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Abstract

The advent of molecularly targeted agents for patients with peripheral T-cell lymphomas 

(PTCL) has begun to change the therapeutic landscape in these diseases, especially for patients 

with relapsed or refractory disease. These agents, grounded in targeting numerous pathways 

or alterations related to disease pathogenesis, have shown promise across many PTCL sub­

histologies. Aided by significant advances in experimental techniques related to molecular 

biology, epigenetics, and immunology, more recent studies have begun elucidating mediators 

of resistance, both intrinsic and acquired, to inform future therapeutic advances. Defining and 

targeting these escape mechanisms through rational combination approaches will likely be 

important to continue to build on these promising advances and further improve clinical outcomes 

for patients facing PTCL.

Keywords

Targeted therapies; Kinase Inhibitors; Epigenetic Therapies; Immunomodulatory Therapies; 
Peripheral T-cell lymphomas

Introduction

Peripheral T-cell lymphomas (PTCL) comprise a heterogeneous collection of malignancies 

arising from the malignant transformation of mature T cells and include nearly 30 

histologic subtypes with distinct clinical behavior and disease pathogenesis. Patients with 
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aggressive PTCL subtypes are frequently treated with upfront combination chemotherapy 

with consideration of stem cell transplantation if remission is achieved depending on 

the specific disease subtype and patient suitability [1]. Other patients ineligible for this 

intensive approach or with more indolent disease behavior are typically treated with 

ongoing, sequential, maintenance-type treatments attempting to maximize clinical benefit 

with acceptable long-term toxicities. Broadly, however, compared to those for patients with 

B-cell lymphomas, the outcomes for patients with PTCL are poor, especially for those 

patients with relapsed or refractory (R/R) disease [2, 3]. This disparity has stimulated 

significant recent progress in defining the disease pathobiology of PTCL subtypes and the 

development of novel therapeutic approaches to ultimately improve patient outcomes.

The advent of high-throughput genomic sequencing and advances in molecular biology have 

generated deep insights into the genomic landscape and molecular pathogenesis of PTCL 

subtypes. Indeed, nearly all PTCL sub-histologies have multiple published manuscripts 

detailing the landscape of molecular alterations present [4–8]. For example, Watatani 

and colleagues used whole-exome sequencing on PTCL tumor samples to reveal a new 

molecular subtype of PTCL-NOS characterized by alterations in TP53 and CDKN2A. 

Paralleling these discoveries into the genetic lesions underlying PTCL has been other lines 

of investigation into the cellular signaling pathways that PTCLs are dependent on for growth 

and proliferation [9, 10] that may be susceptible to therapeutic targeting. Among these that 

are most advanced therapeutically are the phosphatidyl inositol-3-kinase pathway (PI3K), 

the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, and 

the spleen tyrosine kinase (SYK) pathway.

An additional line of background research in PTCL pathogenesis concerns epigenetic 

alterations in PTCL. Many PTCL subtypes contain epigenetic changes and/or mutations in 

epigenetic-related genes, which has prompted the use of epigenetic-directed therapies such 

as histone deacetylase (HDAC) inhibitors [11]. Besides implications for pathogenesis, such 

markers may carry prognostic importance [12, 13]. Epigenetic alterations are especially well 

defined in the PTCL-TFH/AITL subtypes with frequent mutations in epigenetic regulators 

such as TET2 and DNMT3A [7], and emerging evidence suggests superior efficacy with 

HDAC inhibition in these diseases compared to other PTCL subtypes [14]. Newer targeted 

approaches are seeking to explore other epigenetic-targeted therapies such as the enhancer 

of zeste homolog 1/2 (EZH1/2) [15] or non-enzyme inhibition-based approaches [16, 17] to 

disrupting perturbed epigenetic networks and pathways for therapeutic gain.

In the present review, we discuss therapeutic targets and compounds under investigation for 

use in treating R/R PTCL-NOS, focusing on those farthest along in clinical development or 

showing particular promise in earlier-phase investigations. Where possible, we will seek to 

highlight translational efforts seeking to understand mediators of response to these agents.

