases as “larger increases”. 
The maps suggest that any lockdown-attributable decreases in PM2.5 are 
generally limited to areas of the Western and Southwestern United 
States. However, substantial lockdown-attributable increases were 
observed in much of the South, Midwest, and Pacific Northwest. Strat
ifying by US Census-defined regions, we find average region-wide in
creases of 1.19 µg/m3, 1.11 µg/m3, 1.94 µg/m3, and 0.80 µg/m3 for the 
Northeast, South, Midwest, and West, respectively. Over the entire 
country, we observe an average increase of 1.36 µg/m3 attributable to 
pandemic interventions. 

Monitor-level model fit plots indicate that the synthetic controls 
created by SCM are effectively capturing 2020 pre-lockdown PM2.5 
trends (Appendix Figure A.3). The results of our assessment of SCM 
predictive accuracy for 2019 are displayed in Appendix Figure A.1. The 
blue histogram shows the distribution of the monitor-level RMSEs for 
SCM predictions (gsynth) and the red histogram shows the monitor-level 
RMSEs for the historic 3-year averaging method. The lower RMSEs for 
SCM indicate improved predictive performance and better ability to 
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capture trends in PM2.5 relative to simple historic averaging. 
The formation of PM2.5 is known to be a very complex process– along 

with being directly emitted, much of it is formed secondarily in the at
mosphere from other pollutants. To better understand factors that may 
have contributed to the heterogeneity in lockdown-attributable PM2.5 
changes detected by our study (Fig. 1), we investigate associations be
tween the monitor-level effect estimates and the environmental, 
geographical, regional, meteorological, mobility, and socioeconomic 
conditions in the area surrounding the monitor. Using the estimated 
lockdown-attributable PM2.5 changes as the outcome, we fit a linear 
regression model. Using this model, we find that historic industrial 
boiler emissions and county population density have significant positive 
associations with lockdown-attributable increases in PM2.5, while a 
significant negative association was observed for relative mobility 
decrease, proportion of population age 65+, and the West region 
(relative to the reference region Midwest). In addition, relative to the 
most urban counties (reference group), all less urban county classifica
tions show significant positive associations with lockdown-attributable 
increases in PM2.5. A summary of model estimates is provided in Fig. 2. 

Although areas with larger decreases in mobility tended to experi
ence smaller increases in PM2.5, our results suggest that any positive air 
quality impacts of these large-scale mobility decreases were, on average, 
insufficient to offset other non-meteorological factors promoting PM2.5 
formation. Supporting this finding is Table 1, which shows the amount 

of PM2.5 emissions for each US Census region stratified by source (U.S. 
Environmental Protection Agency, 2014). Regions with historically 
higher emissions from stationary sources (i.e. fuel combustion sources 
such as power plants, solvents, agriculture, and other industrial pro
cesses) correspond to areas in which we found higher propensity for 
lockdown-attributable increases in PM2.5 during the lockdown. Addi
tionally, mobile sources have a comparatively much smaller impact on 
PM2.5 emissions (Table 1). 

We also investigate these lockdown-attributable PM2.5 changes 
relative to a “baseline” PM2.5 level prior to the pandemic. For each 
monitor site, we calculate the baseline as the average PM2.5 

Fig. 1. (Left) Monitor-level estimated average treatment effect on the treated (“ATT”), in µg/m3; i.e., the average PM2.5 change attributable to COVID-19 in
terventions over the lockdown period. (Right) ATTs (in µg/m3) smoothed across the US using inverse distance weighting. 

Fig. 2. Coefficient estimates and 95% confidence intervals from linear regression model.  

Table 1 
Sources of PM2.5 emissions by US Census region, in tons, with corresponding 
proportion of total regional PM2.5 emissions in parentheses from the EPA 2014 
National Emissions Inventory (U.S. Environmental Protection Agency, 2014).  

Type Northeast South Midwest West US Total 

Stationary 260,853 
(82.7%) 

1,181,440 
(60.9%) 

1,262,981 
(81.1%) 

568,122 
(42.4%) 

3,273,396 
(63.5%) 

Mobile 41,432 
(13.1%) 

129,699 
(6.9%) 

97,710 
(6.3%) 

64,945 
(4.9%) 

333,786 
(6.5%) 

Other 13,091 
(4.2%) 

629,734 
(32.4%) 

196,898 
(12.6%) 

705,595 
(52.7%) 

1,545,318 
(30.0%)  
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concentration observed in the month of April for 2017–2019. In a linear 
model, we find a nonsignificant, negative association (-0.076, 95% CI 
[-0.165, 0.014]) between baseline PM2.5 and the estimated lockdown- 
attributable changes in PM2.5. 

