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Abstract

Infectious gastrointestinal diseases are frequently caused by toxins secreted by pathogens

which may impair physiological functions of the intestines, for instance by cholera toxin or by

heat-labile enterotoxin. To obtain a functional model of the human intestinal epithelium for

studying toxin-induced disease mechanisms, differentiated enterocyte-like Caco-2 cells

were co-cultured with goblet cell-like HT29-MTX cells. These co-cultures formed a func-

tional epithelial barrier, as characterized by a high electrical resistance and the presence of

physiological intestinal properties such as glucose transport and chloride secretion which

could be demonstrated electrophysiologically and by measuring protein expression. When

the tissues were exposed to cholera toxin or heat-labile enterotoxin in the Ussing chamber,

cholera toxin incubation resulted in an increase in short-circuit currents, indicating an

increase in apical chloride secretion. This is in line with typical cholera toxin-induced secre-

tory diarrhea in humans, while heat-labile enterotoxin only showed an increase in short-cir-

cuit-current in Caco-2 cells. This study characterizes for the first time the simultaneous

measurement of physiological properties on a functional and structural level combined with

the epithelial responses to bacterial toxins. In conclusion, using this model, physiological

responses of the intestine to bacterial toxins can be investigated and characterized. There-

fore, this model can serve as an alternative to the use of laboratory animals for characteriz-

ing pathophysiological mechanisms of enterotoxins at the intestinal level.

Introduction

Infectious gastrointestinal diseases are often caused by pathogen-secreted toxins affecting the

physiological function of the intestinal epithelium. One of those toxins is the cholera toxin

(CTX), which is produced by Vibrio cholerae and which was, according to the World Health

Organization, associated with 172,454 cholera cases as well as 1,304 deaths in 42 countries in
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2015 [1]. However, much higher numbers of unreported cases are estimated [2]. Another path-

ogen-secreted toxin is the heat-labile enterotoxin (HLTX), which is produced by Escherichia
coli. Both toxins, CTX and HLTX, share the same well-characterized mode of action [3–5] and

show a high degree of sequence homology [6–8] as well as approximately 80% structural simi-

larity [9]. Both toxins bind to the monosialotetrahexosylganglioside (GM1) [10,11] and are

taken up by cells via endocytosis [12]. After relocation via early endosomes [13], the Golgi

apparatus and the endoplasmic reticulum [14], the toxin is released to the cytosol where it

mediates the increase of intracellular cyclic adenosine monophosphate (cAMP) levels by acti-

vation of adenylate cyclase [15]. This leads to the phosphorylation of the cystic fibrosis trans-

membrane conductance regulator (CFTR) by protein kinase A (PKA) and therefore to a Cl--

secretion [16,17]. The secretion of Cl- is further associated with an increasing Na+ concentra-

tion in the intestinal lumen due to increasing paracellular Na+ permeability [18], which ulti-

mately results in severe diarrhea caused by the osmosis-driven high water flow induced by the

hypertonic salt concentration in the intestinal lumen [19]. In many studies, mainly rodents

have been used as laboratory animals to study these bacterial effects mechanistically. Within

the framework of the 3Rs concept, the reduction of animal experiments is more desirable than

ever, as there is growing evidence that species-specific in vitro models are more suitable to

study molecular mechanisms than the classically used rodent models [20]. One way to avoid

animal experiments is to use human-derived cell culture-based systems. Caco-2 cells, which

are derived from a human colorectal carcinoma, represent a well-characterized cell culture sys-

tem that displays enterocyte-like morphology and functionality, comparable to the small intes-

tines, when differentiated by using certain culture conditions [21–26]. In addition to

enterocytes, the second most abundant type of cells in the intestines are mucus-producing

goblet cells [27]. These can be modelled using HT29-MTX cells, a sub-strain of the colorectal

carcinoma-derived cell line HT29 and which can differentiate into goblet cell-like cells during

cultivation [28]. The enterocyte-like Caco-2 cells have often been used to study bacterial infec-

tions [29,30] as well as toxin-induced effects on the epithelium [31,32], while HT29-MTX cells

have mainly been used for studying bacterial adhesion and survival [33]. Both cell lines can be

co-cultured to obtain a more physiological model of the small intestines [34–36], whereby the

goblet cells provide a mucus layer that, as under in vivo conditions, serves as an important bar-

rier against pathogens and toxins [reviewed by 37]. The small intestine itself is a typical target

for CTX-producing V. cholerae or HLTX-producing E. coli [38–41]. The co-cultivation of

