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Abstract

Many single-cell sequencing technologies are now available, but it is still difficult to apply

multiple sequencing technologies to the same single cell. In this paper, we propose an

unsupervised manifold alignment algorithm, MMD-MA, for integrating multiple measurements

carried out on disjoint aliquots of a given population of cells. Effectively, MMD-MA performs an

in silico co-assay by embedding cells measured in different ways into a learned latent space. In the

MMD-MA algorithm, single-cell data points from multiple domains are aligned by optimizing an

objective function with three components: (1) a maximum mean discrepancy (MMD) term to

encourage the differently measured points to have similar distributions in the latent space, (2) a

distortion term to preserve the structure of the data between the input space and the latent space,

and (3) a penalty term to avoid collapse to a trivial solution. Notably, MMD-MA does not require

any correspondence information across data modalities, either between the cells or between the

features. Furthermore, MMD-MA’s weak distributional requirements for the domains to be

aligned allow the algorithm to integrate heterogeneous types of single cell measures, such as gene

expression, DNA accessibility, chromatin organization, methylation, and imaging data. We

demonstrate the utility of MMD-MA in simulation experiments and using a real data set involving

single-cell gene expression and methylation data.
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1 Introduction

Next-generation sequencing has enabled high-throughput interrogation of many different

physical properties of the genome, including the primary DNA sequence but also the

expression of messenger RNAs, localized binding of specific factors, histone modifications,

nucleosome occupancy, chromatin accessibility, etc. Most of these sequencing assays have

been performed on populations of cells. However, such bulk measurements do not allow for

easy characterization of systematic or stochastic variations in physical properties of the

genome among cells within a given population. Over the past several years, a variety of

genomic assays have been modified to allow characterization of single cells. These

modifications sometimes involve physically segregating individual cells prior to sequencing,

or alternatively involve successive rounds of DNA bar-coding to identify reads derived from

single cells. Examples of single-cell genomics assays include single-cell RNA-seq (scRNA-

seq) for gene expression [14], single-cell ATAC-seq (scATAC-seq) for chromatin

accessibility [3], single-cell Hi-C (scHi-C) for 3D genome organization [10] and single-cell

methylation analysis (scMethyl-seq) [13]. In each case, the result is a data set that, compared

to a standard, bulk genomic assay, has an additional dimension corresponding to the cells in

the sample population.

Single-cell measurements are valuable because they permit a view of the cell-to-cell

variation of a given type of physical measurement of the genome. However, such

measurements would be even more valuable if multiple different measurements could be

obtained from the same individual cell. Such co-assays are feasible, albeit challenging and

lower throughput, for pairs of assays, such as scRNA-seq and scATAC-seq [4] or scRNA-seq

and scMethyl-seq [2], that measure orthogonal physical properties. However, other pairs of

single-cell assays, such as scATAC-seq and scHi-C cannot be paired even in principle,

because each assay operates on (and cleaves) the genomic DNA.

In this paper, we propose a manifold alignment algorithm based on the maximum mean

discrepancy (MMD) measure, called MMD-MA, which can integrate different types of

single-cell measurements. Our MMD-MA algorithm assumes that the cells are drawn from

the same initial population – e.g., cells of the same type or a distribution of cell types from

the same experimental conditions – but the algorithm does not require any correspondence

information either among samples or among the features in different domains. The algorithm

makes no parametric assumptions about the forms of the distributions underlying the various

measurements. The only assumption is that the distributions share a latent structure with

sufficient variability that the MMD term in the optimization can align the distributions. For

example, if both underlying distributions are simple isotropic Gaussian distributions, then it

will not be possible to reconstruct the relative orientation of the alignment. In practice,
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visualization of many different single-cell data sets using dimensionality reduction methods

such as PCA, t-SNE or UMAP suggest that they commonly exhibit complex structure that,

we hypothesize, should allow for alignment across data modalities. In particular, MMD-MA

can be applied to many heterogeneous types of single cell measures, including gene

expression, DNA accessibility, chromatin organization, methylation, and imaging data.

Thus, the algorithm allows us, in principle, to obtain the insights offered by a single-cell co-

assay by computationally integrating two or more separate sets of single-cell measurements

derived from the same or similar populations of cells. We demonstrate the performance of

the algorithm on three simulated data set as well as one real data set consisting of gene

expression and methylation profiles of single cells.