Kinase-targeted therapies

PI3K

Cellular signaling through the PI3K-Akt-molecular target of rapamycin (mTOR) pathway 

has been shown to be critical for growth and differentiation of lymphocytes [9, 18, 19], 

Epstein-Peterson and Horwitz Page 2

Semin Hematol. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and therefore targeting this pathway with small molecule PI3K inhibitors has emerged as 

a promising approach in many malignancies, especially lymphoid cancers. Available PI3K 

inhibitors include idelalisib, copanlisib, zandelisib, tenalisib, and duvelisib; the last two 

agents are most investigated for patients with R/R PTCL [20, 21]. A completed phase 

I study of duvelisib, a, oral δ/γ isoform-specific inhibitor, showed promising responses 

among 16 patients with R/R PTCL (study also included patients with R/R cutaneous 

T-cell lymphomas, not discussed here) following a median of >2 lines of therapy. In 

this population (largest histologic subtype PTCL-NOS, N = 6), the overall response rate 

was 50%, including 3 complete responses and 5 partial responses. Analysis of toxicities 

observed among all patients showed side effects common in this class of agents: elevations 

in AST/ALT (31% grade >2), rash (14% grade >2), and grades 1/2 pyrexia (37%) and 

cough (34%). Biologically, increases in CCL1, IL-17a, and sCD40L and diminution in 

p40 and CXCL13 correlated with responses. This has prompted the ongoing phase II dose 

optimization/expansion study (NCT03372057) seeking to further explore and potentially 

register the use of this agent in patients with R/R PTCL [22]. In preliminary results among 

25 response assessed patients, 13 had responses, including 9 complete responses, with a 

median duration of response of 4.1 months. The toxicity profile was notable for cytopenias 

(24%) and elevated ALT (56%).

More recently, phase I data concerning another dual PI3K δ/γ inhibitor tenalisib were 

published including 28 patients with R/R PTCL (histologic subtypes not reported), over 

20% of whom had received >4 prior lines of therapy [21]. Among these 28 patients, 15 

completed at least 2 cycles of therapy, 3 of whom achieved CR and 4 achieved PR. The 

median duration of response was 6.5 months. Toxicities were generally comparable to 

those observed with duvelisib, with the most common grade >2 toxicity being elevated 

AST/ALT (19% each across all patients). Based on these promising results, two ongoing 

studies are investigating each of these agents in combination with the HDAC inhibitor 

romidepsin (NCT02783625 and NCT03770000) for patients with R/R PTCL. Other ongoing 

or planned studies with PI3K inhibitors in patients with R/R PTCL includes combination 

with immune checkpoint blockade (copanlisib plus pembrolizumab, NCT02535247) and 

with chemotherapy (copanlisib plus gemcitabine, NCT03052933). For upfront treatment, a 

planned intergroup study (A051902) will randomize patients with CD30-negative PTCL to 

CHO(E)P versus CHO(E)P plus duvelisib versus CHO(E)P plus azacitidine to advance these 

promising agents earlier in the care of patients.

JAK

The Janus kinase family proteins (JAK1, JAK2, JAK3, and TYK2) contribute to 

critical pathways mediating immune responses and inflammation in normal physiology. 

Downstream of the JAK proteins are the STAT family of transcription factors, most 

importantly STAT3 and STAT5B, which mediate effects of JAK signaling through 

transcriptional regulation. Cancer-associated JAK family gene mutations were initially 

discovered in the myeloproliferative neoplasms, but recent work has begun elucidating their 

prevalence and significance across nearly all TCL histologies and potential for therapeutic 

targeting [23–28]. Besides activating mutations, there are also gene fusions involving JAK 

family genes [29] leading to activated JAK-STAT pathway signaling. Recent data have 
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emerged regarding efficacy of JAK pathway inhibition as a therapeutic approach in PTCL: 