Caco-2 and HT29-MTX cells was already published in 1996 [42]. Since then, studies of a broad

field of scientific questions ranging from transport studies [43,44] to work on the adhesion of

pathogens [45,46] and the association of nanoparticles [47] have been performed using this

model. However, the measurement of functional and structural properties, followed by mea-

surements on the response to bacterial toxins have never been performed using the Ussing

chamber technique in combination with this cellular setup. The Ussing chamber enables the

recording of transepithelial transport processes in the absence of electrochemical driving

forces via the connection to a voltage clamp. This clamp generates the so-called short-circuit

current (Isc), which is directed against the current generated by electrogenic epithelial trans-

port processes [48]. Therefore, the aim of the present study was firstly, to validate and to char-

acterize physiological transport processes and barrier functions of co-cultured Caco-2 and

HT29-MTX cells and secondly, to study the response of these cells to bacterial toxins, in order

to investigate the suitability of this co-culture model for studying infectious diseases in vitro
and to establish it as a potential alternative to classical toxicity studies using laboratory

animals.
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Materials & methods

Cell culture

Caco-2 cells (passages 10–18) were obtained from the German Collection of Microorganisms

and Cell Cultures (DSMZ, Braunschweig, Germany) and HT29-MTX cells (passage 8–16)

were obtained from the Max Rubner-Institut (MRI, Karlsruhe, Germany). Both cell lines were

cultured in Dulbecco’s Modified Eagle Medium (DMEM) containing 10% fetal bovine serum,

1% (v/v) non-essential amino acids, 2 mM L-glutamine, 100 μg/ml streptomycin and 100 U/ml

penicillin (all purchased from Biochrom [Merck], Berlin, Germany). The cells were cultured

for 28 days at 37˚C in a carbogen (95% O2, 5% CO2) atmosphere, with the culture medium

being changed every two to three days. For Ussing chamber experiments and the Lucifer yel-

low assay, cells were cultured on Snapwells1 (Corning, Kaiserslautern, Germany; diameter: 12

mm; pore size: 0.4 μm) containing 0.5 ml medium in the apical and 3.0 ml in the basolateral

compartment., 1 x 105 Caco-2 or HT29-MTX cells were seeded in each insert individually,

while, for co-culture experiments, the cells were seeded in a 9:1 (Caco-2:HT29-MTX) ratio

[36]. Mycoplasm test was performed every 2 weeks by PCR.

TEER measurements

To determine cell monolayer integrity, transepithelial electrical resistance (TEER) was mea-

sured using an epithelial volt-ohm-meter (EVOM2; WPI, Berlin, Germany). Measurements

were performed at each culture medium exchange according to the manufacturer’s

instructions.

Permeability study

In addition to TEER measurements, Lucifer yellow (100 μM, Sigma-Aldrich) dissolved in phe-

nol red-free DMEM (Biochrom) was added to the apical compartment of the Snapwells1 to

determine the integrity of the cellular layer. This was performed as published before [49], with

slight modifications. After an incubation period of 1, 3, 6 and 9 h, samples were taken from the

apical (5 μl) and basolateral (15 μl) compartments and transferred to a black half-area 96-well

plate (Greiner Bio-One, Kremsmünster, Austria), before the volume in each well was filled up

to 100 μl with phenol red-free DMEM. Finally, Lucifer yellow quantification was performed by

measuring fluorescence at an excitation wavelength of 425 nm and an emission wavelength of

530 nm.

Ussing chamber experiments—Transport physiology

Cells cultured on Snapwells1 were mounted in Ussing cambers [50], mimicking the mucosal

and the serosal side of the intestine. Ussing chambers were connected to a computer-con-

trolled voltage clamp (K. Mussler, Aachen, Germany). Each compartment was filled with 5 ml

of the respective buffers (Table 1), which was heated to 37˚C and aerated with carbogen. After

an equilibration phase of 5 min, the clamp was set to short-circuit conditions.

Ussing chamber—Cellular characterization. Fifteen min after the application of short-

circuit conditions, the cells were incubated with glucose (10 mM, mucosal, diluted in aqua des-

tillata) and mannitol (10 mM, serosal, diluted in aqua destillata) for 20 min, followed by a 10

min incubation period with carbachol (10 μM, serosal, Sigma-Aldrich, diluted in aqua destil-

lata) and a final incubation with forskolin (10 μM, serosal, Sigma-Aldrich, diluted in Dimethyl

sulfoxide) for another 10 min. Indomethacin (10 μM) was added to impede prostaglandin syn-

thesis and to avoid spontaneous Cl- secretion [51]. Throughout the experiment, both, the Isc

and resistance (Rt) were measured. In each experiment, three chambers were run as replicates.
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Ussing chamber—Incubation with bacteria-derived toxins. Fifteen min after the clamp

was set to short-circuit conditions, the cells (Caco-2, HT29-MTX or co-cultures,) were incu-

bated for 45 min with either 7.5 μg/ml CTX (CAS 9012-63-9; Enzo Life Sciences, Lörrach, Ger-

many, diluted in aqua destillata) or 7.5 μg/ml HLTX (E8015, Sigma-Aldrich, diluted in aqua

destillata). This was followed by the addition of 10 μM forskolin to the serosal chamber for 10

min and a final incubation of 20 min with 100 μM ouabain (Sigma-Aldrich, diluted in aqua

destillata) on the serosal side. Isc and Rt were measured continuously and replicates were

obtained as mentioned above.