2 Methods

2.1 The unsupervised manifold alignment problem

Our goal is to automatically discover a manifold structure that is shared among two or more

sets of points that have been measured in different ways, i.e., which mathematically live in

different spaces. For simplicity, we describe the case where we have just two types of

measurements, though the approach generalizes to any number of input domains. Let the

two sets of points be X(1) = x1
(1), x2

(1), …, xn1
(1)  from 𝒳(1) and X(2) = x1

(2), x2
(2), …, xn2

(2)  from

𝒳(2). The numbers of data points in the two domains are n1 and n2, respectively. We do not

require any correspondence information regarding the measurements across different

domains or regarding the samples from different domains. Instead, we assume that both sets

of points share a manifold structure, which we aim to discover in an unsupervised fashion.

To ensure the generality of our approach, we frame the optimization using kernels. Hence,

we assume that we have a way of calculating similarities between pairs of entities from the

same domain, using positive definite kernel functions kI :𝒳(I) × 𝒳(I) ℝ for I = 1, 2. The

resulting kernel Gram matrices are denoted by K1 ∈ ℝ
n1 × n1 and K2 ∈ ℝ

n2 × n2, where

KI i j
= kI xi

(I), x j
(I)  for I = 1, 2 and 1 ≤ i, j ≤ nI. As long as both kernel functions are positive

definite, then we are guaranteed that each kernel corresponds to the scalar product operation

in some induced feature space, and that there exists a space of functions ℋJ, called a

reproducing kernel Hilbert space (RKHS), mapping 𝒳(I) to ℝ endowed with a Hilbert space

structure. For example, if the input space X is a vector space and we take the linear kernel

k x, x′ = x⊤x′, then the RKHS is made of linear functions of the form f (x) = w⊤x, endowed

with the norm f = w . If we take a nonlinear kernel such as the Gaussian RBF kernel

k x, x′ = exp − x − x′ 2/ 2σ2  with bandwidth σ > 0, then the RKHS contains nonlinear

functions. The use of kernels allows the MMD-MA algorithm to operate in principal on any

type of entity – vector, graph, string, etc. – for which a kernel function can be defined.

In order to find a shared structure between the points in 𝒳(1) and 𝒳(2), we propose to learn

two mappings ϕ1:𝒳(1) ℝp and ϕ2:𝒳(2) ℝp, so that input data in different spaces are all
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mapped to the same p-dimensional space ℝp and can be compared in that space. For each I =
1,2, we consider each coordinate of ϕI in the RKHS ℋI of the corresponding kernel kI, i.e.,

ϕI = ϕ1
(I), …, ϕp

(I) ∈ ℋI
p. We then consider each function ϕ j

(I) ∈ ℋI of the form

ϕ j
(I)(x) = ∑𝓁 = 1

nI α𝓁 j
(I)kI x𝓁

(I), x , for any x ∈ 𝒳(I). This parametrization of ϕ j
(I) in terms of α𝓁 j

(I)‘s

always exists by the representer theorem, provided we regularize the optimization problem

with the RKHS norm of ϕ j
(I), as we explain below. Now, if we denote by αi the ni × p matrix

with entries α𝓁 j
(I), then KIαIis the nI × p matrix where the j-th row (for j = 1,...,nI) is the p-

dimensional image of x j
(I) by the mapping ϕI. In addition, αI

⊤KIαI is the p × p matrix of inner

products in the RKHS of the p functions ϕ1
(I), …, ϕp

(I), which is for example equal to the p × p

identity matrix Ip when ϕI is a projection onto a subspace of dimension p in the RKHS. In

order to define MMD-MA, we now discuss the criteria to optimize for α1 and α2 in order to

discover shared structures between the two views.

2.2 Characterizing the distribution distance in the shared space

Although we do not assume we know the individual correspondence between points in the

two domains, or even that such a 1-to-1 mapping exists, we do assume that the two

distributions of points are similar in the shared space. Thus, the optimal mapping matrices

α1 and α2 should make the two mapped sets of points in the shared space, namely K1α1 and

K2α2, as similar as possible. To specify the distance between the two mapped manifolds in

the shared space, we use an MMD term MMD K1α1, K2α2
2, which is a general,

differentiable measure of how similar two clouds of points are [7]. Formally, MMD is

defined through a positive definite kernel KM over ℝp through the formula

MMD2 u1
(1), …, un1

(1) , u1
(2), …, un2

(2) = 1
n1
2 ∑

i, j = 1

n1
KM ui

(1), u j
(1)

− 2
n1n2

∑
i = 1

n1
∑

j = 1

n2
KM ui

(1), u j
(2) + 1

n2
2 ∑

i, j = 1

n2
KM ui

(2), u j
(2) ,

where we denote ui
(I) = ϕI xi

(I)  to simplify notation. In this work, we use a Gaussian RBF

kernel for KM, where the bandwidth parameter σ is a user-specified parameter.