Moskowitz and colleagues reported results from a phase II study of ruxolitinib in 53 

patients with R/R PTCL, with 48 evaluable patients. The largest subgroup by histology 

was PTCL-NOS (N = 11) followed by PTCL-TFH and angioimmunoblastic T-cell lymphoma 

(AITL, N = 9). Patients were analyzed according to JAK/STAT pathway status: activating 

mutation present, pathway activation evident by immunohistochemistry, or neither. The 

overall response rate (including patients with cutaneous T-cell lymphomas) was 23%; the 

response rate plus rate of maintaining stable disease for >6 months reached 35%. Three 

patients achieved complete responses, and 8 (17%) partial responses. In terms of subtypes, 

particularly high rates of clinical benefit were seen in patients with PTCL-TFH/AITL (44%), 

large granular lymphocytic leukemia (75%), and T-cell prolymphocytic leukemia (50%). 

When analyzed according to JAK/STAT pathway status, the overall response rate was 29% 

in those with an activating mutation present or elevated pSTAT3 by immunohistochemistry 

compared to only 11% in those with neither. The most frequent drug-related grade 3/4 

adverse events were cytopenias, with neutropenia being the most common (N = 13). An 

ongoing study (NCT01712659) is testing ruxolitinib specifically in patients with adult T-cell 

leukemia/lymphoma harboring JAK/STAT pathway activation [28, 30].

SYK

SYK encodes a protein tyrosine kinase with pleiotropic downstream signaling partners, 

including PI3K and PLC-gamma [31], and is normally expressed on B cells but absent 

on T cells [32]. Aberrant expression of SYK is observed in the majority (94%) of T-cell 

lymphoma (TCL) cases [33]. Cerdulatinib is a pan-JAK/SYK pathway inhibitor that has 

been investigated for treating patients with R/R hematologic malignancies, including PTCL 

[34]. Among 60 evaluable patients with PTCL who received cerdulatinib, the overall 

response rate was 35%; the response rate specifically in patients with PTCL-TFH/AITL was 

55% (12/22). The main treatment-emergent adverse event grade >2 included lipase elevation 

(21%) with diarrhea, neutropenia, anemia, and fatigue all between 5–10%. Another SYK 

inhibitor, TAK-659, which also targets fms-like tyrosine kinase 3, is in development and 

is undergoing evaluation for patients with B-cell non-Hodgkin lymphomas (NCT03357627, 

NCT02000934, and NCT03742258).

ITK

The interleukin-2-inducible kinase (ITK) is a member of the Tec family non-receptor 

tyrosine kinase and mediates T-cell activation and differentiation [35]. ITK is specific to 

T cells and is required for signaling through the T-cell receptor: when TCR is activated, 

ITK is recruited, phosphorylated, and activated, thus activating secondary downstream 

messengers including members of the NF-κB, mTOR, and ERK pathways [36]. Certain 

PTCL subtypes have been shown to harbor activating ITK fusions [37] and pre-clinical 

evidence suggests ITK-mediating signaling may underlie chemoresistance [38]. This has 

spurred the development of small molecule inhibitors of ITK for use in PTCL, including 

CPI-818. Interim results for this agent [39] included 16 patients in dose escalation with 

a variety of PTCL and cutaneous T-cell lymphoma sub-histologies (including 4 patients 

with PTCL-NOS). Evidence of activity with no grade 3/4 adverse events has been noted 
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particularly in patients with Sezary Syndrome, a form of cutaneous T-cell lymphoma, and 

the study remains ongoing (NCT03952078).

Aurora A kinase

Aurora kinase A is a serine/threonine protein kinase that mediates spindle formation during 

mitosis and is overexpressed in a wide range of malignancies, including PTCL [40], and 

targeting this pathway was shown to have pre-clinical activity [41]. Alisertib is an oral 

Aurora kinase A inhibitor, and data for this agent came from a randomized, phase III study 

of alisertib versus investigator’s choice in R/R PTCL [42]. The study was terminated early 

due to evidence of lack of benefit for progression-free survival for alisertib, with an overall 

response rate of 33% compared to 45% for the comparison arm. Based on these results, 

further single-agent development has been halted for patients with PTCL.