Harvest of cells and preparation of apical membranes

Cells were harvested after cultivation on 10 cm petri dishes under the above-mentioned condi-

tions. The culture medium was removed, 5 ml ice-cold phosphate buffered saline (PBS) was

added, the cells were detached with a cell-scraper and the plate was rinsed twice with PBS to

remove residual cells. Then, the cells were centrifuged at 3.000 x g and 4˚C for 15 min. After-

wards, the supernatant was discarded and the pellet was either used to prepare the apical mem-

brane (AM) or stored at -20˚C until further analysis. CaCl2-precipitation was used to prepare

the AM precipitation as previously described [52].

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. The pro-

tein expression of sodium-dependent glucose co-transporter (SGLT1), its phosphorylated

form pSGLT1, CFTR and the peptide transporter 1 (PepT1) was investigated by SDS-PAGE

and immunoblotting. AM samples were denaturated in Laemmli buffer containing 2% (w/v)

SDS and 60 mmol/l dithiothreitol (DTT). 10 μl of each protein extract were loaded on an 8.5%

(w/v) acrylamide gel. After gel electrophoresis (25 min at 60 V, followed by 80 min at 120 V),

proteins were blotted (90 min at 90 V) onto a nitrocellulose membrane (VWR, Hannover,

Germany). Then, after blocking for 90 min (see Table 2 for details), the membranes were incu-

bated overnight at 4˚C with the primary antibody, followed by incubation with the secondary

antibody. The detection of chemiluminescent signals was performed using a Chemidoc system

(Bio-Rad Laboratories, München, Germany) and the band intensity was measured using the

Image Lab software (version 6.1.0; Bio-Rad laboratories). After detection, the pSGLT1-mem-

branes were stripped (0.2 M glycine, 0.05% [v/v] Tween-20, 1% [v/v] SDS, pH 2.0) and blocked

again as described above. Incubation with an anti-SGLT1 antibody and corresponding second-

ary antibody as well as subsequent detection of chemiluminescence were performed as

described above. Expression of villin was used as marker for AM and whole protein content as

Table 1. Composition of buffer solutions used for Ussing chamber experiments (if not stated otherwise, all chemi-

cals were obtained from Merck, Darmstadt, Germany). All chemicals were diluted in aqua destillata.

Mucosal buffer [mM] Serosal buffer [mM]

NaCl 119.6 119.6

KCl 5.4 5.4

HCl 0.4 0.4

MgCl2
� 6 H2O 1.2 1.2

CaCl2
� 2 H2O 1.2 1.2

NaHCO3 15.0 15.0

Na2HPO4 1.2 1.2

NaH2PO4 0.3 0.3

Mannitol 20.0 10.0

Glucose - 10.0

Indomethacin (Sigma-Aldrich, Schnelldorf, Germany) 0.01 0.01

https://doi.org/10.1371/journal.pone.0257824.t001
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housekeeping protein. Further information on antibodies and incubation conditions is given

in Table 2.

Histological analysis

Analysis of mucus layer formation. Mucus layer formation was analyzed by means of

mucin staining. Cells were cultivated on Snapwells1 as described above. Then, the Snapwell1

membranes were cut out, fixed in Bouin solution for 10 min and rinsed three times with PBS.

After fixation, the membranes were cut in two pieces and embedded in 5% (w/v) agarose fol-

lowed by embedding in paraffin. For morphological evaluation, 3 μm-slices were sectioned

and hematoxylin and eosin (H & E) staining was performed. In order to confirm the existence

of goblet cells, de-paraffinized slides were stained with periodic acid-Schiff reagent (PAS),

dehydrated and mounted with Eukitt1 (O. Kindler GmbH, Freiburg, Germany), all according

to standard protocols.

Expression of zonula occludens-1. Immunohistochemical staining of zonula occludens-1

protein (ZO-1) was obtained by fixation and embedding of cells on Snapwell1membranes as

described in above. After de-paraffinization and inhibition of endogenous peroxidase activity

with 3% H2O2 in 80% ethanol for 30 min, sections were microwave-pretreated with sodium

citrate buffer (pH 6.0) for 3 x 5 min at 800 Watts. The slides were then allowed to cool down to

room temperature for 30 min and blocked with 3% BSA for 20 min, before they were incu-

bated with the primary anti-ZO-1 antibody (Santa Cruz Biotechnology, Dallas, USA; catalog

no.: sc-10804, dilution factor: 1:80) overnight at 4˚C. The sections were then exposed to the

secondary antibody (biotin-labelled goat-anti-rabbit; Vector, Burlingame, USA; catalog no.:

BA-1000; dilution factor: 1:200) for 60 min at room temperature and, after rinsing, 30 min

with the ABC-System (Vector; catalog no.: PK-6100). After visualization with 3,30-Diamino-

benzidine (DAB), the sections were counterstained with hematoxylin for 10 sec and rinsed

with running tap water. Finally, the slides were dehydrated and mounted with Eukitt1. Isotype

controls were included in the analyses and images were captured using a Zeiss Axioskop

Table 2. Incubation conditions and dilution factors of the different antibodies used in the present study.