Chwialkowski et al. [5] propose two fast methods (with complexity linear in n1 + n2) to

estimate MMD2, both of which are differentiable with respect to the positions of the points.

Because the MMD is small when the distributions are similar, MMD-MA aims to minimize

MMD2 with respect to the embeddings.

2.3 The MMD-MA algorithm

Unfortunately, simply minimizing MMD between the two kernels is insufficient. Most

notably, we need to ensure that the relationships among data points in the input space is
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preserved to some extent in the feature space; otherwise, the method may learn very

complicated mappings that completely modify the relative positions of cells in order to have

them aligned between the two views. For that purpose we introduce a distortion term dis

dis αI = KI − KIαIαI
⊤KI

⊤
2, which quantifies how the matrix of inner products between

points in the original space (quantified by the kernel matrix Ki) differs from the matrix of

inner products after mapping in the p-dimensional space. Penalizing dis(αI) ensures that the

distortion between the data in the original space and the data mapped to the low-dimensional

space should be small. In addition, we may wish to ensure that the mappings to ℝp are

(almost) projections from the high-dimensional RKHS, which we obtain by adding a penalty

term pen pen αI = αI
⊤KI

⊤α − I p 2.

Thus, MMD-MA optimizes, with respect to α1 and α2, the following objective function:

min
α1, α2

MMD K1α1, K2α2
2 + λ1 pen α1 + pen α2 + λ2 dis α1 + dis α2 .

(1)

Where

pen αI = αI
⊤KI

⊤α − I p 2
2, (2)

and

dis αI = KI − KIαIαI
⊤KI

⊤
2
2 . (3)

2.4 Solving the optimization problem

To find a stationary point of (1) we use a simple gradient descent scheme, and use Adam [9]

to adjust the learning rate. Since the optimization problem is not convex, only a local

minimum can be expected. Therefore, for a given data set we run the optimization procedure

with 100 different random seed values and keep the solution which provides the lowest

objective function value.

In practice, solving the optimization requires specifying several hyperparameters. These

include the dimensionality p of the shared space, any parameters of the kernel functions K1,

K2 and KM, and the tradeoff parameters λ1 and λ2. In this work, we assume that p and the

kernel parameters are user-specified, and we investigate the performance of the algorithm as

we vary λ1 and λ2.

3 Related work

We are aware of three other methods that address the unsupervised manifold alignment

problem, which we briefly review here.
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3.1 The joint Laplacian manifold alignment (JLMA) algorithm

The joint Laplacian manifold alignment (JLMA) algorithm [15] performs manifold

alignment by constructing a joint Laplacian across multiple domains and then performing

eigenvalue decomposition to find the optimal solution. The joint Laplacian formulation can

also be interpreted as preserving similarities within each view and correspondence

information about instances across views, which is captured by the joint Laplacian matrix.

The loss function is C(F) = ∑i, j F(i, . ) − F( j, . ) 2W(i, j), where the summation is over all

pairs of instances from all views. F is the unified representation of all instances, and the

output of the algorithm is the joint adjacency matrix W. To avoid trivial solutions (i.e.,

mapping all instances to zero), JLMA includes a constraint F’DF = I where I is an identity

matrix. Let F = f 1, f 2, …, f d . The optimization problem then becomes

argmin
F:F′DF = I

C(F) = argmin
f 1, …, f d

∑
i

f i′L f i + λi 1 − f i′D f i .
(4)

The optimal solution is the d smallest nonzero eigenvectors from the generalized eigen

decomposition problem.

JLMA can be used in an unsupervised or supervised fashion. In supervised mode, the

Laplacian L is given as input. In the unsupervised setting, the key step is to construct the

cross-domain Laplacian submatrix of L. Wang et al. use k-NN graphs to characterize local

geometry and use the minimum distances from scaled permutated k-NN graphs to construct

a cross-view Laplacian submatrix of L. Thereafter, the rest of the algorithm is the same as

the standard JLMA algorithm. Unfortunately, the computational cost of this initial step is

quite high, even for small k values. To deal with this problem, Pe et al. use a B-spline curve

to fit the local geometry and calculate cross-view matching scores from the curves [11].