ALK

Anaplastic large cell lymphoma (ALCL) is a common subtype of PTCL and is subdivided 

based on the presence or absence of the t(2;5)(p23;q35) translocation that fuses the 

anaplastic lymphoma kinase (ALK) gene to NPM. As ALK is a readily targetable tyrosine 

kinase receptor, this has led to use of ALK inhibitors for patients with R/R ALK+ ALCL 

[43, 44]. Crizotinib, the first ALK inhibitor developed, was used in 9 patients with R/R 

ALK+ ALCL, and all 9 patients experienced complete responses to therapy, many of 

which were durable [43]. Three of these 9 patients had prior stem cell transplantation (2 

autologous, 1 allogeneic). Richly, et al. investigated the second-generation ALK-inhibitor 

ceritinib in 3 patients with R/R ALK+ ALCL, 2 of whom achieved CR, 1 PR, all of which 

were ongoing at time of publication [44].

Epigenetic-targeted therapies:

HDAC

Protein acetylation is governed by histone acetyltransferases that catalyze the addition of 

acetyl groups and HDAC enzymes, which remove them. Among HDAC inhibitors, belinostat 

[45] and romidepsin [46] are the most thoroughly studied for patients with PTCL histologies 

and HDAC inhibition is an established treatment for patients with R/R PTCL in current 

practice. Coiffier and colleagues reported updated results for romidepsin in patients with 

R/R PTCL [46] in 2014, involving 130 patients with PTCL-NOS, AITL, and ALK-negative 

anaplastic large cell lymphoma. The overall response rate was 25%, including 29% in the 69 

patients with PTCL-NOS. The median time to response was 1.8 months and median duration 

of response was 28 months, highlighting its potential role as a chronic, maintenance-type 

therapy in this setting. The most common side effects included gastrointestinal toxicities 

(nausea, vomiting), cytopenias (especially anemia, thrombocytopenia), and fatigue/asthenia. 

Belinostat, among 129 patients with R/R PTCL, garnered a response rate of 26%; median 

progression-free survival and overall survival were 1.6 and 7.9 months, respectively. A 

similar toxicity profile to romidepsin was observed with this agent. Reported combination 

studies using romidepsin in R/R PTCL are summarized in Table 1.
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Further studies are underway or planned to investigate other therapies in combination 

with HDAC inhibitors, including PI3K inhibitors (duvelisib, NCT02783625; tenalisib, 

NCT03770000), proteasome inhibitors (ixazomib, NCT03547700), aurora kinase inhibitors 

(alisertib, NCT01897012 [56]), other epigenetic therapies (azacitidine + lenalidomide 

NCT04447027), immunotherapy (durvalumab + pralatrexate or azacitidine, NCT03161223).

EZH1/2

The EZH1/2 enzymes are histone methyltransferases and serve as the active SET domain­

containing catalytic subunits of the polycomb repressive complex 2, which regulates 

chromatin topology (reviewed in [57]). Mutations in EZH2 were observed in 10% 

(7/68) patients with hepatosplenic T-cell lymphoma [4], a rare and aggressive subtype of 

PTCL, and pre-clinical data suggest efficacy for EZH2 inhibition in this disease [58]. In 

follicular lymphoma, an indolent subtype of B-cell non-Hodgkin lymphoma, the EZH2 

inhibitor tazemetostat has received accelerated FDA approval for patients with R/R disease, 

irrespective of EZH2 mutation status [59]. Fewer pre-clinical data exist concerning the 

role for EZH1/2 in PTCL. Dhiran and colleagues showed EZH2 IHC staining to be a 

distinguishing factor between malignant and normal T cells [60] and it was also shown that 

EZH2 overexpression is present in many TCL subtypes [61], mediated by the TCR/CD28 

pathway. Emerging data suggest efficacy of EZH1/2 inhibition in R/R PTCL subtypes [15] 

with the dual EZH1/2 inhibitor valemetostat: among 9 patients with ATLL, there was 1 

unconfirmed complete remission, 3 partial responses, and 3 patients with stable disease. 