Denaturing conditions Primary antibody dilution factor and blocking buffer� Secondary antibody dilution factor†

PEPT11 95˚C, 5 min 1:500; 5% BSA/TBST 1:2,0008

SGLT12 40˚C, 15 min 1:2,000; 5% M TBST 1:20,0007

pSGLT1 Ser418 3 40˚C, 15 min 1:200; 5% M TBST 1:15,0007

CFTR4 95˚C, 5 min 1:1,000; 5% M TBST 1:2,0006

Villin5 95˚C, 5 min 1:5,000; 5% TBST 1:25,0009

� Incubated at 4˚C overnight;
† Incubated at room temperature for 90 min.
1 monoclonal mouse-anti-PEPT1 (373742, Santa Cruz, lot no.: 31916).
2 polyclonal rabbit- anti-SGLT1 (ab14686, Abcam, UK, lot no.: JBC17887303).
3 monoclonal rabbit-antipSGLT1, custom made by Perbio Science, Germany (epitope: KIRKRApSEKELMI).
4 monoclonal rabbit-anti-CFTR (#78335, Cell Signaling Technology, lot no.: 1).
5 monoclonal mouse-anti-Villin (1D2C3, Santa Cruz, lot no.: L0808).
6 goat-anti-rabbit IgG HRP-conjugated (#7074, Cell Signaling Technology, lot no.: 26).
7 goat-anti-rabbit IgG HRP-conjugated (A9169, Sigma-Aldrich).
8 mouse-IgGκ BP-HRP-conjugated (516102, Santa Cruz).
9 goat-anti-mouse IgG HRP-conjugated (A2304, Sigma-Aldrich).

BSA: Bovine serum albumin; TBST: Tris-buffered saline including 0.1% Tween 20; M: Skimmed dry milk.

https://doi.org/10.1371/journal.pone.0257824.t002
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(Zeiss, Jena, Germany) mounted with an Olympus SC50 camera controlled by the Olympus

CellSens software (Olympus Soft Imaging Solutions GmbH, Germany). Numeric apertures

(NA) of the objective lenses used where: 10 x/NA 0.3; 20 x/NA 0.5 and 40 x/NA 0.75.

Immunofluorescence of ZO-1 was performed by cultivation of Caco-2, HT29-MTX and co-

cultivation of HT29-MTX and Caco-2 cells on glass covers for 7 and 28 days, with a medium

change occurring every 2 or 3 days. Then, fixation was performed by replacing the medium

with 3% paraformaldehyde for 10 min at room temperature, followed by three times rinsing

with PBS. After fixation, cells were permeabilized for 10 min using 0.25% Triton X-100/PBS

and blocked with 5% goat-serum in PBST for an hour. The primary anti-ZO-1 antibody was

diluted 1:100 in goat-serum and incubated with the slides at 4˚C overnight. After washing

thrice with PBS, incubation with the secondary fluorescence-labelled antibody (goat anti-rab-

bit) was performed for 60 min at room temperature. Cover glasses were embedded using Pro

Long Gold (Invitrogen, Carlsbad, USA). No staining of the nuclei was performed to minimize

eventual background staining. Analysis was performed using a Keyence BZ-X800 microscope

and the BZ-X800 analyzer software (Keyence GmbH, Hannover, Germany). Numeric aper-

tures of the objective lense used was: 60x/NA 1.4.

Data analysis and statistics

Basal values of Isc and Rt were determined by calculating the arithmetic mean of the last 10

data points before the addition of an agent. Changes in short-circuit currents (ΔIsc) were calcu-

lated by subtracting the arithmetic mean from the maximal value after the addition of each

agent. Densitometrical analysis of protein expression was performed by normalizing the signal

of specific protein bands to the total protein content. The normal distribution of the residuals

was tested using the D’Agostino & Pearson test. A paired t-test was used to compare datasets

containing only two groups. When comparing datasets containing three or more groups, the

following statistical tests were used: a one-way ANOVA followed by Tukey’s post-hoc test was

used for normally distributed data, while the Kruskal-Wallis test followed by Dunn’s multiple

comparisons post-hoc test was applied to non-normally distributed datasets. All statistical

analyses were performed using Prism version 8.0.1 (GraphPad, San Diego, USA) and p
values� 0.05 were considered statistically significant.