Thus, in both cases, unsupervised manifold alignment is done via two steps: computing a

cross-domain matching score, and identifying the correspondence via Equation 4.

3.2 The generalized unsupervised manifold alignment (GUMA) algorithm

The generalized unsupervised manifold alignment (GUMA) algorithm [6] is another method

that does not require any correspondence information a priori. The approach assumes that

instances in the two domains (e.g., in our case, two cells measured using different

techniques) can be matched to one another in a one-to-one fashion. In particular, the

algorithm formulates an optimization problem whose objective function includes a geometry

matching term Es across different domains, a feature matching term Ef, and a geometry

preserving term Ep, subject to a 0–1 correspondence matrix F and feature projections Pi for

each domain (i.e. domain i). The optimization is performed using alternating minimization,

alternating between optimizing F and Pi with the other fixed. The algorithm outputs both the

instance correspondence between the domains and the feature mapping functions between

the domains.

Liu et al. Page 6

Algorithms Bioinform. Author manuscript; available in PMC 2021 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3 The manifold alignment generalized adversarial network (MAGAN) algorithm

MAGAN [1] consists of two GANs that learn reciprocal mappings between two domains;

i.e., GAN1 learns the mapping from domain 1 to domain 2, and GAN2 learns the mapping

from domain 2 to domain 1. Each GAN’s generator takes input in one domain and outputs in

the other domain, with the hope that the discriminator in the other domain cannot distinguish

the fake samples from true samples. The loss function of the generators consists of three

terms. The reconstruction loss term Lr captures the difference between a sample and itself

after being mapped to the different domain and then mapped back to the original domain.

The discriminator loss term Ld makes sure that the mapped sample in the other domain has a

high likelihood to fool the discriminator in that domain. And the correspondence loss Lc

forces the learned mapping to agree with some prior correspondence, either “unsupervised

correspondence” (e.g., some variables are shared between two domains) or “semi-supervised

correspondence” (e.g., some labeled pairs cross two domains). The paper empirically

demonstrates that the inclusion of correspondence information greatly improves the

performance of the manifold alignment.

3.4 Comparison of these three algorithms with our algorithm

The MMD term in our formulation only ensures that the two distributions agree globally in

the latent space, whereas both JLMA and GUMA have a term that ensures, for each

instance, that the local geometry is preserved between domains. This is the difference

between manifold superimposing [18, 17, 8] and manifold alignment discussed in the

MAGAN paper [1]. Furthermore, GUMA’s assumption that individual cells can be matched

1-to-1 between the two input domains is not generally true, most obviously when n1 ≠ n2.

MAGAN [1] itself does not include a component for identifying a correspondence in an

unsupervised fashion, and empirical results from the MAGAN paper suggest that the

algorithm may not be useful if there is no known correspondence information between the

two domains. When more than three domains must be aligned, the JLMA, GUMA, and our

MMD-MA algorithms can be easily extended, whereas the formulation of MAGAN makes

such an extension difficult.

4 Results

4.1 Three simulations

To validate the performance of MMD-MA, we generated three simulated data sets, each

from a different d-dimensional manifold. The first manifold exhibits a branching structure in

two-dimensional space (i.e., d = 2) to mimic a branching differentiation situation (first

column of Figure 1). The second manifold structure is a nonlinear mapping of the first

structure. The branching structure is mapped onto a Swiss roll manifold (second column of

Figure 1). Samples in the first domain are mapped from the 2D space of simulation 1 into

3D space such that the three dimensions are x1cos 3x1 , x2, x1sin 3x1 , while samples in the

second domain are mapped into 3D space by x1sin 2x1 , x2, x1cos 2x1 . The third manifold is

a circular frustum in three-dimensional space (i.e., d = 3), which aims to mimic the cell

cycle superimposed on a linear differentiation process (third column of Figure 1). From each
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of these d-dimensional manifolds, we simulated n = 300 data points, and we refer to the

corresponding n × d data matrix as Z.

For each manifold, we assume that we have two domains, and we generate a d × p1 mapping

matrix T1 and a d × p2 mapping matrix T2. Each element in the two mapping matrices is

sampled from a standard Gaussian distribution. We set the observed data matrix from

domain 1 to be ZT1 and the observed data matrix from domain 2 to be ZT2. For example, we

set p1 = 1000 and p2 = 2000. We also add Gaussian noise (σ = 0.05) to each element of the

covariates. For all of the simulations, we set the kernel matrices K1 and K2 to be the inner

product of the z–normalized observed data matrices. For each simulation, we intentionally

mis-specify, as input to MMD-MA, the dimensionality of the latent space as p = 5, to

simulate the scenario in which the true latent dimensionality is unknown a priori.