Frequent adverse events included cytopenias (most commonly thrombocytopenia, 78%), 

dysgeusia, alopecia, and dry skin. An ongoing study (NCT02732275) will report further data 

for this promising agent more broadly in patients with PTCL.

DNMT

DNA methylation is a critical process to regulating gene expression and governed by tightly 

regulated enzymes that add or remove methyl groups at particular sequences. The DNA 

methyltransferase (DNMT) enzymes specifically catalyze the addition of methyl groups, 

and oncogenic lesions in these enzymes are principally found in PTCL-TFH and AITL 

subtypes within PTCL [6, 7]. This has spurred investigations into the use of DNMT 

inhibitors, also known as hypomethylating agents, for therapeutic gain in these diseases 

[53, 62–65], although most such reports are confined to single case reports or small case 

series. Falchi and colleagues reported data from a prospective study of 14 patients with 

R/R PTCL (65% with AITL) using the DNMT inhibitor 5-azacitidine plus romidepsin 

[53]. Among 13 response evaluable patients (completing ≥2 cycles of treatment), 7 (54%) 

experienced response, including 5 complete response and 2 partial responses. Among all 

patients, grade ≥3 treatment-emergent toxicities were primarily hematologic in nature. An 

ongoing upfront study [64] (NCT03542266) is evaluating oral azacitidine with combination 

chemotherapy for patients with PTCL, enriching for those with PTCL-TFH/AITL subtypes. 

Finally, an ongoing randomized study (NCT03593018) is evaluating oral azacitidine versus 

investigator’s choice in patients with R/R AITL.
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Non-cell signaling kinase/non-epigenetic targets

Anti-apoptotic therapies

The advent of apoptosis-targeting therapies for patients with non-Hodgkin lymphoma has 

shown particular promise for patients with chronic lymphocytic leukemia and mantle cell 

lymphoma, with high rates of remission seen in each histology with the BCL2 inhibitor 

venetoclax [66, 67].

Emerging evidence suggests a role for such agents for treating patients with PTCL [68–70]. 

Apoptosis is governed by the BCL2 family of proteins with counterbalancing pro- and anti­

apoptotic members, including MCL1 and BCL2. Spinner and colleagues revealed high levels 

of MCL1 expression across PTCL subtypes and that targeting this pathway delayed PTCL 

development and reduced survival in vivo [68]. Building off this work, Koch and colleagues 

identified an MCL1-dependent PTCL patient-derived tumor xenograft model wherein MCL1 

inhibition improved survival and was synergistic with standard multiagent chemotherapy 

[70]. These data have spurred development of agents for patients with R/R PTCL in ongoing 

trials targeting MCL1 (PRT1419 – NCT04543305; AMG 397 – NCT03465540; AZD5991 – 

NCT03218683) and BCL2 (venetoclax – NCT03534180).

Stapled peptide therapies

Stapled peptides represent a novel class of anti-cancer agents that disrupt protein-protein 

interactions for therapeutic benefit, in contrast to enzymatic inhibition characteristic of most 

targeted agents. Preliminary data have been reported [71] in 26 patients with R/R PTCL by 

Shustov and colleagues using ALRN-6924. This agent mimics the inhibitor binding region 

of p53, thus binding endogenous inhibitors of p53 and restoring its normal induction of cell 

cycle arrest and apoptosis. In 15 evaluable patients, the overall response rate was 27% and 

disease control rate (ORR + SD) 47%, with an acceptable profile (most common treatment­

related adverse event fatigue, 50% followed by nausea, 43%). Further development of this 

agent for patients with R/R PTCL are not currently planned.