Results

Cellular monolayer integrity increases during cultivation time

The integrity of the cellular monolayer was determined at each medium change until the cells

were used for experimental purposes. After four weeks of cultivation, Caco-2 (555 ± 52.9 O �

cm2) and co-cultured Caco-2/HT29-MTX cells (495.7 ± 57.8 O � cm2) reached significantly

higher TEER-values when compared with HT29-MTX cells (291.3 ± 52.8 O � cm2; Fig 1). After

9 hours of incubation with Lucifer yellow, no specific fluorescence signal could be detected in

the basolateral chamber (data not shown). Expression of the tight junction associated protein

ZO-1 was examined by immunohistochemical and immunofluorescence staining. Immuno-

histochemical staining of ZO-1 at day 28 appears to be increased on the cell surface in relation

to the signal to day 7. The isotype control was negative (Fig 2).

Immunofluorescence staining of ZO-1 in Caco-2 cells showed a positive signal at the cellu-

lar boards. This appears in lines for cells cultivated for one week, Caco-2 cells cultivated for 28

days showed a more diffuse staining at the intracellular connections but less staining in the

cytoplasm. Cultivation of HT29-MTX cells for 7 days showed a ZO-1 signal in the cytoplasm,

while cells cultivated for 28 days showed a ZO-1 signal at the cell-cell connections but not in

the cytoplasm. Co-cultivated Caco-2 and HT29-MTX cells showed a ZO-1 signal at the cell-
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cell connections and the cytoplasm when cultivated for 7 days, which was enhanced in cells

co-cultivated for 28 days. The negative control showed only a low background in all stainings

(Fig 3).

Mucus layer formation

Caco-2, HT29-MTX and co-cultures of both cell lines grown on Snapwell1membranes were

stained with H & E as well as hematoxylin and PAS to determine cellular arrangement and the

formation of mucus. All cell types showed a similar growth pattern and cells with a larger

lumen and more basal oriented nuclei can be detected in the co-culture (green triangles, Fig

4). While hematoxylin and PAS staining showed no specific signal in Caco-2 cells, a strong sig-

nal in all HT29-MTX cells as well as some cells in the co-culture can be seen (violet triangles,

Fig 4). Interestingly, some areas in the co-culture show a PAS-signal on top of PAS-negative

cells (black triangles, Fig 4).

Ussing chamber studies—Transport characteristics

Basal Rt values were significantly lower in HT29-MTX cells (227.1 ± 51.83 Ω � cm2) when

compared to Caco-2 cells (462.5 ± 65.84 Ω � cm2) and co-cultured cells (387.1 ± 117.6 Ω �

cm2), while basal Isc values were not different between the different cell line incubations. The

mucosal addition of glucose resulted in a significant increase in Isc in co-cultured and Caco-2

cells, while HT29-MTX did not respond to this treatment (Fig 5). No increase in Isc was

induced by the addition of carbachol to Caco-2 cells, while Isc significantly increased in co-

Fig 1. Changes of TEER values as a function of time of Caco-2, HT29-MTX and co-cultured Caco-2 and

HT29-MTX cells incubated for 32 days on Snapwells1. Shown are values obtained from four experiments, each

performed in triplicates.

https://doi.org/10.1371/journal.pone.0257824.g001
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cultured cells and HT29-MTX cells upon exposure to this agent. Forskolin induced a signifi-

cant Isc increase in all three cell types.

Ussing chamber studies—Effects of bacterial toxins

Mucosal incubation with CTX led to a significant increase in Isc in all cellular cultures (Fig 6).

After treatment with CTX, chloride-secretion was stimulated by forskolin, resulting in a signif-

icantly higher Isc in HT29-MTX cells. Ouabain led to a significant decrease in Isc in Caco-2,

and HT29-MTX co-cultures.

Mucosal addition of HLTX led to a significant increase in Isc in Caco-2 cells, while

HT29-MTX and co-cultured cells did not respond to this treatment, while subsequent addition

of forskolin induced an effect in all cellular incubations (Fig 7). In contrast, ouabain led to a

decrease in the Isc in Caco-2- and HT29-MTX cells as well as in the co-cultured HT29-MTX

and Caco-2 cells.

Structural characterization of protein expression reveals different

abundance of transport proteins

Preparations of Caco-2 and co-cultures of Caco-2 and HT29-MTX cells showed a band at�

90 kDa when incubated with antibodies against SGLT1 and pSGLT1, while expression of this

glucose transporter is absent in HT29-MTX cells (Fig 8). In case of SGLT1, this was further

confirmed by densitometry while pSGLT1 expression showed no significant differences (Fig

9). Villin was detected as a� 90 kDa band in all preparations, albeit with a less intense signal

Fig 2. Immunohistochemical staining (including isotype controls) of ZO-1 (cross-section) in Caco-2, HT29-MTX

as well as co-cultured Caco-2 and HT29-MTX cells cultivated for 7 (D7) and 28 days (D28). Representative figures

are shown, chosen from three independent experiments with three technical replicates per cellular approach.