For all three numerical simulations, we plot the data points in the projected space, namely

K1α1
(o) and K2α2

(o) (Figure 1). In all three cases, the two domains appear to be aligned

correctly in the latent space. To quantify this alignment, we use the known correspondence

between points in the two domains as follows. For each point x in one domain, we identify

its (true) nearest neighbor in the other domain. We then rank all data points in the learned

latent space by their distance from x, and we compute the fraction of points that are closer

than the true nearest neighbor. Averaging this fraction across all data points in both domains

yields the “average fraction of samples closer than the true match,” where perfect recovery

of the true manifold structure yields values close to zero. In all three simulations, the

observed fraction of samples closer than the true match decreases monotonically and

approaches zero as the MMD-MA algorithm iterates.

Finally, we attempted to compare the performance of other algorithms on the same

simulated data sets. Unfortunately, we had difficulty running the GUMA algorithm using the

implementation shared by the authors; hence, we leave GUMA out of our comparison.

Similarly, we could not include the MAGAN algorithm because it requires some initial

correspondence information, which we are assuming is not available. Consequently, we only

compare to the JLMA algorithm as a baseline, using k = 5 (the default value) and k = 6. We

find that, in all three simulations, our MMD-MA algorithm outperforms the baseline JLMA

(bottom row of Figure 1).

The running time of MMD-MA is much lower than JLMA using either k = 5 or k = 6.

Timings on an Intel Xeon Gold 6136 CPU at 3.00GHz (Table 1) show that MMD-MA runs

under one minute, considerably faster than JLMA.

4.2 Real world application results

In a recent study, gene expression levels and methylation rates were profiled jointly in 61

single cells [2]. We use this co-assay data to validate our method by hiding the

correspondence between genes from MMD-MA and then measuring how well the

correspondence is recovered. Prior to analysis, we remove the genes where any of the cells

have a missing value for either the methylation rate or gene expression. This step leaves, for

the 61 cells, 2486 genes with both methylation rate and gene expression measured. We

regard gene expression as domain 1 and methylation rate as domain 2. We pretend that we
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do not know the correspondence information, run our MMD-MA algorithm, and see how

well our algorithm can align the two manifolds and recover the cell correspondence. For

calculating the similarity kernel matrices K1 and K2, we first perform z-score normalization

on the gene expression levels and the methylation rates and then calculate the inner product

for the elements in the cell-by-cell similarity matrices. As in the simulations, we embed the

two domains into a latent space of dimensionality p = 5.

We first plot the Principal Component Analysis (PCA) projection of the single cells based on

their gene expression levels and their methylation rates separately (Figure 2A). In this plot,

when we connect the two dots corresponding to the same cell, we observe that each cell

tends to be projected to two different locations in the latent space. Accordingly, the average

fraction of data points closer than the true match is 0.49. We then run MMD-MA algorithm

on this dataset and plot the PCA projection of the 61 single cells in terms of gene expression

and methylation rate in the shared space recovered by MMD-MA (Figure 2B). In the shared

space projection, we connect the two embeddings from different perspectives, and we

observe that the cells are embedded well in the shared space. Next, we calculate the fraction

of samples closer to each cell than its true match in the shared space of dimensionality p = 5.

This fraction decreases as MMD-MA iterates, reaching 0.024 in the end, and the trend is

consistent across different learning rates of the optimization (Figure 2C). An alternative

visualization of the per-cell fractions before and after optimization (Figure 2D) further

illustrates that the MMD-MA algorithm successfully maps >50% of the cells closest to their

true neighbor in the other domain.

4.3 MMD-MA’s performance is robust to variations in hyperparameters

Running the MMD-MA algorithm requires specifying several hyperparameters. We

investigated the robustness of the learned embedding relative to variations in these

hyperparameters.

As noted previously, in all of our studies the dimensionality p of the latent space has been set

to 5 even though the correct number should be p = 2 in the first two simulations, p = 3 in the

third simulation, and is unknown for the Methyl-Expr data set. We observe that MMD-MA

algorithm can still align the two manifolds even when the dimensionality parameter p is

misspecified.

