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Abstract

Motivation: There are high demands for joint genotyping of structural variations with short-read sequencing, but ef-
ficient and accurate genotyping in population scale is a challenging task.

Results: We developed muCNYV that aggregates per-sample summary pileups for joint genotyping of >100 000 sam-
ples. Pilot results show very low Mendelian inconsistencies. Applications to large-scale projects in cloud show the
computational efficiencies of muCNV genotyping pipeline.

Availabilityand implementation: muCNV is publicly available for download at: https://github.com/gjun/muCNV.

Contact: goo.jun@uth.tmc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent advances in high-throughput sequencing had enabled popula-
tion-scale analysis of whole genome sequencing data, but most of analy-
ses have been focused on small variants. Structural variations (SVs)
potentially have significant functional implications (Chiang ez al., 2017;
Conrad et al., 2010), but genome-wide landscape and genetic contribu-
tions of such variants are still largely unknown. There are still challenges
in efficient and accurate genotyping of SVs from short-read sequencing
data, especially at large scale. Challenges are mainly two-folds: control-
ling false discoveries and managing computational efficiencies.

A plethora of SV detection methods has been developed utilizing
read depth, discordant read pairs, split reads and soft-clipped read in-
formation of short-read sequencing data. Each algorithm captures
unique characteristics of SVs; hence has its merits in specific SV types
and size regimes. While there is not a single gold-standard tool for SV
discovery, it has been reported that merging outputs from multiple
tools provide better sensitivity (Zarate et al., 2020). Many SV discov-
ery and genotyping tools run on a single sample, so SV genotyping typ-
ically involves two steps of merging processes: merging across multiple
callers on a single sample and then merging across multiple samples to
construct a project-wide SV discovery set. These approaches greatly
improve overall sensitivity of SV discovery, but at the same time it
increases the risk of false discoveries. This is especially challenging for
large-scale studies because true SVs would share the same breakpoints

across different callers and samples, but we cannot expect the same for
false discoveries. Even if we manage false discovery rates of a SV caller
at a very low level, say 10 unique false events per sample and per caller,
it could result in millions of false discoveries when merged across sev-
eral different callers and across 100 000 samples, order-of-magnitude
more than the number of true SVs. A jointly genotyped set is crucial
for the study of genetic associations of SVs in large scale.

Joint genotyping of a variant requires accessing sequencing data
across all samples; hence computationally challenging. Simply
accessing sequencing data across large sample size is expensive;
100 000 whole genome CRAM files at 30x sequencing takes several
petabytes of storage. These are typically stored in the cloud and a
concurrent access of all samples is not practical. To address this
issue, GATK, a popular short variant caller, adopted gVCF format
that summarizes possible variant information with summary of ref-
erence alleles (Poplin et al., 2018), similar to pileup data of
GotCloud (Jun ez al., 2015). These summary files are useful for short
variants but do not have enough information for SV genotyping.

We present muCNV, a software for joint genotyping of SVs in
large-scale sequencing studies. Our approach utilizes both read depth
and read mapping information and improves genotyping accuracy by
utilizing multi-sample statistics from population-level data. It also pro-
vides an efficient workflow that can be easily parallelized in the clouds
by generating sample-level pileup data and using the pileup for joint
genotyping. The strength of our approach is separating SV discovery
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from genotyping to incorporate multiple external SV discovery tools
that have complementary strengths to each other.

2 Materials and methods

Genotyping by muCNV consists of two major steps: (i) generat-
ing summary pileups with read depth and read pair information
and (ii) joint genotyping of candidate events across all samples
from the pileups. Currently muCNV supports genotyping of
deletions, duplications, multi-allelic CNVs and inversions in
autosomes. The overall workflow of muCNV pipeline is shown
in Supplementary Figure S1.

The pileup step takes list of candidate SV events generated by ex-
ternal callers as input and generate three files to summarize SV-
related features from each sample’s CRAM file in a single scan:
pileup, var and idx files. The pileup file contains summary of
sequencing statistics (depth, insert size, GC-curve), strand and pos-
ition of discordant read pairs, split reads and soft clips, and average
sequencing depth per each 100-bp genomic region for the entire gen-
ome. The var file contains average sequencing depth for each candi-
date SV event and the idx file contains index information for the
pileup file to enable random access using genomic coordinates.
These pileup files can be merged across samples in arbitrary num-
bers to prevent concurrent handling of tens of thousands of files in
the genotyping step. The merging step is optional but highly recom-
mended for projects with more than 10 000 samples.