https://doi.org/10.1371/journal.pone.0257824.g002
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Fig 3. Immunofluorescence staining (top view) of ZO-1 in Caco-2, HT29-MTX and co-cultured Caco-2 and

HT29-MTX cells cultivated for 7 (D7) and 28 days (D28). ZO-1 is displayed in red. Representative figures are shown,

chosen from three independent experiments with three technical replicates per cellular approach.

https://doi.org/10.1371/journal.pone.0257824.g003
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in HT29-MTX cells, which was confirmed in the frame of the densitometric analysis (Fig 9). A

PepT1 band at� 70 kDa was detected in all cell types. A similar result was obtained in the case

of CFTR, which showed a band at� 189 kDA.

Discussion

Layer integrity is characterized by increasing electrical resistance as well as

low permeability due to elevated tight junction protein expression

The TEER values of� 500O � cm2 for co-cultured and Caco-2 cells and� 300 O � cm2 for

HT29-MTX cells are in accordance with previously published results and suggest that the cells

Fig 4. Cellular arrangement (cross sections) of cells grown on Snapwells1 for 28 days. Cells were either stained with hematoxylin

and eosin (H & E) or hematoxylin and PAS (H & PAS). Green triangles indicate cells with a large lumen, violet triangles indicate PAS-

positive cells and black triangles indicate PAS-positive staining on top of PAS-negative cells. Representative figures are shown, chosen

from three independent experiments with three technical replicates per cellular approach.

https://doi.org/10.1371/journal.pone.0257824.g004

Fig 5. Basal and maximal Isc values in Caco-2, HT29-MTX and co-cultured Caco-2 and HT29-MTX cells determined before and after subsequent

addition of glucose, carbachol and forskolin. Values shown are the mean ± SD of four independent experiments, each performed in triplicates. �

p< 0.05; �� p< 0.01; ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0257824.g005
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form an intact monolayer [35,53,54]. Absolute TEER values obtained in the Ussing chamber

are generally lower than when measured using the volt-ohm-meter due to different methodical

setups, although relative resistance values between the two systems and cell types are compara-

ble. In the Lucifer yellow assay, no paracellular transport was detected after 9 hours of incuba-

tion indicating the expression of tight junction proteins [35], a finding which is supported by

the increased expression of the tight junction associated protein ZO-1 [27,34,42] which is asso-

ciated with increasing TEER values indicating tight junction expression [55–57] and is com-

monly used as marker for barrier integrity [58]. ZO-1 is expressed in all cellular compositions

after 7 days but the expression is changed after 28 days cultivation time. However, the modula-

tion and change of ZO-1 expression has been shown [59] and is responsible for the assembly

of tight junction proteins such as claudin [60]. It was discussed that the reason for unspecific

staining in the co-cultured cells at D28 is due to accumulation of the antibody in the produced

mucus [61] which would also be the case for the mucus producing HT29-MTX cells. Cellular

organization is comparable to existing literature [62] and shows mucus producing goblet cells,

mucus covered areas as well as cells which do not produce mucus.

Cellular characterization shows functional transport characteristics

Glucose transport is mediated by SGLT1 [63], which results in an increase in Isc, as shown in

co-cultured and Caco-2 cells but not in HT29-MTX cells. This can be confirmed by the expres-

sion of SGLT1 in Caco-2 cells [21], while HT29-MTX, being of goblet cell lineage [28], do not

Fig 6. Basal and maximal Isc values in Caco-2, HT29-MTX and co-cultured Caco-2 and HT29-MTX cells determined before and after subsequent

addition of CTX, forskolin and ouabain. Values shown are the mean ± SD of four independent experiments, each performed in triplicates. � p< 0.05;
�� p< 0.01; ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0257824.g006

Fig 7. Basal and maximal Isc values in Caco-2, HT29-MTX and co-cultured Caco-2 and HT29-MTX cells determined before and after subsequent

addition of HLTX, forskolin and ouabain. Values shown are the mean ± SD of four independent experiments, each performed in triplicates. �

p< 0.05; �� p< 0.01; ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0257824.g007
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express this transporter in the present as well as other studies [64], Villin was enriched in the

AM preparations, with weaker expression in HT29-MTX cells. Glucose transport in co-cul-

tures of Caco-2 and HT29-MTX cells is most likely mediated by the relatively high amount of

SGLT1-expressing Caco-2 cells in this incubation.