The trade-off parameters λ1 and λ2 determine how much the three terms contribute to the

overall objective function. In this work, we set these trade-off parameters by monitoring

whether the three terms have comparable magnitudes or whether one particular term

dominates in the converged solution. We tested eight combinations of these trade-off

parameters for each data set (Supplementary Table 3). In each case, we observe that the

performance of MMD-MA is almost the same with different choices of trade-off parameters,

although some trade-off parameters may lead to a different convergence path

(Supplementary Figure 3 A–D).

The bandwidth parameter σ associated with the Gaussian kernel KM in the MMD term

determines how much each data point contributes to its neighborhood in the calculation of

the MMD. The σ values used in our experiments are shown in Table 2. We also tested
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different values of σ and observed that the performance of MMD-MA is quite invariant to

them (Supplementary Figure 3 E–H).

5 Discussion

In this paper, we propose an unsupervised manifold alignment algorithm, MMD-MA, for

integrating multiple types of single-cell measurements carried out on disjoint populations of

single cells drawn from a common source. The key advantage of our MMD-MA algorithm is

that it does not require any correspondence information, either between the samples or

between the features. In many real-world integration applications, such correspondence

information is not available. Another advantage of our MMD-MA algorithm is that it has

only weak distributional requirements for the domains to be aligned, namely, that the

manifolds exhibit sufficient structure to allow for alignment. This flexibility gives MMD-

MA the power to potentially integrate many different types of single cell measures,

including gene expression, DNA accessibility, chromatin organization, methylation, and

imaging data. Furthermore, the MMD-MA framework can easily be extended to more than

two domains, allowing integration of, for example, scRNA-seq, scATAC-seq, and scHi-C of

single cells. We have shown that MMD-MA works well in the presence of nonlinear

mappings and is robust to the choice of several hyperparameters, including the trade-off

parameters, the parameters associated with the MMD term, and the dimensionality of the

shared space.

Currently, MMD-MA can be used to align hundreds or thousands of single cells in a

reasonable running time. The gradient descent algorithm could be parallelized to save time if

multiple cores are available. For future work, we will focus on scaling up the MMD-MA

algorithm. Given decreasing sequencing costs, it is likely we will need to apply MMD-MA

to align millions of single cells in the future. Running MMD-MA efficiently without storing

large kernel matrices in memory will be a crucial issue to solve. A possible solution may

rely on random projection [12] or Nystrom approximation [16], which are approximation

methods for large-scale kernel matrices.

All of the data sets used in this study, including the original and mapped simulated data and

the Methyl-Expr data set, as well as the corresponding MMD-MA outputs, are available for

download from http://noble.gs.washington.edu/proj/mmd-ma.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Three simulation experiments.
The first two rows show the MDS projection of the data points in domain 1 and domain 2,

separately. The third row shows the projection of the data points in the shared embedding

space. The last row plots the fraction of samples closer than the true match as MMD-MA

iterates. Points are included from JLMA when k=5 and k=6.
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Figure 2. Results from real world single cell applications.
(A) PCA projection of single cells based on their gene expression levels and their

methylation rates separately, with dotted lines connecting the same cell. (B) Projection of the

single cells in the shared space from the MMD-MA algorithm, with dotted lines connecting

the same cell. (C) The average fraction of samples closer than the true match decreases as

MMD-MA iterates. This result is consistent across different learning rates of the

optimization. (D) The fraction of samples closer to each cell than its true match is plotted

before and after MMD-MA, with the 61 cells in sorted order along the x-axis. For each cell,

the average is computed separately for each domain, and then the two values are averaged

together. The fraction is high and close to uniformly distributed before running the MMD-

MA algorithm and reduces considerably as the algorithm learns the aligned shared space.
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Table 1
Running time of MMD-MA and JLMA.

Times are provided for the three simulation experiments and the real single cell application.

Sim 1 Sim 2 Sim 3 Methyl-Expr

MMD-MA 0:53 0:58 0:59 0:10

JLMA, k = 5 4:06 4:07 4:20 1:27

JLMA, k = 6 26:11 25:56 32:16 2:16
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Table 2

Properties and hyperparameters of the experiments.

Sim 1 Sim 2 Sim 3 Methyl-Expr

number of Samples 300 300 300 61

dimension (Domain 1) 1000 1000 1000 2486

dimension (Domain 2) 2000 2000 2000 2486

λ 1 1e-6 1e-9 1e-5 1e-2

λ 2 1e-2 1e-7 1e-6 1e-6

σ 0.5 0.1 1.2 10000
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