Immunomodulatory agents

The immunomodulatory agent lenalidomide has broad activity across numerous hematologic 

malignancies, including multiple myeloma, deletion 5q myelodysplastic syndrome, mantle 

cell lymphoma, and follicular lymphoma. Lenalidomide binds to cereblon, the substrate 

adapter of the CRL4-cereblon E3 ubiquitin ligase complex, thus modulating its substrate 

specificity and inducing degradation of selected protein targets. As many of these 

protein targets mediate immune responses such as interleukin production and T/NK-cell 

proliferation/activation, these effects are believed to mediate the anti-tumor properties of this 

agent (reviewed in [72]). Furthermore, lenalidomide has been shown to strengthen immune 

synapses as another means to promote anti-tumor immunity [73]. Lenalidomide has been 

investigated for use in patients with R/R PTCL [74, 75] and is the subject of ongoing 

trials. Morschhauser and colleagues reported [74] an overall response rate of 22% in 54 

patients with PTCL (median prior therapies 3); the median progression-free survival was 2.5 

months. Frequent adverse events included thrombocytopenia (20%) and neutropenia (15%). 

Further data [75] were reported in 40 patients with a range of PTCL histologies, including 
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14 with PTCL-NOS. The overall response rate was similar, 26%. Ongoing investigations 

of lenalidomide in patients with R/R PTCL include in combination with the antibody-drug 

conjugate targeting CD30 brentuximab vedotin (NCT03302728, also including patients with 

Hodgkin lymphoma) and the anti-PD1 monoclonal antibody durvalumab (NCT03011814, 

also including patients with cutaneous T-cell lymphomas).

Farnesyltransferase inhibitors

Tipifarnib is a farnesyltransferase/CXCR4 inhibitor that has recently been investigated 

specifically for biomarker-driven use in patients with R/R PTCL, especially AITL or 

CXCL12+ PTCL-NOS [76]. CXCL12 expression has been suggested to be prognostic 

in patients with PTCL and tipifarnib was shown to downregulate CXCL12 secretion in 

stromal cultures, hence its selected use for treating patients with CXCL12+ PTCL [77, 

78]. Within this trial, in the PTCL-NOS subcategory, patients were stratified according to 

the variant status of the 3’ UTR of the CXCL12 gene; among 9 evaluable patients with 

wildtype 3’ UTR, the clinical benefit rate was 82%, whereas all 6 patients with variant 

3’ UTR had progressive disease [76]. The primary toxicities were cytopenias, especially 

thrombocytopenia (39%) and neutropenia (31%).

Incorporating molecularly targeted therapies into clinical practice

The care of patients with R/R PTCL is complex and a full discussion of this clinical scenario 

is beyond the scope of this review. However, in our practice, our approach relies principally 

on the patient’s goals/wishes for treatment and age/comorbidities, prior therapies received 

and tolerability therein, the tempo and extent of disease, and in some instances, availability 

of a suitable donor for allogeneic stem cell transplantation. Whenever feasible, we seek to 

molecularly characterize a patient’s tumor (preferably using a specimen confirming R/R 

disease) through targeted next-generation sequencing. Emerging evidence suggests that 

such results may carry implications for prognosis [79] or therapeutic selection [80]. In 

practice, we decide between non-cross-resistant combination therapies and targeted agents 

(potentially in the context of a clinical trial) primarily based on the tempo/extent of disease 

and the patient’s preferences for treatment, balancing what may be more quickly achieving 

a response versus a greater potential for lasting responses with chronic, maintenance-type 

treatments. Ongoing clinical trials mentioned in this article are summarized in Tables 2 and 

3 (current as of January, 2021).

Conclusions

In this review, we have attempted to outline areas of progress in defining the disease biology 

and therapeutic targeting needed to advance the care of patients with R/R PTCL forward. 