The genotyping step reads all (merged) pileups and determine
whether each candidate SV is polymorphic or not. For each candi-
date SV, muCNV tries to refine breakpoints first from the consen-
sus of split read information across all samples and collect counts
of split reads, discordant read pairs and soft clips around the
refined breakpoints. Collected counts are then used together with
the read depth distribution to fit two-dimensional mixture of
Gaussian distributions, where one dimension is normalized depth
and the other dimension is fraction of reads with evidences (dis-
cordant read pairs, split reads and soft clips). The number of com-
ponents in the mixture model is determined by Bayesian
information criterion (BIC) and overlap between mixture compo-
nents. The mixture model is then used for genotype (and copy num-
ber) assignments. When there are not enough number of split reads
for breakpoint refinements, muCNV utilizes soft clips and then
reported breakpoints from the candidate SV event. If the two-di-
mensional Gaussian model fails to call genotypes, muCNV also
tries to fit Gaussian mixtures using depth information only, fol-
lowed by call rate and Hardy-Weinberg equilibrium (HWE) based
filtering for common variants. For inversions, muCNV applies one-
dimensional Gaussian mixture model with fraction of reads with
evidences only.

The entire muCNV pipeline is highly parallelizable. The pileup
step is sample-by-sample process and can be distributed across many
computing nodes. The run-time of pileup step is dependent on the
number of candidate SVs, but typically it takes 1-2 single-thread CPU
hours to process a single 30x whole genome CRAM file when ran on
a Google cluster node with a CRAM file stored in a bucket storage.
The genotyping step is parallelized per genomic regions. Overall, the
total computing cost for muCNV is slightly more than two CPU hours
per sample for large-scale projects. The muCNV pipeline is currently
being actively used to generate SV genotypes in conjunction with
Parliament2 multi-discovery pipeline (Zarate et al., 2020) on popula-
tion-scale (>100 000) sequencing projects including the NHLBI
TOPMed project, where initially tens of millions of candidate SV calls
were generated but only a small fraction of these candidate SVs could
be jointly genotyped and used for genotype—phenotype analyses.

3 Results

To assess genotyping accuracies with publicly available data, we ran
a benchmark analysis by running muCNV on Illumina 30x whole
genome sequences from the 1000 Genomes Project (1000G). We
used 168 samples from the Yoruba (YRI) trios, selected from the

Table 1. Summary of SVs with Mendelian error (ME) rates geno-
typed from 168 YRI trio samples

No. of SV No. of per sample ME rate (%)

All 1KGnew  All 1KGnew All 1KG new

Deletion 16 883 6156 3294 976 0.39 0.65
Duplication 2138 1866 194 180 2.5 2.5
Inversion 438 180 66 26 0.58 0.81
CNV 400 373 146 135 - -

Note: 1KG new means SVs not overlapping 1000G SVs.

union of the 2504 unrelated individuals from 1000G Phase 3 release
(Sudmant et al., 2015) and 698 additional individuals that are fam-
ily (trio) members of the 2504. The candidate SV set was generated
by merging SVs from 14 different callers for each sample by
FusorSV (Becker et al., 2018) and then merging across 2504 individ-
uals using SURVIVOR (Jeffares et al., 2017) with 200-bp merging
interval. We used muCNV version 1.0.0 version.

In total, muCNV genotyped 19 859 SVs in 168 individuals. On
average, an individual had 3294 deletions, 194 bi-allelic duplica-
tions, 146 CNVs and 66 inversions (Table 1). We assessed genotyp-
ing accuracies by Mendelian inconsistencies. Deletions had the
lowest non-reference error rate at 0.39%, followed by inversions at
0.58% and bi-allelic duplications at 2.5% (Supplementary Tables
$1-S3). Compared to reported error rate of 2-3% for ‘high confi-
dence’ calls of svtools (Larson et al., 2019) and 3.8% of gnomAD-
SV (Collins et al., 2020), our result show much lower overall error
rate. We evaluated false discovery rate by measuring fraction of de
novo heterozygous genotypes in children, which was very low at
0.6%. More details on the comparison, additional experiments and
evaluation are in Supplementary Text.

We also compared our result to 1000G Phase 3 SVs and we iden-
tified 8576 additional SVs that do not overlap with the 1000G data
similar Mendelian inconsistency rates to the overall data while
maintaining 80% sensitivity (Supplementary Fig. S2), meaning that
most of these 1000G-novel SVs are likely to be true variants. The
results show that muCNV provides an efficient and accurate geno-
typing pipeline for multi-sample SV analyses.
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