Fig 8. Protein expression of pSGLT1, SGLT1, villin, total protein content, PepT1 as well as CFTR in Caco-2,

HT29-MTX and co-cultured Caco-2 and HT29-MTX cells. pSGLT1 and SGLT1 were blotted on the same

membrane, which was stripped after incubation with the pSGLT1-antibody. Each lane on each membrane represents a

biological replicate, experiments were performed in triplicates.

https://doi.org/10.1371/journal.pone.0257824.g008

Fig 9. Densitometrical analysis of Western blots performed with pSGLT1, SLT1, villin, PepT1 and CFTR in relation to total protein content in

Caco-2, HT29-MTX and co-cultured Caco-2 and HT29-MTX cells. Values shown are the mean ± SD of three independent experiments. � p< 0.05; ��

p< 0.01.

https://doi.org/10.1371/journal.pone.0257824.g009
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Carbachol induces a Cl- secretion in a Ca2+-dependent manner [65], which results in an

increase in the Isc by stimulating calcium activated calcium channels (CaCC) [66]. The com-

paratively high response of HT29-MTX cells to this compound could be explained by the abil-

ity of these cells to produce high amounts of mucus, which is concomitant to an elevated

chloride secretion [67]. In contrast, Caco-2 cells are not able to produce such high amounts of

mucus [68] and therefore release lower amounts of Cl-. Nonetheless, even at higher concentra-

tions of carbachol, the changes in Isc of Caco-2 cells appear to remain small [69].

Forskolin activates adenylate cyclase, which results in an intracellular increase of cyclic

adenosine monophosphate [70], which in turn has been described to lead to a Cl--secretion via

CFTR followed by an increase in Isc in Caco-2 [71] and HT29-MTX cells [72]. However, the

higher response of co-cultured cells to forskolin can be explained by a higher activation of

CFTR. The expression of PepT1 as a transporter for di- and tripeptides [reviewed by 73] was

observed in all cellular incubations, as has previously been shown in Caco-2 cells [74,75] and

HT29-MTX cells [34].

In conclusion, the existence of epithelial transport systems in the apical membrane con-

firms the functional integrity of the cell cultures as a valid model for the small intestinal

epithelium.

Toxin incubation leads to pathophysiological responses

Cholera toxin derived from V. cholera causes secretory diarrhea by activating adenylate cyclase

[15], which leads to an increase in intracellular cAMP levels and results in a decrease in

sodium absorption and an increase in chloride secretion [76]. In human colonic epithelial T84

cells, an increase in cAMP-stimulated chloride secretion has been shown to be mediated either

by phosphorylation of CFTR [17] or by recruitment of the transporter to the AM [77]. Similar

results were obtained in Caco-2 cells in the present study as well as in previous publications

after an incubation period of approximately 30 min [78]. An influence of CTX on mucus

release in intact mucosa has also been shown [79], albeit not in HT29 cells [80]. However, an

effect of CTX on the Isc was observed in HT29-MTX cells in the present study. Thus, it may be

concluded that this cellular subtype shows, a behavior more comparable to the actual in vivo
situation regarding its response to CTX. In addition, co-cultured cells showed a similar

response to CTX as Caco-2 cells, thus supporting the assumption that this co-culture model

has the potential to mimic the human small intestinal epithelium in a physiological way

[34,35,81]. An increase in Isc after treatment with CTX impaired the response to forskolin,

although an additional activation of CFTR by forskolin can be neglected due to the continuous

effect of CTX and the ensuing permanent activation of the adenylate cyclase [82]. HLTX and

CTX are about 80% similar regarding their structure [83]. However, CTX showed an effect in

Caco-2, HT29-MTX and co-cultured Caco-2/HT29-MTX cells in the Ussing chamber,

whereas HLTX only affected Caco-2 cells and was less pronounced. This is comparable to the

in vivo situation where infections with HLTX-producing E. coli are milder and of shorter dura-

tion when compared to V. cholerae infections as reviewed by Spangler [3]. In spite of this struc-

tural similarity, other factors such as the tissue colonization capacity of the pathogens

themselves in the in vivo situation or the different A2 domain expressed in these two toxins

may explain this discrepancy [4,84]. The A2 domain is responsible for the linking between the

A1 domain, which is responsible for the adenylate cyclase activity, and the pentameric B sub-

unit which binds to GM1-ganglioside in the target cell [9,85,86].

In this study, fetal bovine serum is used for cultivation of the cells according to established

culture conditions of the cell lines and to ensure comparability to earlier studys [21,34,35].

However, it is desirable to replace this serum by an animal-free alternative while the
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comparability to the serum-using system must be verified and compared with other studies

already using serum-free medium [87].

The present study characterizes a model of the human small intestine regarding several

physiological (e.g. glucose transport) and pathophysiological reactions to bacterial toxins (e.g.

chloride secretion) using the Ussing chamber technology. The combination of Caco-2 and

HT29-MTX cells has proven to be an improvement over the widely used classical Caco-2

model of cellular transport due to the presence of a cell-covering mucus layer. Moreover, glu-

cose transport and tight junction expression correlate with functional endpoints such as the Isc

or TEER measured in the Ussing chamber and other systems used herein. In conclusion, this

study serves as proof of concept showing that the Caco-2/HT29-MTX co-culture model is a

suitable system for studying various physiological intestinal functions ranging from nutrient

transport to reactions to pathogens or toxins without using laboratory animals or material

derived thereof. Possible future endpoints that could be analyzed using this system include

studying the influence of bacterial toxins on nutrient transport, layer integrity or their interac-

tions with pharmaceutical agents.