Clearly, there are promising agents with tangible benefits in this patient population, yet 

further work is needed to: 1) refine patient selection for these therapies based on genomic, 

epigenomic, or immunologic tumor markers, 2) more precisely define mediators of response 

to these agents, and 3) understand patterns of treatment failure from multiple perspectives 

towards ultimately targeting these bypass mechanisms. Furthermore, future therapeutic 

approaches may not take the form of small molecule kinase inhibitors, but instead as 

stapled peptides, micro RNA-targeted therapies, enzyme degraders, enzyme agonism, or 
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other emerging strategies. Finally, irrespective of therapeutic interventions, further work 

remains to gain deeper understanding into fundamental disease mechanisms to identify other 

rational targets for therapeutic gain.
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Table 1:

Reported combination studies with romidepsin in R/R PTCL

Combination agent(s) N evaluable ORR CR Citation

Duvelisib 14 36% 21% [47]

Pembrolizumab 15 44% 20% [48]

Pralatrexate 14 71% 29% [49]

Liposomal doxorubicin 12 25% 25% [50]

Gemcitabine 20 30% 15% [51]

ICE 18 93% 80% [52]

Azacitidine 6 83% 50% [53]

Gemcitabine, cisplatin 20 50% 0% [54]

Lenalidomide, carfilzomib 11 46% 36% [55]

ICE, ifosfamide, carboplatin, and etoposide
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Table 2:

Ongoing studies of targeted therapies for R/R PTCL

Drug category Agent(s) NCT Recruitment Status Eligible Diagnoses

Kinase Duvelisib NCT03372057 Recruiting PTCL-NOS, AITL, ALCL, 
NKTL

Duvelisib + romidepsin NCT02783625 Recruiting PTCL, CTCL

Tenalisib NCT03770000 Active, not recruiting TCL

Copanlisib + pembrolizumab NCT02535247 Active, not recruiting PTCL, transformed CTCL

Copanlisib + gemcitabine NCT03052933 Active, not recruiting PTCL, NKTL

Ruxolitinib NCT01712659 Recruiting ATL

TAK-659 + venetoclax NCT03357627 Active, not recruiting NHL

TAK-659 NCT02000934 Active, not recruiting Lymphoma

CPI-818 NCT03952078 Recruiting TCL

Tenalisib + romidepsin NCT03770000 Active, not recruiting TCL

Epigenetic Romidepsin + ixazomib NCT03547700 Active, not recruiting PTCL

Romidepsin + azacitidine + lenalidomide NCT04447027 Recruiting TCL

Romidepsin +/− pralatrexate +/− durvalumab 
+/− azacitidine

NCT03161223 Recruiting PTCL

Valemetostat NCT02732275 Recruiting NHL

Azacitidine NCT03593018 Recruiting AITL

Other PRT1419 NCT04543305 Recruiting NHL

AMG 397 NCT03465540 Recruiting NHL

AZD5991 NCT03218683 Recruiting NHL

Venetoclax NCT03534180 Recruiting PTCL, transformed MF

Lenalidomide + brentuximab NCT03302728 Recruiting CD30+ PTCL

Lenalidomide + durvalumab NCT03011814 Recruiting PTCL

NKTL, NK/T-cell lymphoma; CTCL, cutaneous T-cell lymphoma; FTCL, follicular T-cell lymphoma; ATL, adult T-cell leukemia/lymphoma
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Table 3:

Development Status for Targeted Therapies in R/R PTCL by Mechanism of Action

Class Agent Phase of study/status

Kinase

Cerdulatinib

Phase I ongoing

TAK-659

CPI-818

Crizotinib

Ceritinib

Copanlisib

Duvelisib

Phase II ongoingTenalisib

Ruxolitinib

Alisertib Phase III completed

Epigenetic

Valemetostat Phase I ongoing

Romidepsin + other (multiple) Phase II ongoing

Azacitidine Phase III ongoing

Romidepsin alone
Approved

Belinostat

Other

ALRN-6924 Phase I completed

MCL1 inhibitors Phase I ongoing

Lenalidomide Phase II completed

Tipifarnib
Phase II ongoing

Venetoclax

Finally, the decision regarding consolidating deep responses to targeted therapies with allogeneic stem cell transplantation is complex and should 
be individualized to each patient’s situation.
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