Additionally, we assess the sensitivity of our findings to a 1–2 day 
spike in PM2.5 of unknown origin that we observed during the lockdown 
period for many monitors in the Midwest. To do so, we identify and 
remove these outlier days, defined as days on which PM2.5 levels spiked 
to 35 μg/m3 or higher, from our ATT estimates for all monitors. How
ever, the removal of these outliers did not significantly affect the results 
(see Appendix Figure A.2). 

We calculate the expected impacts of the estimated lockdown- 
attributable changes in PM2.5 on respiratory and cardiovascular dis
ease hospitalizations in the age 65+ population for each county in the 
US, using the EPA’s Core Health Impact Functions for Particulate Matter 
(U.S. Environmental Protection Agency, 2020b). We sum these changes 
across counties within each US region to obtain the results displayed in 
Table 2. The values in Table 2 are thus estimates of the net change in 
hospitalizations over the given US Census region which would be ex
pected due to our previously estimated lockdown-attributable PM2.5 
changes. For example, we estimate that there was a net increase of 83 
respiratory disease hospitalizations over the entire Midwest region 
during the lockdown period, and a net decease of 14 respiratory disease 
hospitalizations over the West region during the same time period. As a 
reference, estimated baseline hospitalizations are given in Appendix 
Table A.3. However, we acknowledge that the usage of these 
dose-response functions cannot not fully characterize the complexity 
involved in estimating the health effects of PM2.5 and that such usage 
requires a number of simplifying assumptions. Although they are not 
estimated from empirical health data and involve strong assumptions, 
health impact estimates from dose-response functions are commonly 
considered in the environmental policy/cost-benefit analysis context, 
which motivates their inclusion here. These estimates are small relative 
to the overall PM2.5 burden in the US (Murray et al., 2020), as expected 
given the short time-scale and the varying directions of the PM2.5 
changes. 

There are a number of limitations of our study. First, due to sporadic 
data collection at certain monitor sites, there is a considerable amount of 
missing PM2.5 data, particularly in prior years that are used to establish 
expected PM2.5 in the absence of the lockdown. However, much of the 
missingness is by-design due to EPA monitoring procedures, and we 
have set fairly stringent monitor inclusion criteria for our analyses to 
ensure that observed data are sufficient to capture important trends. In 
addition, our models are flexible enough to account for some missing 
data and we have visually inspected our results to ensure suitable model 
fit pre-lockdown (Appendix Figure A.3) as well as conducted a formal 
evaluation demonstrating the predictive accuracy of our model as 
described in the Methods (Appendix Figure A.1). Furthermore, the 
heterogeneity of lockdown procedures, stringency, and adherence to 
advisories creates difficulty in a clear definition of the lockdown period. 
However, the time period we have defined was the period of the most 
acute lockdowns and we have further mitigated this issue by using 
consistent criteria for each state. 

Additionally, we note that total PM2.5 is only one aspect of air 
pollution that is relevant to human health. While we report lockdown- 
attributable increases in total PM2.5 concentrations in many areas of 
the US, lockdown-attributable decreases in other pollutants such as NO2 
and in certain PM2.5 components, as found in other studies (Berman and 
Ebisu, 2020; Chen et al., 2020), demonstrate that reductions in 
mobile-source emissions were effective in decreasing certain other 
hazardous pollutants. The scope of this study also does not examine the 
changes in overall emissions during lockdown compared to 
business-as-usual; rather, we investigate the relationship between an 
area’s historical emissions and their estimated changes in PM2.5 during 
lockdown. Future work will include investigation of changes in 

emissions due to lockdowns and the downstream effects on air pollution. 
Our study has found that the impacts of the 2020 COVID-19 lock

downs on PM2.5 levels vary dramatically across the US, with strong 
regional trends. In the Midwestern and Southern regions, we unex
pectedly observe consistent increases in PM2.5 compared to expected 
levels absent the lockdowns, while some areas in the Southwest expe
rienced substantial decreases. One possible reason for this result is that 
PM2.5 in the US is mostly attributed to industrial processes, electricity 
generation, and dust (Chen et al., 2020), which may have been mini
mally affected by the COVID-19 lockdowns. This is consistent with the 
results of several other studies in the US (Archer et al., 2020; Bekbulat 
et al., 2021; Berman and Ebisu, 2020; Chen et al., 2020) which find 
either no change or increases in PM2.5 over the lockdown period. The 
reasons behind these trends are undoubtedly intricate given the complex 
nature of PM2.5 formation and a full investigation of these reasons is 
beyond the scope of this paper. 

The results of this important quasi-experiment provide evidence that 
policies to limit individual-level emissions-generating behaviors like 
mobility may not, alone, reduce total PM2.5 levels, particularly in certain 
regions and when accompanied by other social and economic changes. 
Reduction of emissions from stationary sources may be necessary to 
meaningfully and uniformly reduce PM2.5 and improve human health. 
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