Supporting information

S1 File.

(XLSX)

S1 Raw images. Raw images of Western Blot membranes of pSGLT1, SGLT1, villin, total

protein content, PepT1 and CFTR.

(PDF)

Acknowledgments

The authors wish to thank Prof. Pablo Steinberg for providing the HT29-MTX cells.

Author Contributions

Conceptualization: Pascal Hoffmann, Gerhard Breves.

Data curation: Pascal Hoffmann.

Formal analysis: Ralph Brehm.

Funding acquisition: Gerhard Breves.

Investigation: Pascal Hoffmann, Marion Burmester, Marion Langeheine, Ralph Brehm,

Michael T. Empl.

Methodology: Pascal Hoffmann, Marion Burmester, Marion Langeheine, Ralph Brehm,

Michael T. Empl, Bettina Seeger.

Project administration: Gerhard Breves.

Resources: Gerhard Breves.

Supervision: Gerhard Breves.

Validation: Gerhard Breves.

Visualization: Ralph Brehm.

Writing – original draft: Pascal Hoffmann, Gerhard Breves.

Writing – review & editing: Ralph Brehm, Michael T. Empl, Bettina Seeger, Gerhard Breves.

PLOS ONE Co-cultured cells to study intestinal physiological properties and toxin-induced effects

PLOS ONE | https://doi.org/10.1371/journal.pone.0257824 October 7, 2021 14 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257824.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257824.s002
https://doi.org/10.1371/journal.pone.0257824


References
1. WHO. Background Paper on Whole-Cell, Killed, Oral Cholera Vaccines 2017.

2. Ali M, Nelson AR, Lopez AL, Sack DA. Updated global burden of cholera in endemic countries. PLoS

Negl Trop Dis. 2015; 9(6):e0003832. https://doi.org/10.1371/journal.pntd.0003832 PMID: 26043000

3. Spangler BD. Structure and function of cholera toxin and the related Escherichia coli heat-labile entero-

toxin. Microbiol Rev. 1992; 56(4):622–47. https://doi.org/10.1128/mr.56.4.622-647.1992 PMID:

1480112

4. Sears CL, Kaper JB. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion.

Microbiol Rev. 1996; 60(1):167–215. https://doi.org/10.1128/mr.60.1.167-215.1996 PMID: 8852900

5. Vanden Broeck D, Horvath C, De Wolf MJ. Vibrio cholerae: cholera toxin. Int J Biochem Cell Biol. 2007;

39(10):1771–5. https://doi.org/10.1016/j.biocel.2007.07.005 PMID: 17716938

6. Dallas WS, Falkow S. Amino acid sequence homology between cholera toxin and Escherichia coli heat-

labile toxin. Nature. 1980; 288(5790):499–501. https://doi.org/10.1038/288499a0 PMID: 7003397

7. Dykes CW, Halliday IJ, Hobden AN, Read MJ, Harford S. A comparison of the nucleotide sequence of

the A subunit of heat-labile enterotoxin and cholera toxin. FEMS Microbiology Letters. 1985; 26(2):171–

4.

8. Lockman H, Kaper JB. Nucleotide sequence analysis of the A2 and B subunits of Vibrio cholerae

enterotoxin. J Biol Chem. 1983; 258(22):13722–6. PMID: 6315707

9. Zhang RG, Scott DL, Westbrook ML, Nance S, Spangler BD, Shipley GG, et al. The three-dimensional

crystal structure of cholera toxin. J Mol Biol. 1995; 251(4):563–73. https://doi.org/10.1006/jmbi.1995.

0456 PMID: 7658473

10. Jobling MG, Holmes RK. Analysis of structure and function of the B subunit of cholera toxin by the use

of site-directed mutagenesis. Molecular Microbiology. 1991; 5(7):1755–67. https://doi.org/10.1111/j.

1365-2958.1991.tb01925.x PMID: 1943708

11. Guidry JJ, Cárdenas L, Cheng E, Clements JD. Role of receptor binding in toxicity, immunogenicity,

and adjuvanticity of Escherichia coli heat-labile enterotoxin. Infect Immun. 1997; 65(12):4943. https://

doi.org/10.1128/iai.65.12.4943-4950.1997 PMID: 9393780

12. Fujinaga Y, Wolf AA, Rodighiero C, Wheeler H, Tsai B, Allen L, et al. Gangliosides that associate with

lipid rafts mediate transport of cholera and related toxins from the plasma membrane to endoplasmic

reticulm. Mol Biol Cell. 2003; 14(12):4783–93. https://doi.org/10.1091/mbc.e03-06-0354 PMID:

13679513
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